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Abstract Frailty mixture survival models are statistical models which allow for a 

cured fraction and frailty. The cured fraction refers to a proportion of individuals who 

are expected not to experience the event of interest, while frailty refers to unobserved 

information amongst the individuals who experience the event of interest. In this 

study, we extend the frailty mixture survival model by including covariates into the 

frailty part of the model. We also employed both semiparametric and parametric 

methods in Gamma frailty mixture model.  Using parametric method, the baseline 

survival function is assumed to follow Weibull distribution, while using 

semiparametric method, the cummulative baseline hazard function is assumed to be 

unknown since in some cases a parametric assumtionis diffuclt to justify. Estimation 

methods based on EM-algorithm and newton-raphson are utilized to obtain the 

maximum likelihood estimates of the unknown model parameters involved in both the 

semiparametric and parametric model. The study aims to compare the performance of 

estimators using these two methods in terms of their accuracy and efficiency measures. 
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1     Introduction 
 

In studies of survival analysis it is common to assume that all individual in the target population will 

experience the event of interest or failure if the research period is sufficiently long.  However, in some 

cases a fraction of individuals called as long-term survivor, cured, or non-susceptible will not 

experience the event of interest. Survival model which had been used to analyse survival data with 

cured fraction are known as cured model. Cured model divides the target population into two 

subpopulations, which are long-term survivors and short-term survivors.  The long-term survivors 

refer to individuals who are not expected to failure, while short-term survivors refer to individuals 

who are expected to failure with a proper survival function. 

     Most of the survival models assume that all individuals experience failure with equal risk.  Yet, in 

practice all individuals are expected to failure with varying risk, because there are many other factors 

which will influence the failure time, for example genetic, and life style. These factors are typically 

unknown, and hence cannot be explicitly included in the analysis.  Models, which take into account 

the unknown factor between individuals are known as frailty models.  Frailty is defined as unknown, 

unobservable, multiplicative factor acting on the survival function. Models that allow cured fraction 

and take into account the frailty between individuals are named as frailty mixture survival model, a 

combination of cured model and frailty model, where the short-term survivors follow the frailty 

survival model. In this study gamma frailty mixture model is focussed. 
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2     Frailty Mixture Model 

 
2.1   Frailty Mixture Model 

 

Assume W denote a non-negative frailty random variable with distribution function F (w),  then the  

hazard function for an individual with frailty W at time t is given as 

 

   ℎ��|� = �� = �ℎ	���
��
           (1) 

 

where ℎ	��� is a constant function to all individuals, X is a vector of covariates, while � is a vector of 
coefficients. Therefore, as stated in Price and Manatunga [1] the survival function is given as 

 ���� = ������������� 
          = L(s)                          (2) 

 

where ���� = ��
���� denote the Laplace transform of the frailty distribution and � = −������� = 	��� where  	��� is the cumulative baseline function and B(t) is the baseline survival function. 

Distribution of W has support strictly greater than zero indicating positive risk for all individuals.  

Hence the individual who have higher risk will have higher frailty. In standard frailty model the frailty 

variable W is assumed to follow a parametric distribution or positive stable distribution such as 

gamma distribution, and these frailty distributions do not allow any individuals to have zero risk, in 

other words the general frailty model do not allow for a cured fraction. To include a cured fraction 

into frailty the studied population was divided into long-term survivors with probability 1-p and sub-

group of short-term survivors with probability p, who are subject to varying risk that measured 

through a frailty term. The survival model is named as Frailty mixture survival model. 

 

 

2.2   Gamma Frailty and Gamma Frailty Mixture Survival Model 

 

Assume the frailty W follow gamma distribution where 

 

                  !��� = �"�#$"
��%/Γ�(�                                    (3) 

 

with (, � > 0. To ensure E(Y)=1 we set ( = �.  The Laplace transform of Y for unit mean is 

 

    ���� = ,1 + �%/�%                      (4) 

 

where � = −������� =  	���. Thus, from (2) the survival function for gamma frailty survival model 

is given as 

 

    ���� = ,1 + 01�2�% /�%                        (5) 

 

while the gamma frailty mixture survival model is given as  

 

    ���� = 1 − 3 + 3 ,1 + 01�2�% /�%                       (6) 

 

Price and Manatunga [2] assumed a parametric distribution for the cumulative baseline hazard 

function  	��� to obtain estimates in model (6) but they do not take into account the effect of 

covariates in both cured and frailty. Therefore, in this study we propose to include covariates in the 

frailty part and model (6) will be revised as follows: 
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   ���� = 1 − 3 + 3 ,1 + 01�2� 456�78�% /�%                                (7) 

 

where b=�9	, 9#, … , 9;� is a vector of unknown parameters. Similar to cox regression model we 

assume that covariates influence the survival time with exp(bx).  If we assume   	��� to be a 
parametric distribution say weilbull distribution, model (7) can be estimated using the maximum 

likelihood method, similar to the approach applied in Price and Manatunga [1]. However, it is more 

convenient to use a semiparametric method if a parametric assumption is difficult to justify. It will 

also make the model applicable without knowing any information about the baseline survival 

function. 

In this study, we focused in both semiparametric and parametric methods for model (7). For 

parametric, we utilized newton raphson approach to obtain the maximum likelihood estimator while 

semiparametric we utilized EM algorithm. A simulation study was carried out to compare and 

evaluate the performance of both semiparametric and parametric methods.  

 

 

3    Result and Discussion 
 

3.1 Parametric Method    

 

The baseline survivor function is assumed to follow a weibull distribution,   	��� = −<�", thus 
model (7) can be expressesd as 

 ���� = 1 − 3 + 3 ,1 + �=2> 456�78�% /�%                    (8) 

 

and the likelihood function can be expressed as 

 

�?�@|A�B =CD3(<�E"�#
78 F1 + <�E"
78G$ H��%I#�J
KL D1 − 3 + 3 F1 + <�E"
78G$ H�%J

#�KL �9�N
EO#  

 

where A = �(, <, $, P, 9� is the vector of unknown parameter, T is the vector of survival time, t for 

j=1,…,n, QE denote the censor indicator, QE = 1 for noncensored data and QE = 0 for censored data and RE are covariates. Newton-Raphson approach had been utilized in this study to estimate the unknown 

parameters. The variance-covariance matrix can be obtained by using observed fisher information 

matrix which are the minus hessian matrix. 

 

 

3.2     Semiparametric Method  

 

With the value of the frailty �S, model (7) can be expressend as 

 ���S� = 1 − 3 + 3
R3?−�S T��S�
UVWB         (10) 

 

Similar to Y.Peng and J.Zhang [2], let XS = 0 if cured and XS = 1 if the individual experience failure. 
Therefore, the complete likelihood function is given as 

 � = �1 − 3�#�YW Z3
R3?−�S T��S�
UVWB?�SℎT��S�
UVWBKW[YW !��S�       (11) 

 

where !��S� is the density function of gamma distribution. EM algorithm is used to estimate \ =�9, $,  T���� in model (7). The complete log- likelihood can be expressed as  log	��� = �1�3� +�2?9,  T���B + �3�$�, where 
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																																																			�1�3� =cd�1 − XS� log�1 − 3� + XS log�3�eN
SO# 																																		�12� 

																	�2?9,  T���B =cd−�SXS 	��S�
UVW + QS log?ℎ	��S�B + 9RSeN
SO# 																							�13� 

															�3�$� =cd$���$ − log?Γ�$�B − �S$ + �N
SO# QS + $ − 1�log	��S�e																				�14� 

 

The E-step of EM-algorithm is to compute the conditional expectation of the complete likelihood 

function with respect to XS and �S with \ = \E at g2h iteration. From equation (9) 

 

iS = ��?XSj\E , kB = QS + �1 − QS� lm#In1?oWB pqr?stWBu vwu
#�lIlm#In1?oWB pqr?stWBu vwu        (15) 

 

with \ = \E and the observed data O.  For conditional expectation of �S, log	��S� and �SXS,  
 �S xXS = 0,\E , k~z{||{,QS + $, #%/              (16) 

 �S xXS = 1,\E , k~z{||{,QS + $, #%I01�2W� 456�UVW�/        (17) 

 

Therefore, 

 �?�Sj\E, kB = ���SjXS = 0,\E, k��1 − iS� +���SjXS = 1,\E, k��iS� 
 �?log	��S�j\E, kB = ��log	��S�jXS = 0,\E , k��1 − iS� +��log	��S�jXS = 1,\E , k��iS�  
 �?XS�Sj\E , kB = ��XS�SjXS = 0,\E , k��1 − iS� +��XS�SjXS = 1,\E , k��iS� 

 

The conditional distribution of �S|XS is a gamma distribution, hence, 

                          

																																	�?�Sj\E , kB = F �QS + $�iS$ +  	��S� exp�9RS�H + QS + $$ �1 − iS�																															�18� 
 �?log��S� j\E, kB = iSd�S − log�$ +  	��S� exp�9RS��e + �1 − iS�d�S − log�$�e					�19�                             
 

																																					�?XS�Sj\E , kB = �QS + $�iS$ +  	��S� exp�9RS�																																													�20� 
                                        

where �S = ��QS + $� is the digamma function.  Let	�S = 	�?�Sj\E , kB, �S = �?log	��S�j\E, kB and �S = �?XS�Sj\E , kB then equation (11), (12), and (13) can be expressed as 

 

																																							�1�3� =cd�1 − iS� log�1 − 3� + iS log�3�eN
SO# 																																										�21� 

									�2?9,  T���B =cd−�S 	��S�
UVW + QS log?ℎ	��S�B + 9RSeN
SO# 																						�22� 
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																	�3�$� =cd$���$ − log?Γ�$�B − �S$ + �S�N
SO# QS + $ − 1�e																						�23�	

 

The M-step of EM-algorithm is to maximize the expected we computed which are (21)-(23) to update \. Maximizing (21) with respect to 3 can be done by using maximum likelihood. As mentioned in 

Peng [3] to maximize (23) with respect to 9 it can be completed by the cox regression proportional 

hazard model with additional covarite log	��S� with coefficient equal to 1. To maximize (22) with 

respect to $ we can employ Newton-Raphson.  Lastly we can employ Nelson-Aelan approach to 

estimate  	���  which is, 
 										 �	��� = c �S∑ �S exp�9RS�E∈�W2W�2

																																																						�24� 
 

where	�S denotes the number of uncensored times at �S and �S is the at risk set at �S.   
 

 

3.3   Simulation Study 

 

A simulation study was conducted to compare the performance of both semiparametric and parametric 

method.  In this simulation study, 50 data sets with sample size of 50 were generated from a gamma 

frailty mixture survival model with the baseline survival function assumed to be Weibull distribution. 

We used $ = 0.5, < = 6, and ( = 2 while R was generated from standard normal distribution and 

coefficient 9 = log�2�. Finally, Q was drawn from binomial distribution with  3 = 0.8. The results 
obtained from semiparametric and parametric are shown in Table 1. As mentioned in section 3, using 

parametric method, the baseline survival function is assumed to follow Weibull distribution, while 

using semiparametric method, the cummulative baseline hazard function is assumed to be unknown 

since in some cases a parametric assumtionis diffuclt to justify. Therefore, there are 5 unknown 

parameters for parametric method while semiparametric method has 3 unknown parameters. 

 As shown in Table 1 overall the estimators of parametric method are closer to the true value as 

compared to semiparametric estimators. The different between  9�, 	$� and the true value are smaller as 

compared to semiparametric method while the different between 	3̂  and the true value is bigger as compared to semiparemetric method. However, the mean square 

error, MSE for  9�, $�, (�, and <� parametric estimators are higher than the semiparametric estimators.  

 Table 2 shown the mean square error of semiparametric and parametric survival function with the 

survival function obtain with the true value of the unknown parameter. The average of the mean 

square error of parametric survival function is smaller as compared to semiparametric survival 

function which means that parametric survival function fit the survival function with true value better 

than semiparametric model. 

 

 
Table 1  Comparison of Semiparametric and Parametric Methods 

  �� 7� �� ��   ��  
  3̅̂ MSE 9�� MSE $�̅ MSE (�� MSE <�̅ MSE 

Semi 

Parametric 0.8120 0.005 0.5540 0.0970 0.6500 0.0460 - - - - 

Parametric 0.7800 0.003 0.6899 0.1323 0.5347 0.1119 2.070 0.2374 4.3562 0.6869 

True 

Value 0.8000 - 0.6914 - 0.5000 - 2.000  4.0000 - 

Different between true value and estimators 

Semi 

Parametric 0.0120 -0.1374 0.1500 - - 

Parametric -0.0200 0.0015 0.0347 0.0700 0.3562 
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Table 2  Mean Square error of Survival function 

 m  Parametric Semi parametric m  Parametric  Semi parametric  

1 0.002667 0.028556 27 0.00192 0.033171 

2 0.00353 0.041243 28 0.002609 0.026831 

3 0.000589 0.042353 29 0.000379 0.047723 

4 0.005358 0.03155 30 0.000441 0.027118 

5 0.001562 0.04061 31 0.000962 0.045304 

6 0.003034 0.022069 32 0.005082 0.046949 

7 0.002211 0.024704 33 0.000917 0.025755 

8 0.004199 0.020282 34 0.002825 0.037519 

9 0.002397 0.028435 35 0.001777 0.024612 

10 0.001415 0.039546 36 0.00057 0.028056 

11 0.001692 0.040139 37 0.007034 0.052099 

12 0.009333 0.048095 38 0.002183 0.035853 

13 0.00389 0.03883 39 0.001766 0.032611 

14 0.003402 0.048016 40 0.001392 0.032805 

15 0.004356 0.023503 41 0.005725 0.033488 

16 0.003614 0.033825 42 0.001404 0.048747 

17 0.005329 0.052807 43 0.007105 0.042347 

18 0.00654 0.044654 44 0.000197 0.044122 

19 0.013724 0.046868 45 0.000228 0.042682 

20 0.002382 0.023275 46 0.001796 0.041549 

21 0.000428 0.04391 47 0.001473 0.0308 

22 0.005831 0.044699 48 0.002725 0.033739 

23 0.004648 0.041837 49 0.001307 0.027147 

24 0.003053 0.027209 50 0.003448 0.084063 

25 0.002932 0.020523 average 0.002008 0.019349 

26 0.00231 0.069895       

 

 

 

5   Conclusion 
 

In this study, we compared semiparametric and parametric model in Gamma frailty mixture survival 

mode. In parametric method, the baseline survival function was assumed to follow Weibull 

distribution and newton-raphson approach been employed to estimated \ = �(, <, $, 9, 3�. In 
semiparametric method the baseline cumulative hazard function was assumed to be unknown and we 

utilized EM-algorith to estimated $, b, and p while Nelson-Aalen approach been employed to 

estimated the baseline cumulative hazard function 

The estimators of both parametric and semiparametric methos were closed to the true value, 

however the mean square error of semiparametric model is smaller than mean square error of 

parametric methods. Although the mean square error of parametric estimator is higher, the mean 

square error of parametric survival function is smaller compare to semieparametric survival function. 

Hence, both semiparametric and parametric model is comparable and parametric method fit the 

survival function with true value better than semiparametric method. Parametric method is easier to 

understand and the estimator can be obtained easily with newton-raphson, while semiparametric 

method is much complicated. 
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 This study is limited to small sample size and small number of data set generated. It is strongly 

recommend for future study bigger sample size and more data set should be generated and the 

researcher should consider the covariates effect at the cured fraction.  
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