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Abstract The effect of an axial magnetic field, which varies inversely as the radius

vector, on the velocity and temperature distribution in a swirling jet of a viscous

incompressible electrically conducting fluid are studied. It is noted that the radial as

well as tangential velocity decreases near the slit of the jet with the increase in the value

of the magnetic interaction parameter. It is also observed that the effect of magnetic

field is to increase the temperature for metal fluids whereas the reverse phenomenon

happens for other fluids. These decelerated fluid particles move in the positive axial

direction and the points where they exactly balance the motion of the incoming fluid

have been calculated for different values of the magnetic interaction parameter.
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1 Introduction

The flow of a laminar from a slit and a jet ensuing from a circular orifice without swirl,
of incompressible viscous fluid were investigated by Schlichting [1] and Bickley [2]. The
problem of the circular jet, of a viscous, incompressible, electrically non-conducting fluid,
with an axially symmetrical swirling component of velocity has been studied by Loitsianski
[3] using an iterative procedure. Gortler [4] has considered the same problem, on the
assumption that the swirling velocity is small compared with the velocity component along
the jet and he expresses the swirling component of velocity as an eigen function expansion.
The study of swirling circular jet have also been made by Shtem and Hussain [5], Gallaire
et al. [6] and Facciolo et al. [7]. Riley [8] has studied the radial free jet, radial wall jet
and the radial liquid jet, with swirl, for both incompressible and compressible fluids. In all
the three cases considered by Riley, an investigation was made on the effects of departures
from similarity in the swirling component of velocity to find out how rapidly the final
similarity form is attained. It was found that the swirling component in the radial liquid
jet attains its final similarity form very rapidly indeed, a fact which is probably accounted
for by the absence of the outer mixing region common to the other two jets. The interest
in the hydromagnetic swirling jets is of more recent origin. The efforts made by us in this
direction reveal that in MHD case such a compact solution is not possible and therefore a
perturbation on the Loitsianski model is applied and the solutions are obtained. Mishra
et al. [9] studied the effect of an axial magnetic field, which varies inversely as the radius
vector, on the velocity distribution in a swirling jet of a viscous incompressible electrically
conducting fluid which originates from a circular slit. They found that the radial as well as
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tangential velocity decreases near the slit of the jet with the increase in magnetic interaction
parameter. In the present paper we have studied the effects of an axial magnetic field,
which varies inversely as the radius vector, on the velocity and temperature distribution in
a swirling jet of a viscous incompressible electrically conducting fluid, which originates from
a circular slit. A perturbation on the Loitsianski [3] model is applied both for velocity and
temperature distribution.

2 Formulation of The Problem

Let a rotating incompressible, viscous, electrically conducting fluid be discharged through
a circular slit formed by two circular discs of negligible radii and negligible distance apart
in the presence of variable axial magnetic field Bz(0, 0, B0r

−1) and mix with the same
surrounding fluid being initially at rest. Taking the origin in the slit, the governing equations
in cylindrical polar coordinates for a non-relativistic fluid motion may be written as:
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where u, v and w are velocity component in r, z and θ directions respectively and Bz = B0/r.

Now applying Prandtl boundary layer assumptions to the equations (1)-(4) and taking
the pressure gradient to be zero, because the constant pressure in the surrounding fluid
impress itself on the jet, the boundary layer equations governing the flow are
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The boundary conditions are
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where compatibility conditions are used in obtaining the conditions at infinity. Besides
these boundary conditions following integral conditions should also be satisfy
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where u0 and w0 are the velocity distributions and θ0 is the temperature distribution in the
corresponding non magnetic case i.e. when the magnetic field is zero (m = 0) and

m =
σeB

2
0

ρ
. (15)

These integral conditions have been obtained by integrating equations (5), (6) and (8)
with respect to z between −∞ to ∞, taking into account the continuity equation (5) or the
boundary conditions (10) and (11) respectively.

3 Numerical Solution

3.1 Analysis of the Velocity Boundary Layer

Introducing the stream function Ψm, such that,

ru =
∂Ψm

∂z
, rv = −

∂Ψm

∂r
. (16)

The equation of continuity (5) is identically satisfied and the momentum equations (6)
and (7) can be reduced to a set of ordinary differential equations if the following series
expansions, which are perturbations on the Loitsianski model [3], are satisfied:
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where F0, F1, F2...., G0, G1, G2, ..., H0, H1, H2, ... are functions of ξ to be determined and
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Now, using (16) the expressions for u, v and w are obtained as follows:
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where prime denotes differentiation with respect to ξ.
Substituting (21)-(22) in equations (6) and (7) and equating the coefficients of the same

powers of (m/α2r) we get the following set of ordinary differential equations:
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IV Terms containing (m/α2r)3 are

F ′′′
3 + F0F

′′
3 + 5F ′

0F
′
3 − 2F ′′

0 F3 = F ′
2(1 − 5F ′

1) + F ′′
1 F2 − 2G0G3 − 2G1G2, (32)

G′′
3 + F0G

′
3 + 3F ′

0G3 = G2(1 − 2F ′
1) + F2G

′
1 − F ′

2G1 + 2F3G
′
0 − F ′

3G0. (33)

Boundary conditions are

ξ = 0 : F ′′
3 = 0, F3 = 0, G′

3 = 0, H ′
3 = 0,

ξ → ±∞ : F ′
3, = 0, G3 = 0.

(34)

Similar equations corresponding to higher order perturbation term may be obtained.
However, here we shall confine ourselves to third order perturbation equations. Equations
(23) and (24) with boundary conditions (25) are the known equations of the Loitsianski
model [3] for the non magnetic case and having the solution (Mishra and Bansal [9])
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and
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The remaining equations (26) to (34) have been solved numerically by known techniques
for two point boundary value problems of non-homogeneous linear ordinary differential
equations.

The maximum velocity exists at the axis of the jet and is given by
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Now, the expressions for the dimensionless velocity distribution are given by
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where (u0)max, (v0)max and (w0)max are the maximum velocity exists at the axis of the jet
for non-magnetic field (m = 0).

The volume flux Q in the radial direction at a distance r from the slit is given by
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3.2 Analysis of the Thermal Boundary Layer

Since the thermal boundary layer equation (8) is a linear differential equation it is convenient
to obtain the complete solution of it by the superposition of two solutions of form

θ = θ1 + θ2, (42)

where θ1 is the solution, neglecting the Joule heating and dissipation, of the homogeneous
equation and θ2 is the particular solution of the non-homogeneous equation.
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In this case, energy equation (7) becomes
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The solution of the above equation has already been obtained by Yih [10] the details
of which may be found in Loitsianski [3], and the result is as follow:
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(b) Viscous Heating

In this case an incompressible fluid having a temperature T∞ is issued through a nar-
row slit and mix with the same surrounding fluid at rest and at the same temperature
T∞. The thermal boundary is formed due to viscous dissipation. Then, the enthalpy
distribution θ2 satisfies the following differential equation:
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The integral condition (14), with θ = θ2 be indentically satisfied. Now write the
expansion for θ2 as:
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where H0, H1, H2,.... are functions of ξ.

Substituting the equations (20), (21) and (49) in equation (47) and equating the coeffi-
cients of like powers, we get the following set of equations:
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The solutions of equations (50), (52), (54) are obtained for different values of ξ with the
boundary conditions (51), (53), (55). Also the solutions obtained for arbitrary values of the
Prandtl number.

We have the non-dimensional value of θ2 from equation (49) as
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4 Results and Discussion

The non-dimensional velocity profiles for radial, transverse and axial velocity components
of the magnetic parameter m/α2r , are plotted against the similarity variable ξ in Figure 1,
Figure 2 and Figure 3 respectively.

It is observed that the effect of the magnetic parameter is to decrease the radial velocity
u* as well as tangential velocity v* through the motion, where as the axial velocity w*
increases through the motion with the increase in magnetic interaction parameter.

Following physical explanation may be given for the result obtained. Due to the action
of the centrifugal forces the fluid near the slit of the jet will be thrown outward and to
compensate this a flow in axial direction towards the slit will follow. Now, the Lorentz force
retards the radial and tangential motion of the fluid and therefore these decelerated fluid
particles, from the law of conservation of mass, start moving in the positive axial direction
and thus reducing the incoming axial velocity numerically or, in other words, increasing it
algebraically. It may happen that for a prescribed value of m/α2r, the incoming flow is
exactly balanced by the outward flow.

The temperature profiles for various values of the magnetic parameter m/α2r for differ-
ent values of the Prandtl number Pr are plotted against the similarity variable in Figure 4,
Figure 5, Figure 6 and Figure 7. It is observed from the figures that the effect of the
magnetic field is to increase the temperature for fluids like liquid metals, e.g. mercury, i.e.
Pr = 0.044 whereas the reverse phenomenon happens for other fluids, i.e. in the case of
increasing Prandtl number.

5 Conclusion

A Mathematical model has been presented for the Swirling jets of conducting fluid in the
presence of a transverse magnetic field from the study. We observe that the radial as well
as tangential velocity decreases near the slit of the jet with the increase in the value of the
magnetic interaction parameter. Thus we conclude that we can control the velocity field by
introducing magnetic field. it is also observed that the effect of magnetic field is to increase
the temperature for fluids like fluid metals whereas reverse phenomenon happens for other
fluids.
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Figure 1: Radial Velocity Distribution u∗ against ξ for Different Values of m in Swirling Jet
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Figure 2: Tangential Velocity Distribution v∗ against ξ for Different Values of m in
Swirling Jet
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Figure 3: Axial Velocity Distribution w∗ against ξ for Different Values of m in Swirling Jet
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Figure 4: Temperature Distribution in Swirling Jet for Pr = 0.044
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Figure 5: Temperature Distribution in Swirling Jet for Pr = 0.72
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Figure 6: Temperature Distribution in Swirling Jet for Pr = 1.000
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Figure 7: Temperature Distribution in Swirling Jet for Pr = 2.000
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