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Abstract In this paper, A new mean codeword length Lt
β(U) is defined. We have

established some noiseless coding theorems based on generalized inaccuracy measure of
order α and type β. Further, we have defined mean codeword length Lt

β,1:1(U) for the
best one-to-one code. Also we have shown that the mean codeword lengths Lt

β,1:1(U)
for the best one-to-one code (not necessarily uniquely decodable) are shorter than the
mean codeword length Lt

β(U). Moreover, we have studied tighter bounds of Lt
β(U).
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1 Introduction

It is well known fact that information measures are important for practical applications of
information processing. For measuring information, a general approach is provided in a sta-
tistical framework based on information entropy introduced by Shannon [1]. As a measure
of information, the Shannon entropy satisfies some desirable axiomatic requirements and
also it can be assigned operational significance in important practical problems, for instance,
in coding and telecommunication. In coding theory, usually we come across the problem of
efficient coding of messages to be sent over a noiseless channel where our concern is to max-
imize the number of messages that can be sent through a channel in a given time. Thus, we
find the minimum value of a mean codeword length subject to a given constraint on code-
word lengths. However, since the codeword lengths are integers, the minimum value will lie
between two bounds and a noiseless coding theorem seeks to find these two lower bounds
which are in terms of some measure of entropy for a given mean and a given constraint.
For uniquely decipherable codes, Shannon [1] found the lower bounds for the arithmetic
mean by using his own entropy. Campbell [2] defined his own exponentiated mean and
by applying Kraft’s [3] inequality, found lower bounds for his mean in terms of Renyi’s [4]
measure of entropy. Guiasu and Picard [5], Longo [6], Gurdial and Pessoa [7], Taneja and
Tuteja [8], Autar and Khan [9], Jain and Tuteja [10], Hooda and Bhaker [11], Bhatia [12]
and Singh, Kumar and Tuteja [13] considered the problem of ‘useful’ information measures
and used it studying the noiseless coding theorems for sources involving utilities.

Chapeau-Blondeau et al. [14] have presented an extension to source coding theorem tra-
ditionally based upon Shannon’s entropy and later generalized to Renyi’s entropy. Chapeau-
Blondeau et al. [15] have described a practical problem of source coding and investigated
an important relation stressing that Renyi’s entropy emerges at an order α differing from
the traditional Shannon’s entropy.
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Ramamoorthy [16] considered the problem of transmitting multiple compressible sources
over a network at minimum cost with the objective to find the optimal rates at which the
sources should be compressed. Tu et al. [17] have presented a new scheme based on variable
length coding, capable of providing reliable resolutions for flow media data transmission in
spatial communication. Some interesting work for the construction of information theoretic
source network coding in the presence of eavesdroppers has been presented by Luo et al.
[18]. Wu et al. [19] have constructed a space trellis and design a low-complexity joint decod-
ing algorithm with a variable length symbol-a posteriori probability algorithm in resource
constrained deep space communication networks.

The mean length of a noiseless uniquely decodable code for a discrete random variable
X satisfies

H (X) ≤ LUD < H (X) + 1 (1)

Where

H (X) = −

N
∑

i=1

pi log pi (2)

is the Shannon’s entropy [1] of the random variable X and

LUD =

N
∑

i=1

pini (3)

be the unique and decodable mean codeword length studied by Shannon [1]. Shannon’s
restriction of coding of X to prefix codes is highly justified by the implicit assumption that
the description will be concatenated and thus must be uniquely decodable and instantaneous
codes, cf. [20], [21], the expected codeword length is the same for both the set of codes.

There are some communication situations in which a random variable X is being trans-
mitted rather than a sequence of random variables. For this context Leung-Yang-Cheong
and Cover [22] considered one to one codes i.e., codes which assign a distinct binary code to
each outcome of the random variable X without regard to the condition that concatenations
of the descriptions must be uniquely decipherable.

Bhatia [23], [24], have extended the idea of the one to one code to the Kerridge’s inac-
curacy [25] and also derived lower bounds to the exponential mean codeword length for the
best one to one codes in terms of generalized inaccuracy of order α.

In Section 2, we have established a generalized coding theorem for personal probability
codes by considering useful inaccuracy of order α and type β. In Section 3, we generalized
the idea of the best 1:1 code to useful inaccuracy of order α and type β.

Throughout the paper N denotes the set of the natural numbers and for N ∈ N we set

∆N =

{

(p1, ..., pN) /pi ≥ 0, i = 1, ..., N,
N
∑

i=1

pi = 1

}

.

In case there is no rise to misunderstanding we write P ∈ ∆N instead of (p1, ..., pN) ∈ ∆N .

Throughout this paper,
∑

will stand for
∑N

i=1 unless otherwise stated and logarithms are
taken to the base D (D > 1).
Consider the model given below for a finite random experiment scheme having (x1, x2, ..., xN)
as the complete system of events, happening with respective probabilities P = (p1, p2, ..., pN),
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pi ≥ 0,
∑N

i=1 pi = 1 and credited with utilities U = (u1, u2, ..., uN), ui > 0, i = 1, 2, ..., N.
Denote

S =





x1 x2 ... xN

p1 p2 ... pN

u1 u2 ... uN



 . (4)

We call (4) the utility information scheme.
Let Q = (q1, q2, ..., qN) be the predicted distribution having the utility distribution U =
(u1, u2, ..., uN), ui > 0, i = 1, 2, ..., N. Taneja and Tuteja [8] have suggested and charac-
terized the ‘useful’ inaccuracy measure

I(P, Q; U) = −

N
∑

i=1

uipi log qi. (5)

By considering the weighted mean code word length [5]

L(U) =

∑N

i=1 uipini
∑N

i=1 uipi

(6)

where n1, n2, ..., nN are the code lengths of x1, x2, ..., xN respectively.
Taneja and Tuteja [8] derived the lower and upper bounds on L(U) in terms of I(P,Q;U).
Bhatia [23] defined the ‘useful’ average code length of order t as

Lt(U) =
1

t
log







∑N

i=1 ut+1
i piD

tni

(

∑N

i=1 uipi

)t+1






, −1 < t < ∞ (7)

where D is the size of the code alphabet. He also derived the bounds for the ‘useful’ average
code length of order t in terms of generalized ‘useful’ in accuracy measure given by

Iα(P, Q; U) =
1

1 − α
log

[

∑N

i=1 uipiq
α−1
i

∑N

i=1 uipi

]

, α > 0(6= 1) (8)

under the condition

N
∑

i=1

piq
−1
i D−ni ≤ 1 (9)

where D is the size of the code alphabet.
In this paper, we study some coding theorems by considering a new function depending

on the parameters α and β and a utility function. Our motivation for studying this function
is that it generalizes some information measures already existing in the literature.

2 Coding Theorems

Consider a function

Iβ
α(P, Q; U) =

1

1 − α
log

[

∑N

i=1 uip
β
i q

(α−1)
i

∑N

i=1 uip
β
i

]

, α > 0(6= 1), β ≥ 1. (10)
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(i) When β = 1, (10) reduces to a measure of ‘useful’ information measure of order α due
to Bhatia [23].

(ii) When β = 1, ui = 1, ∀ i = 1, 2, ..., N. (10) reduces to the inaccuracy measure given by
Nath [26], further it reduces to Renyi’s [4] entropy by taking pi = qi, ∀ i = 1, 2, ...., N.

(iii) When β = 1, ui = 1, ∀ i = 1, 2, ...,N and α → 1. (10) reduces to the measure due to
Kerridge [25].

(iv) When ui = 1, ∀ i = 1, 2, ...,N and pi = qi, ∀ i = 1, 2, ...,N the measure (10) becomes
Aczel and Daroczy [27] and Kapur [28] entropy.

We call this Iβ
α(P, Q; U) in (10) the generalized ‘useful’ inaccuracy measure of order α

and type β.
Further consider

Lt
β(U) =

1

t
log

[

∑N

i=1 uip
β
i Dnit

∑N

i=1 uip
β
i

]

, −1 < t < ∞. (11)

(i) For β = 1, Lt
β(U) in (11) reduces to the ‘useful’ mean length Lt(U) of the code given

by Hooda and Bhaker [11].

(ii) When β = 1, ui = 1, ∀ i = 1, 2, ..., N, Lt
β(U) in (11) reduces to the mean length

given by Campbell [2].

(iii) When β = 1, ui = 1, ∀ i = 1, 2, ..., N and α → 1, Lt
β(U) in (11) reduces to the

optimal code length identical to Shannon [1].

(iv) For ui = 1, ∀ i = 1, 2, ...,N, Lt
β(U) in (11) reduces to the mean length given by Khan

and Ahmed [29].

Now we find the lower bounds of Lt
β(U) in terms of Iβ

α(P, Q; U) under the condition

N
∑

i=1

uip
β
i q−1

i D−ni ≤

N
∑

i=1

uip
β
i ; β ≥ 1, (12)

where D is the size of the code alphabet. Inequalities (9) and (12) are the generalization of
Kraft’s inequality [30]. A code satisfying generalized Kraft’s inequalities (9) and (12) would
be termed as personal probability code.

Theorem 1 For every code whose lengths n1, n2, ..., nN satisfies (12), then the average code
length satisfies

Lt
β(U) ≥ Iβ

α(P, Q; U), (13)

where α = 1
1+t

, the equality occurs if and only if

ni = − log
qα
i

P

N
i=1 uip

β
i q

(α−1)
i

P

N
i=1 uip

β
i

. (14)
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Proof By Holder’s inequality [31]

(

n
∑

i=1

xp
i

)
1
p
(

n
∑

i=1

yq
i

)
1
q

≤

n
∑

i=1

xiyi, (15)

for all xi, yi > 0 , i = 1, 2, ..., N and 1
p

+ 1
q

= 1, p < 1 (6= 0) , q < 0 or q < 1 (6= 0) , p < 0.
We see that equality holds if and only if there exists a positive constant c such that

xp
i = cyq

i . (16)

Making the substitutions

p = −t, q =
t

t + 1

xi =

(

uip
β
i

∑N

i=1 uip
β
i

)

−

1
t

D−ni , yi = p
β( 1+t

t )
i

(

ui
∑N

i=1 uip
β
i

)( 1+t
t )

q−1
i

in (15) and using (12), we get
[

∑N

i=1 uip
β
i Dnit

∑N

i=1 uip
β
i

]
1
t

≥

[

∑N

i=1 uip
β
i q

(α−1)
i

∑N

i=1 uip
β
i

]
1+t

t

Taking logarithm of both the sides with base D, we obtain (13). 2

Next, we obtain a result giving an upper bound to the generalized average ‘useful’ codeword
length.

Theorem 2 By properly choosing the lengths n1, n2, ..., nN in the code of Theorem 1, Lt
β(U)

can be made to satisfy the inequality

Lt
β(U) < Iβ

α(P, Q; U) + 1. (17)

Proof Let ni be the positive integer satisfying, the inequalities

− log
qα
i

P

N
i=1 uip

β

i
q
(α−1)
i

P

N
i=1 uip

β

i

≤ ni < − log
qα
i

P

N
i=1 uip

β

i
q
(α−1)
i

P

N
i=1 uip

β

i

+ 1. (18)

Consider the interval

δi =






− log

qα
i

P

N
i=1 uip

β

i
q
(α−1)
i

P

N
i=1 uip

β

i

,− log
qα
i

P

N
i=1 uip

β

i
q
(α−1)
i

P

N
i=1 uip

β

i

+ 1







of length 1. In every δi, there is exactly one positive integer ni such that

0 < − log
qα
i

P

N
i=1 uip

β

i
q
(α−1)
i

P

N
i=1 uip

β

i

≤ ni < − log
qα
i

P

N
i=1 uip

β

i
q
(α−1)
i

P

N
i=1 uip

β

i

+ 1. (19)

It can be shown that the sequence {ni} , i = 1, 2, ...,N thus defined, satisfies (12).
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From the right inequality of (19), we have

ni < − log
qα
i

P

N
i=1 uip

β

i
q
(α−1)
i

P

N
i=1 uip

β

i

+ 1

⇒ Dni( 1−α
α ) < D( 1−α

α )







qα
i

P

N
i=1 uip

β

i
q
(α−1)
i

P

N
i=1 uip

β
i







(α−1
α )

. (20)

Multiplying both sides of (20) by
uip

β

i
P

N
i=1 uip

β

i

, summing over i = 1, 2, ..., N and after that

raising to the power
(

α
1−α

)

, we get

[

∑N

i=1 uip
β
i Dni( 1−α

α )
∑N

i=1 uip
β
i

]

( α
1−α )

< D

[

∑N

i=1 uip
β
i q

(α−1)
i

∑N

i=1 uip
β
i

]

( 1
1−α )

Taking logarithms on both sides and using the relation α = 1
1+t

, we get (17). 2

Theorem 3 For arbitrary N ∈ N, α > 0(6= 1), β ≥ 1 and for every code word lengths ni,
i = 1, ..., N of Theorem 1, Lt

β(U) can be made to satisfy,

Lt
β(U) ≥ Iβ

α(P, Q; U) > Iβ
α(P, Q; U) +

1

t
LogD. (21)

Proof Suppose

ni = − log
qα
i

P

N
i=1 uip

β
i q

(α−1)
i

P

N
i=1 uip

β
i

, α > 0(6= 1), β ≥ 1.

Clearly n̄i and n̄i + 1 satisfy ‘equality’ in Holder’s inequality (15). Moreover, n̄i satisfies
(12). Suppose ni is the unique integer between n̄i and n̄i + 1, then obviously, ni satisfies
(12).

Since α > 0(6= 1), β ≥ 1, we have

[

∑N

i=1 uip
β
i Dnit

∑N

i=1 uip
β
i

]

≤

[

∑N

i=1 uip
β
i Dn̄it

∑N

i=1 uip
β
i

]

< D

[

∑N

i=1 uip
β
i Dn̄it

∑N

i=1 uip
β
i

]

(22)

Since
[

P

N
i=1 uip

β

i
Dn̄it

P

N
i=1 uip

β

i

]

=

[

P

N
i=1 uip

β

i
q
(α−1)
i

P

N
i=1 uip

β

i

]1+t

.

Hence (22) becomes

[

∑N

i=1 uip
β
i Dnit

∑N

i=1 uip
β
i

]

≤

[

∑N

i=1 uip
β
i q

(α−1)
i

∑N

i=1 uip
β
i

]1+t

< D

[

∑N

i=1 uip
β
i q

(α−1)
i

∑N

i=1 uip
β
i

]1+t

Raising to the power 1
t

and taking logarithms on both sides, we get (21). 2
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3 Lower Bound on the Exponentiated Average ‘Useful’ Codeword

Length for the Best 1:1 Code

Let X be a random variable taking on a finite number of values (x1, x2, ..., xN) with prob-
abilities (p1, p2, ..., pN) and utilities (u1, u2, ..., uN). Let ni, i = 1, 2, ..., N be the lengths of
the code words in the best 1:1 binary code (0, 1, 00, 10, 01, 11, 000, ...), for encoding the
random variable X, ni is the length of the codeword assigned to the output xi. It is clear
that n1 ≤ n2 ≤ n3 ≤ ... ≤ nN and in general ni =

[

log2

(

i+2
2

)]

, where [x] denotes the
smallest integer greater than or equal to x. Thus the average ‘useful’ codeword length for
the best 1:1 code is given by

L1:1 (U) =

∑

uipi

[

log2

(

i+2
2

)]

∑

uipi

(23)

When utilities are ignored, (23) reduces to L1:1, cf. [22].
From (11), the exponentiated average ‘useful’ codeword length for binary codes can be given
by

Lt
β(U) =

1

t
log2

[

∑N

i=1 uip
β
i 2nit

∑N

i=1 uip
β
i

]

(24)

we may call (24) ‘useful’ codeword length for the best 1:1 code. Thus the exponentiated
average ‘useful’ codeword length for the best 1:1 code is given by

Lt
β,1:1(U) =

1

t
log2

[

∑N

i=1 uip
β
i 2t[log2( i+2

2 )]
∑N

i=1 uip
β
i

]

(25)

We will now prove the following theorem, which gives a lower bound on Lt
β,1:1.

Theorem 4 For Iβ
α(P, Q; U), Lt

β(U) and Lt
β,1:1 as given in (10), (24) and (25) respectively,

the following estimates hold:

Lt
β,1:1(U) ≥ Iβ

α(P, Q; U)− log2





∑N

i=1 uip
β
i q−1

i

(

2
i+2

)

∑N

i=1 uip
β
i



 , (26)

and

Lt
β,1:1(U) ≥ Lt

β(U) − log2





∑N

i=1 uip
β
i q−1

i

(

1
i+2

)

∑N

i=1 uip
β
i



− 2. (27)

Proof From (25), we have

Lt
β,1:1(U) ≥

1

t
log2

[

∑N

i=1 uip
β
i

(

i+2
2

)t

∑N

i=1 uip
β
i

]

(28)
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Now

Iβ
α(P, Q; U)−Lt

β,1:1(U) ≤

(

t + 1

t

)

log2





∑N

i=1 uip
β
i q

−( t
t+1 )

i
∑N

i=1 uip
β
i



−
1

t
log2

[

∑N

i=1 uip
β
i

(

i+2
2

)t

∑N

i=1 uip
β
i

]

= log2





∑N

i=1 uip
β
i q

−( t
t+1 )

i
∑N

i=1 uip
β
i





( t+1
t ) [

∑N

i=1 uip
β
i

(

i+2
2

)t

∑N

i=1 uip
β
i

]

−

1
t

(29)

Applying Holder’s inequality to (29), we obtain

Iβ
α(P, Q; U)− Lt

β,1:1(U) ≤ log2





∑N

i=1 uip
β
i q−1

i

(

2
i+2

)

∑N

i=1 uip
β
i



 ,

which gives (26).

Now from (17)

Lt
β(U) < Iβ

α(P, Q; U) + 1

So

Lt
β(U) − Lt

β,1:1(U) < Iβ
α(P, Q; U)− Lt

β,1:1(U) + 1

≤ 2 + log2





∑N

i=1 uip
β
i q−1

i

(

1
i+2

)

∑N

i=1 uip
β
i



 ,

which proves (27). 2

4 Conclusion

We study some coding theorems by considering a new function depending on the param-
eters α and β and a utility function. Our motivation for studying this function is that it
generalizes some information measures already existing in the literature. We know that
optimal code is that code for which the value Lt

β(U) is equal to its lower bound. From the
result of the Theorem 1, it can be seen that the mean codeword length of the optimal code
is dependent on three parameters t, U and β, while in the case of Shannon’s theorem it does
not depend on any parameter. So it can be reduced significantly by taking suitable values
of parameters.
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