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Abstract In this article, we discuss the optimal and robust designs for accelerated life 

testing (ALT) when a step-stress plan is performed. It is assumed that the time to failure 

of a product has a Weibull distribution with a log-linear life-stress relationship. We adopt 

a generalized Khamis-Higgins model for the effect of changing stress levels. Taking into 

account that the assumed life-stress relationship is possibly misspecified, we have derived 

the optimal stress changing time of the simple step-stress plans in order to minimize the 

asymptotic mean squared error of the maximum likelihood estimator for the reliability of 

a product at the normal use stress level and at a pre-specified time. The optimal 3-step-

stress plans with minimum asymptotic squared bias are also discussed. 
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1     Introduction 
 

For highly reliable products or components, a life testing experiment takes too long to observe any 

failures under normal operating conditions (also called the normal use stress levels). ALT is often 

used to shorten the life so that the observed failures can be quickly obtained in a reasonable time 

period. ALT experiments are conducted at stress levels higher than normal use stress levels. It consists 

of a number of test methods for acceleration. In constant stress ALT, each unit is subjected to an 

accelerated stress level and this level remains unchanged during the testing period, although different 

units may be under different stress levels. In step-stress ALT, the stress subjected to each test unit is 

not constant but is changing in a stepwise manner. Compared to constant stress ALTs, step-stress 

ALTs can obtain information much more quickly. 

 

 

1.1     Previous Work on Optimal Step-Stress ALT Plans 

 

There are a number of research papers that have investigated the methods of optimal ALT 

experiments with step-stress plans. Miller and Nelson [1] provide the optimal design for simple step-

stress under the assumption of an exponential distribution with complete data. Such plans minimize 

the asymptotic variance of the maximum likelihood estimator (MLE) of the mean lifetime at the 

normal use stress. Bai et al. [2] extend the results of [1] for censored data. Bai and Kim [3] obtain an 

optimal simple step-stress for a Weibull lifetime distribution under Type-I censoring. Ma and Meeker 

[4] extend the optimal step-stress plan construction to the general log-location-scale distributions. 

Dharmadhikari and Rahman [5] provide the optimal stress change time for Weibull distribution 

assuming the shape parameter is a function of stress, however, the scale parameter stays fixed when 

the stress level changes. Most recently, Hunt and Xu [6] have obtained the optimal stress-change time 

under a Weibull distribution when both shape and scale parameters are considered to be functions of 
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the stress levels. All of these aforementioned articles consider that the assumed models are exactly 

correct. 

     For ALT experiments, all the test units are tested under accelerated stress levels; however, the 

estimation required is the reliability at the normal use level, which is lower than the test stresses. 

Therefore, the estimation is extrapolated based on the assumed the life-stress relationship. This 

relationship cannot be tested for its validity since there is no observation under normal use levels. 

Hence, this is a one-point extrapolation problem. Pascual [7] provides a review on the construction of 

ALT designs under the consideration of robustness following different directions. He also presents the 

asymptotic distribution of MLEs and the resulting estimation bias for an ALT experiment with a 

constant stress plan and when an ALT model is misspecified. 

     In a complete general setting, robust designs for one-point extrapolation have been discussed in 

Wiens and Xu [8], for least squares estimation of a mean response. Please also see the references 

therein. As Fang and Wiens [9] pointed out: "Extrapolation to regions outside of that in which 

observations are taken is, of course, an inherently risky procedure and is made even more so by an 

over-reliance on stringent model assumptions." The classical optimal designs minimize the variance 

alone. However, when the fitted models are incorrect, the estimation is biased. A robust design should 

be obtained in an optimal way so that even when the fitted model was not exactly correct, the designs 

can still be relatively efficient with a small bias. 

     In this paper, with the awareness of possible imprecision in the assumed life-stress relationship, we 

investigate the optimal stress changing time for simple step-stress plans so that the asymptotic mean 

squared error (AMSE) of the underlying reliability estimator can be minimized. We also discuss the 

best choices of 3-step-stress plans so that the asymptotic squared bias (ASB) can be minimized. This 

paper extends the results of constructing the optimal step-stress plans of others in the following ways: 

(1) it goes beyond [7] due to consideration of model uncertainty for step-stress plans; (2) it goes 

beyond [8] due to constructing the robust design for maximum likelihood estimation (MLE) for 

reliability. 

 

 

1.2     Test Plans 

 

In most ALT models, there is an implied transformation of the stress and such as reciprocal of the 

absolute Kelvin temperature, log of voltage, etc. We use s to denote this transformed stress, 0s  to 

denote the normal use stress level. All the test units will be tested between the use stress level and the 

highest possible stress level. Under a simple step-stress ALT plan, all test units are tested at a lower 

accelerated stress level 1s ; then, at a stress changing time 1τ  all of the surviving units are moved to a 

predetermined highest stress level hs  until all units fail, where 0 1 hs s s< < . Under a 3-step-stress 

plan, there are three stress levels involved. All test units are tested at a lower accelerated stress level 

1s ; at a stress changing time 1τ , all of the surviving units are moved to a higher stress level 2s ; at a 

stress changing time 2τ , all of the surviving units are moved to hs  until all units fail, where 

0 1 2 hs s s s< < < . For a simple step-stress plan, h = 2 and for a 3-step-stress plan, h = 3. 

     The rest of this article is arranged as follows: some mathematical preliminaries, notations, and 

derivations are detailed in §2. The constructions of the designs and the resulting optimal designs using 

an example are provided in §3. We conclude with a few remarks in §4. 

 

 

2     Materials and Methods 
 

2.1     Model assumptions 

 

We first consider a simple step-stress plan. Let 1n be the number of failures observed by the first stress 

changing time 1τ . We assume that the lifetimes of the test units are independent and follow a Weibull 
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distribution with scale parameter iθ  and shape parameter ω , where iθ  varies when stress level 

changes. Let Y be the natural log lifetime of a test. Then Y has an extreme value distribution with 

location parameter log( )i iµ θ=  at stress level is , i = 0, 1, … , h, and scale parameter 1/σ ω= .  

     We utilize a Khamis-Higgins model for the effect of changing stress levels. For a 2-step-stress 

plan, we let 1 1
11
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     The optimal step-stress designs rely on the assumed stress-life relationship. Pascal [7] has not only 

pointed out that the robustness respect to the life-stress relationship is crucial to ALT but also presents 

various examples to indicate the plausible reasons why the ALT model may fail to hold throughout 

the stress range. Due to extrapolation, it is impossible to test any departure of the assumed stress-life 

relationship at the use stress level. Therefore, the validity of the stress-life relationship in ALT is 

always in question because of extrapolation. However, the reliability estimation of interest under 

different relationships, for instance the linear and curved stress-life relationships, may appear similar 

within the test stress range while it may tend to diverge beyond this range. This is certainly 

problematic for the practitioner. 

     In this paper, we aim to derive the optimal step-stress ALT plans for the MLE of reliability which 

can be robust against the misspecification in the fitted life-stress relationship. 

 

 

2.2     MLEs and Fisher Information Matrix Under Possible Misspecification of the Stress-Life 

Relationship 

 

     Let lM be the fitted model and qM  be true model for the stress-life relationship. In this paper, we 

assume the practitioner is fitting a commonly used model with the log-linear life-stress relationship, 

which is 0 1log( )li li isµ θ β β= = + , where 0β and 1β  are unknown parameters. However, we are 

aware of the possibility of the true relationship being a log-quadratic life-stress relationship, with 
2

0 1 2log( )qi qi i is sµ θ α α α= = + + . Define � [ ]0 1 2,  ,  
T

α α α=  and  � 0 1[ ,  ]Tβ β= . Let ℒ(�, �) be 

the log-likelihood function under qM , and ℒ(�, �) be the log-likelihood function under lM , both 

with test plan �. The expected log-likelihood ratio under the true model qM  is 

 �(�:�) = ��
[logℒ(�, �) − log	ℒ(�, �)].       (1) 
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We note that the MLE method is used for the parameter estimation. 

     We let iky  be the log of the failure time of the kth unit under stress level is , and define 
( )l

ijC  as 

ijC  in Section 2.1 but replacing iµ  with liµ . For a 2-step-stress plan, the likelihood function and the 

negative log-likelihood function are 
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( ) ( )

1 21 11exp( ) exp( )l lc C C= − , 
( ) ( )

2 2 21 1 11exp( ) exp( )l lc s C s C= − . 

 

Then, (5) becomes 
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lM  to the data using MLE methods. Let �� denote the quasi-MLE of �, since lM  is not the true 
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     The calculation of the values above for a 3-step-stress plan is similar to this for a 2-step-stress plan, 

so we omit it here due to page limit. It is also available upon request. 

 

 

2.3     Optimization Criteria 

 

The robust and optimal test plan considered in this paper is to determine the stress changing times, jτ ,  

j = 1, 2, …, 1h− , so that the reliability estimation requested can be as precise as possible. Due to the 

model misspecification, the MLEs obtained using the fitted model are no longer asymptotically 

unbiased. Therefore, we consider the optimum criteria to be the minimizations of the AMSE, and the 
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ASB of the MLE of a reliability function at a predetermined time ς  under the normal use stress level. 

In this paper, the optimization criteria are used under a transformation of the reliability estimate. 

     The MLE of the reliability estimate from the Weibull failure time distribution, at time ς  under the 

normal use stress level 0s  is 
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 (8) 

 

     For simplicity, we transform the reliability estimate into a linear function of 0β̂  and 1β̂ . We 

denote it as 
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Then, the ASB of (9) is 
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the asymptotic variance of (9) is 
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and the AMSE of (9) is 

 

0
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0
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0
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3     Results and Discussion 
 

3.1     Optimal Simple Step-Stress Plan for Minimizing AMSE 

 

     In order to demonstrate our construction of the robust design, we revisit the example presented by 

Fard and Li [11]. Suppose that a simple step-stress test of cable insulation is run to estimate reliability 

at a specified time ς  = 2000 minutes. We obtain the optimal stress-changing time τ  in order to 

minimize (12). Two accelerated stress levels of 24kV and 30kV are applied. The use level stress is 0s  

= 20 kV. Suppose from a previous experiment or prior knowledge ω  = 2.2, and the initial parameters 
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are 0α  = 10.39264742, 1 0.253190592α = − , 2α  = 0.004 which can be seen with the minimal 

curvature within the design space, [24kV , 30kV ]. 

     For a range of τ  used in the minimization, we use an upper bound of 2500 minutes which is a 

slightly longer lifetime than the 99.9 percentile of the assumed lifetime distribution, 2458.5 minutes. 

A pattern search with a one minute time step interval is applied to find stress-changing times which 

minimize (12) over the range, τ ∈ (0, 2500). As a result, the AMSE is minimized when the stress-

changing times is at 739 minutes. We note that the AMSE is an increasing function when τ  exceeds 

739 minutes. The result is displayed in Table 1 below. Also see Figure 1 for the graph of the function 

AMSE in terms of τ . 

 
Table 1 The optimal stress-changing time 

τ  The ASB The minimum 

AMSE 

739 0.123904 5.699109 

 

 
Figure 1 AMSE versus τ  

 

     In this example, we also observe that the ASB remains fairly constant as the stress-changing time 

varies, which indicates that the ASB of reliability estimation is not sensitive to the stress-changing 

time for an ALT with a simple step-stress plan. In order to reduce the asymptotic bias in estimation, 

we further investigate the effect of a multiple step-stress plan on the ASB in the next subsection. 

 

 

3.2     Optimal Multiple Step-Stress Plan for Correcting the Asymptotic Bias 

 

We continue to use the example presented in Section 3.1, however, instead we apply a 3-step-stress 

plan with three accelerated stress levels of 24kV, 27kV, and 30kV. In this example, all three stress 

levels are prespecified, and the middle stress level is set to be the average of the low and high stress 

levels. All other values of the parameters in the example remain the same as appeared in Section 3.1. 

We obtained the optimal stress-changing times 1τ  and 2τ  so that the ASB can be minimized. To be 

more practical, we search ( 1τ , 2τ ) within a certain range so that the stress changing times can have a 
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gap between each other. Given such gaps, the failures are expected to be observed for each stress 

level. 

 

 
Table 2 Optimal 3-step-stress testing plans for correcting ASB 

Test 

plan  

Stress range  
1τ  2τ  The minimum 

ASB 

1ξ  1τ = 400, and 2τ ∈  [450, 2450] 400 2425 0.0607129 

2ξ  1τ ∈[50, 2400] and 1τ ∈[ 1τ  + 50, 

2450] 

64 2445 0.0607121 

 

     In the test plans 1ξ  and 2ξ  shown in Table 2, we introduce a bounded design for the stress-

changing times. These bounded designs are used to create practical ALT experiments. We create a 

time gap of at least 50 minutes in between the start of the test and 1τ , in between 1τ  and 2τ , and in 

between 2τ  and the upper bound. This type of design is implemented to allow for failures of the test 

units at each of the stress levels. We minimize the ASB of the transformed reliability in (10) to find 

the optimal stress-changing times 1τ  and 2τ . A pattern search is applied with a one minute time step 

interval for the stress-changing times. We use the same upper bound of 2500 minutes as it was in 

Section 3.1. The resulting optimal stress-changing times 1τ  and 2τ  are displayed in Table 2 for each 

of the two specified stress ranges. 

     Although the optimal test plan 2ξ , as a result of searching in a much wider stress range, provides a 

smaller ASB of the transformed reliability estimate, it suggests that the low stress-changing time 

should occur at 64 minutes and the high stress-changing time at 2445 minutes. However, its 

competitor, 1ξ , not only gives the minimum ASB almost as small as that for 2ξ , but also enjoys the 

longer testing time under the lowest test stress level, which may be required to observe sufficient 

failures. 

 

 

3.3     Discussion and Future Research 

 

Under the consideration of possibly underfitting an assumed stress-life model, the robust and optimal 

stress changing time is obtained in order to minimize the AMSE. For a simple step-stress plan 

involving only one stress changing time, the optimal stress changing time appears to be longer than 

the one obtained without such consideration. For the example discussed in Section 3.1, the optimal 1τ  

obtained by minimizing the asymptotic variance alone was 686 minutes; see [11]. However, the 

robust and optimal 1τ  derived by minimizing AMSE is lengthened to 739 minutes. 

     According to the theory of robust design of experiments for linear statistical models, the robust 

designs against model misspecification tend to be more uniform, see [8]. Since the simple step stress 

plans only consist of two distinct stress levels, which is far from being uniform, the asymptotic bias 

appeared in the estimation due to the misspecification in the assumed stress-life relationship cannot be 

corrected by only optimizing the stress changing time. By introducing multiple step-stress plans, we 

are able to reduce the estimation bias. As discussed in the example above, implementing a 3-step-

stress ALT with two stress-changing times and with three predetermined stress levels has already 

reduced the ASB by more than half, from 0.123904 for a simple step-stress plan to 0.060712 for a 3-

step-stress plan in this example. 

     A future study can be done to construct promising robust designs for ALT against misspecification 

in the life-stress relationship by determining the stress-changing time(s) and the test stress level(s) 

simultaneously so that the AMSE or ASB can be minimized. 

     Furthermore, homoscedasticity is another commonly used assumption for ALT models. The 

method we developed in this paper is under assumption of a Weibull lifetime distribution with a 
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constant shape parameter. For some products, the shape parameter of (possibly transformed) lifetime 

distribution varies when stress level changes. Such heteroscedastic manner would affect the resulting 

optimal deigns, so it should be taken into account in the design stage of the life-testing experiments. 

Therefore, another future study is to take robustness consideration of possible heteroscedasticity in the 

course of constructing the optimal designs for the ALT experiments. 

 

 

4     Conclusion 
 

We have provided the expected Fisher information and the asymptotic distribution of the MLEs for 

reliability prediction when the life-stress relationship is misspecified. Although the resulting 

components of these results are given for simple step-stress plans, the derivation for multiple step-

stress is very similar to this and the authors make them available upon request due to page limit. A 

robust and optimal ALT design with simple step-stress plan is obtained for a practical example. In 

addition, a minimum bias design is also constructed for a 3-step-stress plan. In general, our method of 

deriving the robust and optimal plan can be applied to estimation or prediction of any quantity of 

interest as long as it is a given function of the unknown parameters, such as the mean life to failure or 

a percentile of the lifetime distribution. 
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