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requires the computation of Lyapunov quantities which determine a system behaviour
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1 Introduction

The computation of Lyapunov quantities is related to its importance in engineering and
mechanics of the question on the behaviour of a dynamical system near to the boundary of
a stability domain. From Bautin [1], one varies “dangerous” or “safe” limits, i.e. a small
alteration of which implies a small (invertible) or noninvertible alterations of the system
status correspondingly. Such alterations parallel, for example, to condition of “hard” or
“soft” excitations of fluctuations of the system, as shown by Andronov [2].

The development of methods of computation and analysis of Lyapunov quantities (or
focus values, Lyapunov coefficients, Poincare-Lyapunov constants) was greatly encouraged
by firstly as a pure mathematic problems (such as investigation of stability in critical case
of two purely imaginary roots of the first approximation system, Hilbert’s 16th problem,
cyclicity problem, and distinguishing between center and focus) and then as to the applied
problems (such as the investigation of boundaries of domain of stability and excitation of
oscillations). Poincare [3] and Lyapunov [4] in their classical works for the analysis of sys-
tem, conducted the linking of neighbouring boundary of the stability domain and advanced
the technique of calculation of the so-called Lyapunov coefficients, (or Lyapunov quanti-
ties, focus values, Poincare-Lyapunov constants), which determine the system behaviour
in the region of the boundary. This method likewise permits us successfully to study the
bifurcation of the birth of small cycles [6–15], which is comparable in mechanics to small
vibrations.

In this work the Lyapunov quantities of a homogeneous quartic polynomial system is
calculated by using the Lyapunov–Poincare method. This work will be suitably used later
in the study of the stability of a general dynamical system and in computing of the limit
cycles for the respective system.



74 Hero Waisi Salih and Zainal Abdul Aziz

2 Computation of Lyapunov Quantities in Euclidean Space

In the classical method of Lyapunov-Poincare for the calculation of representative terms
of Lyapunov quantities, in the neighbourhood of zero equilibrium it is necessary to find
Lyapunov function V (x, y) for the following homogeneous polynomial system

dx

dt
= ẋ = y + P4 (x, y),

dy

dt
= ẏ = −x + Q4,

(1)

where P4 and Q4 are homogenous polynomial of degree four, i.e. the Lyapunov function
V (x, y) can be written in the form

V (x, y) = V2 (x, y) + V3 (x, y) + ... + Vn+1 (x, y). (2)

Here

V2 (x, y) =
x2 + y2

2

and
Vk (x, y), k = 3, ..., n + 1

are homogeneous polynomials

Vk (x, y) =
∑

(i+j=k)

Vi,j xi yj

with unknown coefficients {Vi,j}i+j=k , i, j ≥ 0.
For the derivative of V (x, y), in virtue of system (1) we have

V̇ (x, y) =
∂V (x, y)

∂x

n
∑

j=0

(−y + ajx
k−jyj )

+
∂V (x, y)

∂y

n
∑

j=0

(x + bjx
k−jyj) + O[(|x|+ |y|)n+1].

Denoting the homogeneous terms of order k by Vk(x, y), we obtain

V̇ (x, y) = V3(x, y) + . . . + Vn+1(x, y) + O(|x|+ |y|)n+1.

Note that the terms of the second degree in V (x, y) are cancelled out. Then the equations
Vk(x, y) = 0 for k = 2p + 1, where p =1, ..., and Vk(x, y) = ωk (x2 + y2)p for k = 2p,
where p =2, ... (ωk are unknown coefficients) are solved sequentially.

If for certain k = 2p∗ ≤ n + 1 the relation ωk 6= 0 is satisfied, then the quantity 2πω2p∗

is equal to (p∗ − 1)-th Lyapunov quantity [17] of system (1).
Detailed justification of this method can be found, for example, in the works of Lynch[8]

and Leonove & Kuznetsova [18].
Below is given the computational technique of Lyapunov-Poincare, based on the classical

method of Lyapunov-Poincare in Euclidean space.
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3 The Technique of Lyapunov-Poincare

We can write the system (1) as follows:

ẋ = λx + y + P2 (x, y) + ... + Pn(x, y),
ẏ = −x + λ y + Q2(x, y) + ... + Qn(x, y),

where Pn(x, y) and Qn(x, y) are two homogeneous polynomials of degree k in a neighbour-
hood of the origin. Here the function V (x, y) is given as follows

V (x, y) =
x2 + y2

2
+ V3 (x, y) + ... + Vn+1 (x, y)...,

where for k ≥ 3,Vk is a homogeneous polynomial of degree k, and we further write

Vk(x, y) =

k
∑

i=0

Vk−i,i xk−iyi.

The rate of change of V (x, y) along an orbit is given by

dV

dt
=

∂V (x, y)

∂x
.
dx

dt
+

∂V (x, y)

∂y
.
dy

dt

= [x + (V3 )x + ...][ λx + y + P2(x, y) + ... + Pn(x, y)]

+ [y + (V3)y + ...][−x + λy + Q2(x, y) + ... + Qn(x, y)]. (3)

We denote by Dk the terms of degree k (k ≥ 3) inV by

Dk = [ y(Vk)x − x(Vk)y] + [(Vk−1)x P2 + (Vk−1)y Q2 + ... + xPk−1 + yQk−1]

and without loss of generality, Dk can be written as

Dk = [ y(Vk)x − x(Vk)y] + Rk(x, y),

where
Rk (x, y) = [(Vk−1)x P2 + (Vk−1)yQ2 + ... + xPk−1 + yQk−1].

Note that Rk is denoted on Vj with j < k but not on Vk and Vk−j,j=0 if j < 0 or k−j < 0.
The idea is to choose coefficients Vk−j, j and quantities ωk so that

Dk =

{

0, if k is odd,
ωk(x2 + y2)k/2, if k is even.

(4)

For convenience, we say that Vk−j, j is odd or even coefficient of Vk in accordance to whether
i is odd or even.

Suppose first that k is odd. The requirement Dk = 0 is equivalent to a set of k+1 linear
equations for k+1 unknowns

Vk,0, Vk−1,1, ..., V1,k−1, V0,k .

These can be uncoupled into two sets of (k+1)/2 equations, one set determines the odd
coefficients of the Vk, and the other determines the even coefficients of Vk. But if k is even,
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the requirement Dk = ωk(x2 + y2)k/2 gives k+1 linear equations, and then the equations
also uncouple into two sets of m + 1 equations for ω2m and m odd coefficients of Vk, and
m equations for m + 1even coefficients of Vk.

To obtain unique values for the even coefficients of Vk, we introduce the supplementary
condition;







Vm,m= 0, if m is even,
and
Vm+1,m−1 + Vm−1,m+1= 0, if m is odd.

(5)

Then the even coefficients of Vk are uniquely determined.
The calculation of the focal values is a recursive procedure. Each iteration of which

consists of solving the two sets of linear equations for Vk−j, j with i + j=k (k is odd), and
solving the two sets of linear equations for ωk and Vk−j, j with i + j=k (k is even).

4 Homogeneous Polynomial System

To find the number of Lyapunov quantities we use the classical Lyapunov method as follows

Vk (x, y) =
∑

i+j=k

Vi,j, xi yj ,

and for the homogeneous quartic polynomial system

ẋ = y + P4(x, y),

ẏ = −x + Q4(x, y),

and
V̇ = Vxẋ + Vy ẏ, (6)

where
P4 = a1x

4 + a2x
3y + a3x

2y2 + a4xy3 + a5y
4

and
Q4 = b1x

4 + b2x
3y + b3x

2y2 + b4xy3 + b5y
4 .

The suffices x and y denote partial differentiation with respect to x and y, we write Dk for
the collection of terms of degree k on the right hand side of (5), and clearly for k ≥ 3 we
have

Dk = y(Vk)x − x(Vk)y + Rk(x, y),

Rk(x, y) =

k

∑

i=0

Rk−i,i x
k−iyi.

Rk depends on Vj with j < k but not on Vk and the idea is to choose coefficients Vk−j,j and
quantities ωk so that

Dk =

{

0, if k is odd,

ωk (x2 + y2)k/2, if k is even,

and
Dk = y(Vk)x − x(Vk)y + (Vk−3)xP4 − (Vk−3)yQ4, k ≥ 3.
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Then the result is given as follows:
We have the following values (please see appendix)

V3 = V6 = V9 = V12 = V15 = 0,
V4 = V7 = V10 = V13 = V16 = 0,
ω4 = ω6 = ω10 = ω12 = ω14 = 0,

with ω8 6= 0, ω14 6= 0, V8 6= 0 andV14 6= 0.
Here we shall show that the Lyapunov quantities satisfy the following properties, i.e.

V k 6= 0 ifk = 2 mod 3,

and
ωk 6= 0 ifk = 2 mod 6.

The proof is immediate from the following two theorems.

Theorem 1 (Lyapunov Quantities)

V k = 0 if k = 3 mod 3

and
ω2k = 0 if k = 3 mod 3.

Proof We have already seen that

V3 = V6 = V9 = V12 = V15 = 0.

Note that
Dk = y(Vk)x − x(Vk)y + (Vk−3)xP4 − (Vk−3)yQ4, k ≥ 3.

The proof will be by induction
First when k = 3i + 3 or k = 3i,

D3i = y(V3i )x − x(V3i)y + (V3i−3)xP4 − (V3i−3)yQ4.

For i = 1, we have V3 = 0 the result is true for i = l, so that V3l = 0, and we must show
that it holds for i = l + 1. Consider the following two cases: if l is odd, and if l is even

Case I If l is odd:

D3l+3 = −V3l+2,1x
3l+3 + (3l + 3)V3l+3,0 − 2V3l+1,2 x3l+2y

+ ... + 2V3l+1,2 − (3l + 3)V0,3l+3 xy3l+2 + V1,3l+2y
3l+3

= 0

gives two sets of equations

(3l + 3)V3l+3,0 − 2V3l+1,2 = 0,
(3l + 1)V3l+1,2 − 4V3l−1,4 = 0,
3V3,3l+3 − (3l + 2)V1,3l+2 = 0,
V1,3l+2 = 0,

(7)
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and
−V3l+2,1 = 0,
(3l + 2)V3l+2,1 − 3V3l,3 = 0,
3lV3l,3 − 5V3l−2,5 = 0,
4V4,3l−1 − (3l + 1)V2,3l+1 = 0,
2V3l+1,2 − (3l + 3)V0,3l+3 = 0.

(8)

From equation (7), we get

V1,3l+2 = V3,3l = ... = V3l+3,0 = 0,

and from equation (8), we get

V3l+2,1 = V3l,3 = ... = V0,3l+3 = 0,

V3l+3 = 0.

Case II If l is even:

Since

D3l+3 = −V3l+2,1x
3l+3 + (3l + 3)V3l+3,0 − 2V3l+1,2 x3l+2 y

+ ... + 2V2,3l+1 − (3l + 3)V0,3l+3xy3l+2 + V1,3l+2y
3l+3

= ω3l+3 (x2 + y2 )(3l+3)/2

and using binomial expansion we have the following two sets of equations

(3l + 3)V3l+3,0 − 2V3l+1,2 = 0,

(3l + 1)V3l+1,2 − 4V3l−1,4 = 0,

4V4,3l−1 − (3l + 1)V2,3l+1 = 0,

2V2,3l+1 − (3l + 3)V0,3l+3 = 0,

and
−ω3l+3 − V (3l+2,1) = 0,

−

(

3l+3
2

1

)

ω3l+3 + (3l + 2)V3l+2,1 − 3V3l,3 = 0,

−

(

3l+3
2

2

)

ω3l+3 + (3l)V3l,3 − 5V3l−2,5 = 0,

−

(

3l+3
2

3l+1
2

)

ω3l+3 + 3V3,3l − (3l + 2)V1,3l+2 = 0,

−ω3l+3 + V1,3l+2 = 0.

The first set with the additional condition (5) is given by

V(3l/2,3l/2) = 0 when 3l/2 is even

or
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V3l+4/2,3l+2/2 + V3l+2/2,3l+4/2 = 0 when 3l/2 is odd.

Then we have
V0,3l+3 = V3l+1,2 = ... = V3l+3,0 = 0.

The second set gives us

ω3l+3 = V3l+2,1 = V3l,3 = ... = V1,3l+2 = 0,

V3l+3 = 0.

So
Vk = 0 if k = 3 mod 3,

and
ω2k = 0 if k = 3 mod 3. �

Theorem 2 (Lyapunov quantities)

Vk = 0 if k = 1 mod 3

and
ω2k = 0 if k = 1 mod 3

Proof We have already seen that

V4 = V7 = V10 = V13 = V16 = 0

note that
Dk = y(Vk)x − x(Vk)y + (Vk−3)xP4 − (Vk−3)yQ4 k ≥ 3

The proof will be given by induction
First when k = 3i + 1,

D3i+1 = y(V3i+1)x − x(V3i+1)y + (V3i−2)xP4 − (V3i−2)yQ4

For i = 1, we have V4 = 0 and the result is true for i = l, so that V3l+1 = 0, we must show
that it holds i = l + 1, and we shall consider the following two cases: if l is odd, and if l is
even

Case I If l is odd D3i+4 = 0 gives two sets of equations

(3l + 4)V3l+4,0 − 2V3l+2,2 = 0
(3l + 2)V3l+2,2 − 4V3l,4 = 0
3V3,3l+1 − (3l + 3)V1,3l+3 = 0
V1,3l+3 = 0

and
−V3l+3,1 = 0
(3l + 3)V3l+3,1 − 3V3l+1,3 = 0
(3l + 1)V3l+1,3 − 5V3l−1,5 = 0
4V4,3l − (3l + 2)V2,3l+2 = 0
2V2,3l+2 − (3l + 3)V0,3l+4 = 0
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From the above two sets of equation we obtain

V1,3l+3 = V3,3l+1 = ... = V3l+4,0 = 0

And
V3l+3,1 = V3l+1,3 = ... = V0,3l+4 = 0

V3l+4 = 0

Case II When l is even and since

D3i+4 = ω3l+4(x
2 + y2)

3l+4

2 ,

and by using binomial expansion we have the following two sets of equations

(3l + 4)V3l+4,0 − 2V3l+2,2 = 0
(3l + 2)V3l+2,2 − 4V3l,4 = 0
4V4,3l − (3l + 2)V2,3l+2 = 0
2V2,3l+2 − (3l + 4)V0,3l+4 = 0

and
− ω3l+4 − V3l+3,1 = 0

−

(

3l+4
2

1

)

ω3l+4 + (3l + 3)V3l+3,1 − 3V3l+1,3 = 0

−

(

3l+4
2

2

)

ω3l+4 + (3l + 1)V3l+1,3) − 5V3l−1,5 = 0

−

(

3l+4
2

3l+3
2

)

ω3l+4 + 3V3,3l+1 − (3l + 3)V1,3l+3 = 0

−ω3l+4 + V1,3l+3 = 0

The first set with the additional condition and by (5), we have

V(3l+4)/2,(3l+4)/2 = 0 when (3l + 4)/2 is even

or

V(3l+6)/2,3l+2/2 + V(3l+2)/2,(3l+6)/2 = 0 when (3l + 4)/2 is odd

then we obtain
V0,3l+4 = V3l+2,2 = ... = V3l+4,0 = 0

From the second set, we have

ω3l+4 = V3l+2,2 = V3l+1,3 = ... = V1,3l+30

V3l+4 = 0

So
Vk = 0 if k = 1 mod 3

and
ω2k = 0 if k = 1 mod 3. �

Finally the Lyapunov quantities L(k) for the system (1), are derivable from the focal
values ω6k+4, i.e. immediately from theorem 1 and theorem 2 in each of the above cases,
we have

L(k) = ω6k+4, where ω6k+4 6= 0.
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5 Conclusion

It has been shown in this paper that the general computation of Lyapunov quantities of
homogenous quartic polynomial system of degree four can be achieved by using the classical
method of Lyapunov-Poincare. In particular, two main theorems (Theorems 1 and Theo-
rem 2) were proved to accomplish this goal. This work will suitably be used later in our
study of the stability of a general dynamical system and computing of the limit cycles for
the respective system.

At the present time there exist different methods for “construction” of limit cycles (the
cycles, appearing from critical point, center, and homoclinic or heteroclinic orbits and from
infinity). Historically, for more than a century in the framework of the solution of such a
problem, numerous theoretical and numerical results were obtained. However the problem
of visualization of limit cycles is still far from being resolved even for the simple classes of
systems.
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Appendix (Calculation of V3)

P4 = a1x
4 + a2x

3y + a3x
2y2 + a4xy3 + a5y

4

Q4 = b1x
4 + b2x

3y + b3x
2y2 + b4xy3 + b5y

4

Dk = y(Vk)x − x(Vk)y + (Vk−3)xP4 + (Vk−3)yQ4 k ≥ 5.

For k = 3 we have

D3 = y(V3)x − x(V3)y

= 3V3,0x
2y + 2V2,1xy2 + V1,2 y3 − V2,1x

3 − 2V1,2x
2y − 3V0,3xy2

= −V2,1 x3 + (3V3,0 − 2V1,2)x2y + (2V2,1 − 3V0,3)xy2 + V1,2 y3

= 0

The above gives us the following two sets of equation:

−V2,1 = 0
2V2,1 − 3V0,3 = 0

and
3V3,0 − 2V1,2 = 0
V1,2 = 0.

Hence we get
V2,1 = V0,3 = V3,0 = V1,2 = 0.

Therefore V3 = 0
Similarly for Vi , i = 4, 5, . . . .
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