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Abstract Multiple linear regression models are widely used in applied statistical
techniques and they are most useful devices for extracting and understanding the es-
sential features of datasets. However, in multiple linear regression models, problems
arise when multicollinearity or a serious outlier observation present in the data. Mul-
ticollinearity is a linear dependency between two or more explanatory variables in the
regression models which can seriously affect the least squares estimated regression sur-
face. The other important problem is outlier; they can strongly influence the estimated
model, especially when using least squares method. Nevertheless, outlier data are of-
ten the special points of interests in many practical situations. The purpose of this
study is to performance comparison of Akaike Information Criterion (AIC’), Bayesian
Information Criterion (BIC’) and Information Complexity Criterion (ICOMP’(IFIM))
for detecting outliers using Genetic Algorithms when multiple regression model having
multicollinearity problems.
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1 Introduction

Regression is one of the most commonly used statistical techniques for understanding the
essential features of datasets. The purpose of regression analysis is to identify an appropriate
model to relate a response variable to a set of independent variables, [1]:

Y = β0 + β1X1 + β2X2 + ... + βpXp + ε, (1)

Ŷ = β̂0 + β̂1X1 + β̂2X2 + ... + β̂pXp, (2)

where Y ∈ <n is a response variable, Ŷ is the predicted value of the dependent variable,
X1, . . . , Xp ∈ <n are independent variables, β0 is the intercept on the Y axis, and β1, ..., βp

are the regression coefficients for each of the independent variables. The usual estimator
of β coefficient (β̂ = (XT X)−1XT Y ) comes from the method of Ordinary Least Squares
(OLS) which minimizes the difference between Y and Ŷ values,

∑

e2 =
∑

(Y − Ŷ )
2

.

The major disadvantage of OLS is when the error does not completely satisfy the classical
assumptions, such as the presence of one or more outliers in the sample.
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Outliers are defined as the observations or records which appear to be inconsistent
with the remainder of the data in the group. A well quoted definition of outliers is given
by Hawkins [2]. This definition described an outlier as an observation that deviates so
much from other observations so as to arouse suspicion that it is generated by a different
mechanism. Detected outliers are candidates for aberrant data that may otherwise adversely
lead to model mispecification, biased parameter estimation and incorrect results. It is
therefore important to identify them prior to modeling and analysis, especially if the data
set contains more than one outlier, which is likely to be the case in most data sets. The
problem of identifying such observations becomes more difficult because of the masking
and swamping effects, [3,4]. Different ways to analyze the data with outliers have been
suggested, using robust regression methods, by many statisticians [5–15]. So detection of
outliers in regression is very important and should be studied more carefully.

A second problem is that of correlations between parameters in the model. The pre-
dictor variables in a regression model are considered orthogonal when they are not linearly
related. But, when the regressors are nearly perfectly related, the regression coefficients
tend to be unstable and the inferences based on the regression model can be misleading
and erroneous, although the data may be predicted well. This condition is known as mul-
ticollinearity, [16]. It is known that given strong multicollinearity the parameter estimates
and hypotheses tests are affected more by the linear links between independent variables
than by the regression model itself. The classical t-test of significance is highly inflated
owing to the large variances of regression parameter estimates and the results of statistical
analysis are often unacceptable, [17].

Genetic Algorithms (GA) has been used for outlier detection and model selection of
linear regression models or times series. A GA allowed simultaneous detection of outliers
in data sets. Thus, this method is to overcome the problems of masking and swamping ef-
fects. The use of GA for outlier detection and variable selection can be found in Tolvi [18].
Ishibuchi et al. [19] proposed a genetic algorithm based approach for selecting a small
number of instances from a given data set in a pattern classification problem. A robust
simultaneous procedure is investigated for identification of outliers using Bayesian informa-
tion criterion [20]. Gürünlü Alma et al. [27] derived AIC’ and ICOMP’(IFIM) criteria for
simultaneous outlier detection in multiple regression models using GA.

In this study, the focus is on the problem of detecting outliers in the dependent variable
of multiple linear regression (MLR) model with multicollinearity using GA. AIC’, BIC’
and ICOMP’(IFIM) criteria have been used as the fitness function of genetic algorithms
to detect outliers in MLR model. The scalability of information criterion is considered by
generating simulation data. Simulation results of AIC’, BIC’ and ICOMP’(IFIM) criteria
are obtained from for different number of sample sizes, and constant two levels percentages
of contaminated outliers in the dependent variables. That is, the outliers are produced
by adding a given amount to each dependent variable. The simulation results show that
the performances of information criteria to accurately detect the outliers are affected by
multicollinearirty problem in MLR.

2 GA Based Outlier Detection for MLR Models

Outlying observations can destroy least squares estimation, resulting in parameter estimates
that do not provide useful information for the majority of the data. Belsley et al. [21]
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described many of the well known outlier detection procedures for regression models. If
outliers occur in the data, the errors can be thought to have a different distribution from
normal. There are several possibilities, but perhaps the most intuitive one is the mixture
model. It is assumed that the ε′s in distinct cases are independent and

ε ∼
{

N(0, σ2), (1 − π),
N(0, k2σ2), π,

(3)

where π is the probability of an outlier in data set and k2 is the variance inflation parameter.
To overcome non-normality, the detection of outliers are made possible by adding dummy
variables to the regressor matrix of a regression model, [22]. Potential outliers can be
incorporated into multiple regression models by the use of dummy variables, and this is what
is done in this study. A dummy variable is n × 1 (n, is the number of observations) vector
that has a value of one for the outlying observation, and zero for all other observations.
Each outlier would have a corresponding dummy variable and MLR can be written in a
matrix form as in (4).
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A dummy variable in the regression model is therefore equivalent to the detected outlier,
and the problem here is the selection of the best model, where the candidate models have
different combinations of all possible dummy variables as explanatory variables. In this
study, potential outliers can be incorporated into MLR model of equation (1) by the use of
dummy variables. The problem for outlier detection in MLR is to select the best model. For
this reason, the candidate MLR models have different combination of all possible dummy
variables. In the next subsection, a brief description of detection of outliers in MLR models
using information criteria is given, and then we will discuss information about GA for outlier
detection when AIC’, BIC’ and ICOMP’(IFIM) criteria as a fitness function are used. These
are as follows:

2.1 Outlier Detection in MLR using AIC’, BIC’ and ICOMP’ Criteria

Numerous methods have been proposed in the literature for outlier detection using Akaike’s
information criterion (AIC) [23], Bayesian information criterion (BIC) [24], and Bozdo-
gan’s information complexity (ICOMP) criterion, [25,26]. In this study, AIC’, BIC ′ and
ICOMP’(IFIM)criteria were used for detecting outliers from MLR model having multi-
collinearity problem. AIC’ and ICOMP’(IFIM)criteria were derived [27] and these are
alternative criteria to BIC ′ approach for outlier detection in multiple regression model.
They are given as follows:

• AIC: AIC was developed by Akaike [28]. It has played a significant role in solving
problems in a wide variety of fields for analyzing actual data. The AIC is defined as

AIC = −2 log L(θ̂) + 2p, (5)
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where θ̂ is the maximum likelihood estimator of the parameter θ for an approximating
model M , L(θ̂) is the maximized likelihood function, and p is the number of free
parameters in M . Suppose that the observations yα are independently and normally
distributed with mean µα and variance σ2. Then the density function of yα can be
written as

f(yα|µα, σ2) =
1√

2πσ2
exp

{

−(yα − µα)2

2σ2

}

. (6)

Then, the AIC for a Gaussian linear regression model is given by

AIC = n log(2π) + n log(σ̂2) + n + 2(p + 1), (7)

where (p+1) is the number of estimated parameters (β̂0, β̂1, ..., β̂p). The bias corrected
in AIC is approximated by the number of parameters which are constant and have no
variability. AIC criterion may be viewed as an asymptotically unbiased estimator of
the Kullback-Leibler information which is a measure of discrepancy between statistical
models, [29]. Thus, selection of a model minimizing AIC means that the selected model
may be the best approximating model to the true model. For the data, the true model
has infinite order, AIC provides an asymptotically efficient selection of a finite order
model. AIC’ for outlier detection in multiple regression models is given by [27],

AIC ′ = AIC + κmdlog(n)

= nlog(2π) + nlog(σ̂2) + n + 2(p + 1) + κmdlog(n),
(8)

where md is the number of outlier dummies, and kappa is extra penalty (κ > 1) for
the dummies.

• BIC: BIC is based on the Bayesian method proposed by Schwarz [24]. It is defined
as,

BIC = −2 log L(θ̂) + p log(n), (9)

where θ̂ is the maximum likelihood estimator of the parameter θ for an approximating
model M , L(θ̂) is the maximized likelihood function, and (p+1) is the number of
estimated parameters. Bayesian approach for outlier detection in multivariate samples
is proposed by several researchers [2], [30–33]. Ting et al. [34] introduced a Bayesian
way of dealing with outlier infested sensory data and developed a block box approach
to the removed outliers in real time. The BIC is used for outlier detection in MLR
model with dummy variables and the criterion can be calculated as,

BIC = log(σ̂2) + m log(n)/n, (10)

where σ̂2 = (e′e)/(n − p − 1) is the estimated variance of regression model, and
m = 1 + p + md, the total number of parameters in the estimated model and it con-
sists of parameters for the constant together with the number of dummies outlier md.
Generally a good model has small residuals, and few parameters. Therefore the small-
est value of BIC is preferred, [18]. A problem in using the BIC for outlier detection
is that by itself it tends to include unnecessary outlier dummies. To circumvent this
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problem, a correction to the criterion is used. This takes the form of an extra penalty
(κ > 1) for the dummies. The corrected BIC is denoted BIC’ which is given by [18],

BIC’ = log(σ̂2) + (p + 1) log(n)/n + κmd log(n)/n, (11)

where the kappa (κ > 1) is the extra penalty given to dummies outlier.

• ICOMP: In the literature many consistency results on AIC and BIC criteria are
based on the central assumption that one of the models considered is true model.
However, notably in the context of multiple regression, this assumption often does not
hold, since one or more variables have been omitted from the model, [25]. Bozdogan
and Haughton [25] introduced a concept of consistency for this case, and established
a consistency property for ICOMP criterion. Each formulation of ICOMP has the
attractive feature of implicitly adjusting for the number of parameters, the sample
size, and controlling the risks of both insufficient and over parameterized models.
ICOMP inverse Fisher information matrix (ICOMP(IFIM)) is shown as for multiple
regression, [26]; [35].

ICOMP(IFIM)Mul.Reg = nlog(2π) + nlog(σ̂2) + n + C1(F̂
−1(θ̂)) (12)

with

C1(F̂
−1

R
(θ̂)) = (p + 1) log

[

tr(σ̂2(X′X)−1) + 2σ̂
4

n

(p + 1)

]

− log
∣

∣σ̂2(X′X)−1
∣

∣ − log

(

2σ̂4

n

)

, (13)

where σ̂2 is the estimated variance of regression model. As the number of param-
eters increases (i.e., as the size of X increases), the error variance σ̂2 gets smaller
even though the complexity gets larger. Also, as σ̂2 increases, (X′X)−1 decreases.

Therefore C1(F̂
−1(θ̂))achieves a trade-off between these two extremes and guards

against multicollinearity. To preserve scale invariance, the correlational form of infor-
mation fisher information matrix (IFIM), F̂−1, is used, and the correlational form of
ICOMP(IFIM) regression is given by (11), [35]. ICOMP’(IFIM) for outlier detection
in multiple regression models is defined by

ICOMP’(IFIM)Mul.Reg=ICOMP(IFIM)+κmdlog(n)

= nlog(2π) + nlog(σ̂2) + n + C1(F̂
−1(θ̂)) + κmdlog(n).

(14)

where,

C1(F̂
−1

R (θ̂)) = (p + 1) log

[

tr(σ̂2(X′X)−1) + 2σ̂
4

n

(p + 1)

]

− log
∣

∣σ̂2(X′X)−1
∣

∣ − log

(

2σ̂4

n

)

. (15)
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AIC’ and ICOMP’(IFIM) criteria provide a more judicious penalty term (κmdlog(n))
than BIC ′, since counting and penalizing the number of parameters for outlier dummies in
a model is necessary. Gürünlü Alma et al. [27] illustrates the practical utility and the impor-
tance of AIC’ and ICOMP’(IFIM) criteria by providing simulation examples for comparing
their performance against BIC’.

2.2 Genetic Algorithms for Outlier Detection

GA is a search technique used in computing to find true or approximate solutions to opti-
mization and search problems which are a particular class of evolutionary algorithms that
use techniques inspired by evolutionary biology such as inheritance, mutation, selection,
and crossover, [36]. GA has been implemented as a computer simulation in which a popula-
tion of abstract representations to an optimization problem evolves toward better solutions.
Traditionally, solutions are represented in binary as strings of 0s and 1s, but other encodings
are also possible. The evolution usually starts from a population of randomly generated
individuals (chromosomes) and happens in generations. In each generation, the fitness of ev-
ery individual in the population is evaluated; multiple individuals are stochastically selected
from the current population based on their fitness, and modified to form a new population.
The new population is then used in the next iteration of the algorithm. In summary, the
outline of the steps of GA is shown in Figure 1.

Figure 1: The Outline of GA

In this experimental study, GA was used to detect the outliers. A random population
of chromosomes was created representing the solution space. Each member of this random
population represents a different possible solution for the GA. The GA contains the following
components.

• Parameter Encoding: The coding of the candidate models for outlier detection
is straightforward. Each model also called a chromosome, is fully described by a
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binary vector “d”, d = (d1, ..., dn), where di = 0 indicates no outlier dummy and
di = 1 indicates an outlier dummy for observation i, for each i = 1, ..., n. These
dummy variables for outlier observations must be created before the GA is run on the
data set. In this study, the structure of a chromosome is shown in Figure 2. Each
chromosome consists of p genes, where p is the number of outliers ((op, (p = 1, ..., n))
given in a model. For instance for p = 3; the first, second and n-1’st observations are
outliers in Figure 2.

Figure 2: The Structure of a Chromosome (c)

• Fitness Function: The measure of fitness of a chromosome is evaluated by the fit-
ness function, which has as its argument the string representation of the chromosome
and returns a value indicating its fitness. The genes, which represent the serial num-
ber of outliers, are updated with each new population created and the fitness of a
chromosome is computed by the AIC’, BIC’ and ICOMP’(IFIM) in (7, 10, 13) for
MLR model with the corresponding dummy variables.

• The Population and Generations: The population size in each generation is 40
chromosomes. MLR models corresponding to these chromosomes are then estimated
using the observed data, and AIC’, BIC’ and ICOMP’(IFIM) values for them com-
puted. The chromosomes with smallest values of the fitness function are more likely
to pass their genes onto the next generation.

• Selection Operator: During selection operator, fitter individuals have a higher
chance to be selected than less fit ones for next generation. Stochastic uniform se-
lection function is used in GA. This function lays out a line in which each parent
corresponds to a section of the line of length proportional to its scaled value.

• Crossover Operator: Crossover is the process whereby a new chromosome solution
is created from the information contained within two parent solutions. The next
generation of chromosomes from the previous one, is based on the AIC’, BIC’ and
ICOMP’(IFIM) values of the chromoosmes. The best chromosome has the smallest
value of the fitness function AIC’, BIC’ andICOMP’(IFIM), are more likely to pass
their genes onto the next generation. A crossover probability is selected as pc = 1
and it indicates that crossover always occurs between any two parent models chosen
from the mating pool; thus the next generation will consist only of offspring models,
not of any model from the previous generation.

• Mutation Operator: Mutation is applied to one candidate and results to build a new
candidate chromosome. Mating of the chromosomes from the previous one generation
will not be enough for diversity of population. To this end, the chromosomes of each
generation are also mutated before model estimation. Each gene of each individual
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is flipped, from zero to one or vice versa, with probability pm = 0.01. Executing
crossover and mutation leads to a set of new candidates that compete based on their
fitness value AIC’, BIC’ and ICOMP’(IFIM) with the old ones for a place in the next
generation. This process can be iterated until a candidate with sufficient a solution is
found or a previously set computational limit is reached.

Table 1 shows the parameters of GA with AIC’,BIC’ and ICOMP’(IFIM) as the fitness
function for the simulated models. The best models chosen most of the generations of GA
can detect the outliers.

Table 1: The Parameters of the GA for the Simulated Model

Number of Generations 250
Population Size 40
Fitness Value AIC’, BIC’, and ICOMP’(IFIM)
Crossover Probability 1
Mutation Probability 0.01
Elitism For two parents

3 Generating of Simulation Data Sets and Experimental Results

The performance of AIC’, BIC’ and ICOMP’(IFIM) information criteria to outlier detection
for MLR model having multicollinearity problem was evaluated and performance of GA
was demonstrated by simulation experiments. The next subsection shows the steps of data
generation and results of AIC’, BIC’ and ICOMP’(IFIM) information criteria to outlier
detection for MLR model having multicollinearity problem.

3.1 Data Generation

In this subsection, simulation is performed to evaluate the performance comparisons of
information criteria. The data sets were generated based on McDonald and Galarneau [37],
which explained how to generate a suitable design. A detailed description of simulation
protocol for the regression model can be summarized in Table 2.

As seen from Table 2, ε1i, ..., ε4i are independent and identically distributed (i.i.d.)
according to normal distribution. The α parameter controled the degree of collinearity
(>0.70) between predictor variables, and α values were selected as α1,...,3 = 0.15. The
correlation and variance inflation factor (VIF) values of predictor variables for n = 30
are shown in Table 3.

Percentage levels of outliers in the dependent variable were selected at 5% and 10%.
The outliers were generated from the uniform distribution which lies at least +3σ from the
mean of Yi. Under these conditions, the simulation was done on the explanatory variables
and the error terms for (i = 1,. . . ,n) observations. Then, the response variable was
generated. After Yi were generated from normal distribution, outlier observations were
generated from uniform distribution which take into account the percentage of outliers.
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Table 2: Multiple Regression Model and Variates

X1i,...,5i ε1i,...,4i α1,...,3

X1i = 1 + ε1i ε1i ∼ N(0, 1) α1 = 0.15

X2i = 1 + 0.3ε1i + α1ε2i ε2i ∼ N(0, 1) α2 = 0.15

X3i = 1 + 0.3ε1i + 0.3ε2i + α2ε3i ε3i ∼ N(0, 1) α3 = 0.15

X4i = 1 + 0.3ε1i + 0.3ε2i + 0.3ε3i + α3ε4i ε4i ∼ N(0, 1)

X5i ∼ N(1, 4) εi ∼ N(0, 1)

Multiple Regression Model: Yi = 0.8 + 0.8X1i + 0.8X2i + 0.8X3i + 0.8X4i

+ 0.8X5i + εi

i = 1, ..., n, n = 30, 50, 100, 300

Percentage of Outliers: 5%- 10%

Table 3: Correlation and VIF Values of Predictor Variables

Correlation Values

X1 X2 X3 X4

X2 0.91
X3 0.68 0.89
X4 0.54 0.74 0.926
X5 −0.08 −0.09 −0.07 −0.13

VIF Values

X1 X2 X3 X4 X5

14.68 52.90 51.72 14.37 1.09
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For example, for the sample size n = 30 and percentage of outliers equal to 5%, it can
generate 2 outlying observation. Outliers were then added to the dependent variables. For
each of the combinations of parameters in Table 2. 100 data sets were generated taking into
account the regression model, so that 800 data sets were generated. Then, these data sets
were applied to AIC’,BIC’ and ICOMP’(IFIM) information criteria with their penalized
values of kappa equal to 3.

3.2 Performance Comparison of AIC’, BIC’ and ICOMP’(IFIM) for Outlier De-
tection in MLR Model Having Multicollinearity Problems using GA

The GA is used to find the optimal solution through for each combination of experiments.
Each dataset contains a known percentage of outliers, and the GA successfully detected
these outliers in all of the datasets tested. GA can detect the outliers by simultaneously
searching in the solution space, therefore the GA based outlier detection method allows for
detection of multiple outliers, not just one at a time. The simulation results are shown in
Table 4; the values are the percentage of outliers for 100 replicates. It tests the performance
of information criteria under two components. These are numbers of incorrectly identified
observations as outliers (swamping) (I) and numbers of failure to identify any of the outliers
(masking) (F ) in all iterations for each subsets. Percentage of outliers (P ) is calculated by

P =
(I + F

T

)

100%,

where T is the total number of outliers for all iterations in each subset.
As seen from Table 4 the true results for experiments are obtained for sample sizes n =

30, 50,100, 300 and percentage of outliers 5% and 10%. A simulation study is carried out
to support the good behavior of the AIC’ and ICOMP’(IFIM) criteria. It is clear that from
simulation results of AIC’ andBIC’ for n = 50 and 100, the percentage of outliers with 10%
give true information about how many observations are found as outlier. Therefore, it is
concluded that the best performance for outlier detection using AIC’ and ICOMP’(IFIM)
in MLR models is when by n <100 except for BIC’.

Table 4: Percentage of Outliers Finding by GA as the Fitness Function AIC’, BIC’, and
ICOMP’(IFIM)

5% 10%

n AIC’ BIC’ ICOMP’(IFIM) AIC’ BIC’ ICOMP’(IFIM)

30 3.50 66.50 3.50 3.33 59.00 2.67
50 0.67 5.00 1.33 3.00 5.80 1.40
100 9.80 12.20 10.80 4.70 6.20 5.50
300 15.20 18.74 12.84 11.78 22.45 12.63

Total 29.17 102.44 28.47 22.81 93.45 22.20

In Figure 3, one important result from these comparisons was that the run time of
information criterion tends to increase linearly as both the number of observations and
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the number of finding outliers is increased. In the case that the number of observations
goes to infinity, the criterion will estimate the right percentage of outliers or even detects
successfully most of outliers. These results suggest that the ICOMP’ based method is less
affected by changes in the dimension of regression models, percentage of contamination of
data, and sample sizes.

Figure 3: P Values When AIC’,BIC’, and ICOMP’(IFIM) as the Fitness Function of GA

4 Conclusions

The purpose of this experimental study was to test the scalability of the GA based on fitness
function as information criteria when MLR models having multicollinearity problems in
handling different sample sizes and different contaminated data with outliers. GA mimics
evolution is also a useful optimization tool for statistical modeling. In this study, it is
demonstrated that AIC’,BIC’, and ICOMP’(IFIM) criteria and a GA outline for outlier
detection in MLR have multicollinearity problems. The value of information based selection
criterion is calculated for observation as a measure of the fitness of dependent variable
in MLR. GA can simultaneously search in the solution space and also find the outliers
for multicollinearity problems. The simulation results are shown in Table 4, where the
values in cells are defined as extra total number of finding outliers in all iterations in
the dependent variable with GA. We tested two types of scalability of the GA for outlier
detection on data sets. The first one is the scalability of the GA against the given percentage
of outliers in MLR models having multicollinearity problems and the second is the scalability
against the power of different sample sizes. Figure 4 shows the results of using GA to find
diversity number of outliers on data set. One important observation from this figure is that
the GA can accurately finds the outliers especially when the sample size is smaller than
100 observations for MLR models with multicollinearity problems handling. However, we
note that numerical results clearly demonstrate that all criteria performances are affected
by multicollinearity problems in MLR model when sample sizes increases. BIC’ criterion
performance are greatly affected as compared to AIC’ and ICOMP’ when it is used in outlier
detection in multiple regression.
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