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Abstract This paper reports the identification of more-for-less paradox in the linear

fractional transportation problem using objective matrix. We characterize the m × n

objective matrices of linear fractional transportation problem for which there exist sup-

plies and demands such that the transportation paradox arises. At the end numerical

examples are given for explaining the theory.
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1 Introduction

The classical linear fractional transportation problem (LFTP) is a mathematical model
which has a special mathematical structure. This special mathematical structure can be
confirmed by the mathematical formulation of a large number of similar problems. There-
fore, it is frequently referred as a particular form of a mathematical model rather than the
physical approach in which the problem originates. The more-for-less (MFL) paradox of a
LFTP, where one wants to minimize the total distribution costs, maximize the total profit,
increases the requirements of one of the demand points and capacity of one of the supply
points, may result in a lower optimal solution even though the total requirements have in-
creased. The MFL analysis is useful in decisions of increasing a warehouse stocking level or
plant production capacity. In turn this could prompt a decision for enhancing advertising
efforts to increase demand in certain markets. The procedure permits computation of the
maximum allowable additional units and distribution of these extra units in a systematic
approach. In this discussion, the MFL paradox does not include other managerial issues,
such as the possibility of the additional holding cost or the possibility of losing alternative
opportunities.

Mathematical formulation of classical LFTP [1] is

(P1) MinimizeZ =
N(X)

D(X)

=

m
∑

i=1

n
∑

j=1
cijxij

m
∑

i=1

n
∑

j=1

dijxij
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Subject to

m
∑

j=1

xij = ai

n
∑

i=1

xij = bj

xij, ai, bj ≥ 0 , i = 1, 2....m , j = 1, 2....n

(xij) = X ⊂ S
∑m

i=1
ai =

∑n

j=1
bj.

LetP = (cij, dij) and vectors (cij) and (dij) lie in Rm×n and X is a vector of mn decision
variables, ai being the availability at ith supply and bj the requirement at jth demand
point. Here xij denotes the quantity shipped from source i to sink j. Let X denotes the
set of all transportation plans x = (xij) that fulfill the transportation constraints above.
D(x) > 0 for all x ∈ S, where S is a polyhedral compact set of feasible points. Further, let
LFTP(P, a, b) denote the optimal objective value specified by P, a and b.

The classical LFTP is specified by an m × n matrix P = (cij, dij), an m-dimensional
vectora = (ai), and an n-dimensional vector b = (bj); all numbers ai,bjcij and dij are
nonnegative real numbers. This data has the following meaning: there are m sources and n

sinks; at the ith source there is a supply of aiunits, and at the jth sink there is a demand
of bj units. It is assumed that

∑m

i=1 ai =
∑n

j=1 bj, i.e. the total supply equals the total
demand. The total cost for transporting one unit from the ith source to the jth sink is pij.
The main aim is to find a transportation plan that satisfies all the demands and minimizes
the overall transportation cost.

Deineko et al. [2] gives an exact characterization for linear transportation problem cost
matrices that are immune against the transportation paradox. The paradoxical situation in
LFTP was discovered by Verma and Puri [1]. In this paper the classical cost minimization
transportation problem with fractional objective function was used and a sufficient condition
to identify the paradoxical situation in LFTP was developed in the presence of a paradoxical
solution. This approach also provides a complete paradoxical range of flow. The main
drawback in the approach is that it does not involve any procedure for finding the increment
required in supply/demand to reach a better optimal solution without losing the initial
shipping route, though for a given flow it can find out the route.

To describe the transportation paradox more precisely, we introduce the following nota-
tions: let two vectors v = (vi) and v′ = (v′i) are of equal dimensions, the vector v′ dominates
the vector v if and only if v′i ≥ vi holds for all i; we denote this by v′ ≥ v. Leta′ ≥ a ≥ 0
and b′ ≥ b ≥ 0 be two other supply and demand vectors. Then this situation constitutes a
MFL paradox in LFTP if and only if LFTP(P, a, b) > LFTP(P, a′, b′).

2 More-for-Less Analysis in LFTP

The MFL phenomenon is based on relaxing the equality constraints for a given LFTP.
Consider the problem with relaxed constraints as
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(P2) MinimizeZ =
N(X)

D(X)
=

m
∑

i=1

n
∑

j=1
cijxij

m
∑

i=1

n
∑

j=1
dijxij

where

m
∑

j=1

xij ≥ ai

n
∑

i=1

xij ≥ bj

xij, ai, bj ≥ 0 , i = 1, 2....m , j = 1, 2....n

3 Definitions

Paradoxical flow- Let Z0 and ZP be the objective functions corresponding to the flows
F 0 and F P respectively. Then it is a paradoxical flow if on increasing the flow from
F 0 to F P the value of the objective function decreases steadily from Z0to ZP .

Paradoxical solution- A solution Xp of (P2) yielding the objective function-flow pair
(Zp, F p) is called a ‘Paradoxical solution’, if for any other feasible solution of (P2)
yielding a flow pair (Z, F ), we have:

(Z, F ) > (Zp, F p)orZ = Zp, but F < F p or F = F p , but Z > Zp

Dual variables- For a basic feasible solution of problem (P1), dual variables ui, vj, u
′

i, v
′

j

where (i, j)is basic a cell, are given by

ui + vj = cij, u
′

i + v
′

j = dij.

Let the optimal feasible solution of (P1) yields the value Zo = N0

D0 of the objective func-

tion N(x)
D(x) . The condition for the paradoxical situation in the LFTP is given by following

theorem [1].

4 Sufficient condition for the paradoxical situation in LFTP

Theorem 1 If there exists a cell (i, j) in the table corresponding to an optimal solution X0

of the problem (P1) such that

D0(ui + vj) − N0(u
′

i + v
′

j) < 0, and λ > 0

and the basis corresponding to a basic feasible solution of the problem (P1) with ai replaced
by ai +λ and bj by bj +λis same as that corresponding to X0 then there exists a paradoxical
solution.
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Proof See Verma and Puri [1].

A total cost matrix P is called immune against the LFTP paradox if regardless of the
choice of the supplies and demands the paradox do not arise. In other words, for all the
supply vectors a and a′ with a′ ≥ a and for all the demand vectors b and b′ with b′ ≥ b

an immune matrix P satisfies LFTP(P, a, b) ≤ LFTP(P, a′, b′). In this note, an exact and
simple characterization of all the cost matrices that are immune against the paradox is
given. Note that the computational effort to solve a LFTP is higher than the effort needed
for the recognition of immune matrices.

5 The Characterization of Immune Matrices

Consider some fixed m × ncost matrixP = (cij , dij). Then four integers q, r, s, t with 1 ≤

q, s ≤ m and 1 ≤ r, t ≤ n(where q 6= sandr 6= t) form a bad quadruple if

cqt + csr

dqt + dsr

<
cqr

dqr

(1)

Lemma 1 If there exists a bad quadruple for the cost matrixP = (cij , dij), then P is not
immune against the LFTP paradox.

Proof: Consider the supply vector a that has supply 1 at source q and supply 0 at every
other source and the demand vector b that has demand 1 at sink r and demand 0 at every
other sink. Let the supply vector a′ result from a by increasing the supply at source s to 1,
and let the demand vector b′ result from b by increasing the demand at sink t to 1. Clearly,
a′ ≥ aandb′ ≥ b. Then one can send one unit directly from source q to sink t, and another
unit directly from source s to sink r. This yields

LFTP(P, a′, b′) =
cqt + csr

dqt + dsr

.

By inequality (1) we have LFTP(P, a′, b′) < LFTP(P, a, b).

Lemma 2 If the cost matrixP = (cij, dij)is not immune against the LFTP paradox, then
there exists some bad quadruple for P .

Proof: By the assumptions of the Lemma 1, there exist two supply vectors a and a′ with
a′ ≥ aand two demand vectors b and b′ with b′ ≥ bsuch thatLFTP(P, a, b) > LFTP(P, a′, b′).
Denote the corresponding optimal transportation plans by x = (xij)andx′ = (x′

ij). It is
convenient to translate this situation into a bipartite multigraph G where one vertex class
is formed by the sources and the other vertex class is formed by the sinks. A nonzero value
xij yields a black edge (backward arc) with weight xij between source i and sink j and a
nonzero value x′

ij yields a corresponding red edge (forward arc) with weightx′

ij between the
source i and sink j. The cost of a (red or black) edge between source i and sink j ispij.
Some readers might prefer to use a flow interpretation and regard (x′ − x) as flow in the
residual graph with respect to x.

It is well known from the flow theory [3] that the multigraph G can be decompose
into a finite number T1, ..., Tk of simple paths and a finite number L1, ..., Llof simple cycles
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that satisfy the following properties: every cycle has an even number of edges alternatively
consisting of red and black edges, every path starts in a source and ends in a sink, starts
with a red edge and ends with a red edge alternatively consists of red and black edges.
There exist nonnegative real ξ-values [3] ξ(T ) and ξ(L)for every path T and for every cycle
L such that

(i) For every black edge [i, j]the value xij equals the sum of the ξ-values of all paths and
cycles containing the edge [i, j] and

(ii) For every red edge [i, j] the value x′

ij equals the sum of the ξ-values of all paths and
cycles containing the edge [i, j].

For every path T and for every cycle L define the numerator c(T ), c(L) and d(T), d(L) as
the sum of the costs of all black edges in T and L respectively. Define the costs c′(T ),c′(L)
and d′(T ),d′(L) as the sum of the costs of all red edges in T and L, respectively. Then
clearly

LFTP(P, a, b) =

k
∑

i=1

c(Ti)ξ(Ti) +
l

∑

j=1

c(Lj)ξ(Lj)

k
∑

i=1
d(Ti)ξ(Ti) +

l
∑

j=1
d(Lj)ξ(Lj )

(2)

and

LFTP(P, a′, b′) =

k
∑

i=1
c′(Ti)ξ(Ti) +

l
∑

j=1
c′(Lj)ξ(Lj)

k
∑

i=1

d′(Ti)ξ(Ti) +
l

∑

j=1

d′(Lj)ξ(Lj)

(3)

Since LFTP(P, a, b) > LFTP(P, a′, b′) holds, from (2) and (3) that there exists a cycle
L among (Lj , j = 1, ..., l) with c(L)>c′(L), d(L)>d′(L) or there exists a path T among
(Tj , i = 1, ..., k) with

c(T)>c′(T ), d(T)>d′(T ).

If c(L)>c′(L), d(L)>d′(L) holds for some cycle L then it can be shown that x = (xij) is
not an optimal transportation plan. Consider a new transportation plan y = (yij) for P, a, b

where y results from x by decreasing all values xij along black edges of L by some ε > 0 and
increasing all values xij along red edges of L by the same amount ε. This new transportation
plan y is also feasible for P, a, b but its objective value is by z(L)ε − z′(L)ε > 0 smaller
than the objective value of plan x; that clearly is a contradiction. (An alternative way of
z(L) > z′(L) cannot arise, be making use of the negative cycle theorem for minimum cost
flow problems [3].)

Consequently, c(T)>c′(T ), d(T)>d′(T ) must hold for some path T . Since all costs Z are
nonnegative, the path T consists of at least three edges. Without loss of generality it can
be assumed that T starts in a source and ends in a sink. Let the first vertex of T is a source
s, the second vertex is a sink r, the last but one vertex is a source q and the last vertex is
a sink t. Consider the transportation plan Z = (zij) for P, a, b which results from x = (xij)
in the following way: decrease all values xij along black edges of T by an ε > 0, increase all
values xij along red edges of T except the first red edge [s, r] and the last red edge [q, t]by
the same number ε and increase the value xqr by ε. Then the resulting transportation plan
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P is feasible for P, a, b. (Note that if T has length 3 then Z = x) Since x is an optimal
transportation plan, the change in the objective value from x to Z must be nonnegative.
Therefore,

0 ≤ −

(

c(T )

d(T )

)

ε +

(

c′(T )

d′(T )
−

(

cqt + csr

dqt + dsr

))

+
cqr

dqr

ε

=

(

c′(T )

d′(T )
−

c(T )

d(T )

)

ε +

(

cqr

dqr

−
cqt + csr

dqt + dsr

)

ε <

(

cqr

dqr

−
cqt + csr

dqt + dsr

)

ε

Here the last inequality follows from z(T ) > z′(T ). Since ε > 0, this yields

cqr

dqr

−
cqt + csr

dqt + dsr

> 0.

Hence, the four numbers q, r, s, t form a bad quadruple.
The concluding theorem based on the above lemmas can be stated as:

Theorem 2 The cost matrix P = (cij, dij) is immune against the LFTP paradox if and
only if there exists no bad quadruple for P.

Proof: From Lemma 1 and Lemma 2.

6 Numerical Examples

The bad quadruple situation by examples from [4–6]. The examples (Table 1 and Table 2)
are chosen because its optimal solution is available and provides a point of common com-
parison.

For the above example
c32

d32
>

c33 + c12

d33 + d12

which means that immunization condition is violated for q = 3, r = 2, s = 1, t = 3. So Z is
not immune against the transportation paradox.

For the example
c23

d23
>

c21 + c13

d21 + d13

which means that immunization condition is violated for q = 2, r = 3, s = 1, t = 1. So Z is
not immune against the transportation paradox.

7 Conclusions

In this paper, the classical linear fractional transportation problem has been considered and
occurrence of the so-called more-for-less paradox is studied. This paradox is completely
ignored in the text as well as the advance books. The main reason behind this may be that
it is considered as a rather odd phenomenon which hardly occurs in any practical situation.
The paradox should be given much more attention both in the practical applications as well
as in teaching.
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Table 1: Problem Formulation for Equality Constraints

B1 B2 B3 B4 Supply

5 8 7 6
A1 5

2 1 3 2

6 10 5 5

A2 3
1 4 2 3

7 15 3 16

A3 15
2 1 1 2

15 21 8 18

A4 12
3 1 1 1

demand 5 14 10 6 35

Table 2: Problem Formulation for Mix Constraints

B1 B2 B3 Supply

5 4 2
A1 = 5

6 3 4

6 5 3
A2 ≥ 10

7 4 2

8 9 4
A3 ≤ 9

6 5 2

demand =8 ≥ 15 ≤ 6
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If the MFL paradox situation is identify in starting position then demand and supply can
be manageable according to the condition of market and as the time goes the advertisement
policies would be converted to increase the supply and demand at the specific market
area. By studying MFL phenomena we have sufficient time to manipulate the strategies
for unpredictable growing global market. In addition we hope that a lot of the existing
excellent software for LFTP will be extended to include at least a preprocessing routine for
deciding whether the cost matrix is immune or not against the paradox. If the cost matrix
is not immune, and there are optimal dual variables satisfying theorem 1, an option allowing
post processing of the optimal solution should be available. The cost of these additional
computations is modest and may provide valuable new insight in the problem from which
the data for the actual LFTP originates.
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