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Abstract Linear discriminant analysis for multiple groups can be performed using 

Fisher's technique which can be applied to classify and predict observations into various 

populations. Classical Fisher linear discriminant analysis (FLDA) is highly susceptible to 

outliers. The poor performance of classical FLDA is due to lack of robustness of the 

classical estimators used to train the model. The proposed robust FLDA combine the 

features of classical FLDA and weighted sample observations. This paper examines the 

comparative classification performance of Fisher linear discriminant analysis and the 

proposed robust Fisher linear discriminant analysis. The paper focuses on the influence 

scaled normal and unscaled normal data set have on the classical Fisher and the robust 

Fisher techniques. The objectives of this paper are to compare the classification 

performance of these methods based on the mean of correct classification and to examine 

the separation between the group means. The classification results indicate that the 

proposed procedure has improved classification rate compared to the classical Fisher 

linear classification analysis. The simulation showed that both procedures have 

comparable separation capability. 
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1     Introduction 
 

The complexity of linear discriminant analysis is to assign an observation of unknown source to one 

of two or more distinct groups. Fisher linear discriminant analysis(FLDA) was introduced by [1] for 

two groups however this approach  has  been extended to two or more groups [2]. FLDA is a linear 

combination of observed or measured variables that best describe the separations between known 

groups of observations.  Its basic objective is to classify or predict problems where the dependent 

variables appear in a qualitative form [3]. Hastie et al. [4] and Rousseeuw [5] observed that FLDA is 

based on assigning an unknown observation to a group with minimum classification error rate. FLDA 

perform optimally if the assumptions of equality of variance covariance matrices and normality is not 

violated [6]. Classical FLDA relies on sample mean and covariance matrix which are sensitive to 

outlying observations [5, 7-12]. The susceptibility of the classical sample mean and sample 

covariance matrix to outlying observations allows for missclassification of new observations   [6, 13]. 

Various techniques have been proposed to robustify the FLDA. Based on this, Campbell [14] and 

Maronna [15] used M- estimators, Davies [16] and Lopuhaa [17] applied S estimators, Campbell [14] 

propose to replace the classical sample mean and covariance matrix with smooth estimator. Minimum 

volume ellipsoid (MVE) and Minimum covariance determinant(MCD)  was applied by [5], smooth 

estimator, maximum likelihood estimator, M estimator were applied by [14,15,18], [16,19]. Robust 

multivariate estimators can be inserted into classical estimators to produce robust multivariate 

techniques which are rather outlier diagnostics than high breakdown robust techniques. This paper 

aims at robustifying the classical sample mean and covariance matrix by incorporating weight to 

extinguish the influence of outlying observations. The propose approach combines the features of the 
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classical FLDA by incorporating the weight which conforms to regular observations.  The new 

approach apply a compensate constant muε  to the inverse of the pooled variance covariance matrix. 

The discriminant score and mean follows the conventional approach. 

     We also investigated the separation(s) between the group means. It is pertinent to know that 

maximum separations between group means is a visual description of the performance of the model 

but not a criterion for improve classification rate. In this paper, since the population mean and 

covariance matrix are unknown, we simply discuss its unbiased sample estimates. Our presentation is 

focused on two groups FLDA. This paper is organized as follows. Section two briefly describes the 

classical FLDA.  Robust FLDA is presented in section three. Simulations and conclusions are 

reported in sections four and five respectively. 

 

 

2     Fisher Linear Discriminant Analysis 
   

Consider classifying an observation vector X  into one of two normal populations : ( , )i iNπ µ ∑ , 

(i=1,2) where iµ  is the population mean vector of iπ  and ∑ is the population common covariance 

matrix. Suppose that the population parameters iµ , ∑ are unknown. Fisher linear discriminant 

analysis can be started mathematically based on the sample equivalent of the population parameters as 

follows. 

 

1
1 2( ) pooledZ C X x x S X−′ ′= = −

                                                  (1) 

1 2( ) / 2Z x x C ′= −                                                          (2) 

The sample within group means and sample within covariance matrices in equations (1) and (2) are 

define as follows;  
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The index i  indicates the number of groups and in  is the sample size in each group and g denote 

overall groups. Where 1
2( )iC x x S −′= −  is the discriminant coefficient, Z denote the discriminant 

score, Z  is the discriminant mean and X  is the metric variable (multivariate observations) for the 

discriminant function. The derivation of equation (1) does not require distributional assumption 

however it is contained in Anderson classification statistics which follow multivariate normality 

[20,21]. When multivariate normality is assumed, FLDA is unlikely to provide the required 

classification rule since the covariance matrices may not be equal. Pooling unequal covariance 

matrices and the group means to obtain FLDA coefficient may increase the classification error due to 

assumption violation however; it is recommended that quadratic classification rule be applied 
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[20,22].The classification rules based on equations (1) and (2) is described as follows.  Classify 1x  to 

group one if the discriminant score is greater than or equal to the discriminant mean otherwise classify 

1x  to group two if the discriminant score is less than the discriminant mean, that is, 

Z Z≥                                                                            (3) 

Z Z<                                                                            (4) 

The above procedure is repeated for each group. 

 

 

3     Robust Fisher Linear Discriminant Analysis 
 

Due to non robustness of the classical sample mean and covariance matrix, we design a robust 

approach that robustifies these parameters. The following authors [4,8,23] focused on the inclusion of 

a penalty constant or error which can be used to obtain useful discrimination information from a 

modified FLDA. The following authors [6,10,14,16,17,5,24-28] have proposed various techniques to 

robustify the classical sample mean vectors and covariance matrices. We propose to robustify the 

classical sample means and covariance matrices by weighting the sample observations. The proposed 

method combines the features of classical FLDA and the weighting condition. The criterion is to 

obtain the regular observations from the entire sample observations via zero one weight, see equation 

(5). The zero one weight is obtained by comparing the Mahalanobis distance of the sample 

observations with Chi-square value. The sample observations with weight one is used to compute the 

parameters of the proposed robust technique. The robust procedure can be categorized into two steps; 

the initial stage follow the conventional approach, the second phase apply weight to the sample 

observations to obtain weighted within group sample means and weighted pooled variance covariance 

matrix. In addition to equations in section two the proposed method is briefly described as follows; 
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Equations (5), (6) and (7) are the weighting parameter, within group means (weighted within group 

means) and the within group variance covariance matrices (weighted within group variance 

covariance matrices) respectively. Equation (7) is pooled to obtain the weighted pooled variance 

covariance matrix. A compensate constant muε  is added to the inverse of the weighted pooled 

variance covariance matrix to compensate for the zero lost weight. The computation of the robust 

FLDA score, coefficient and its mean are similar to equations (1) and (2) and therein respectively. 
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Equations (5), (6) and (7) and the inverse of the pooled weighted variance covariance matrix are used 

to build the robust model. The classification procedures follow equations (3) and (4) and explanation 

therein. It should be noted that the most vital aspect of FLDA and the robust FLDA is the training 

sample used to learn the discriminant coefficient. If the parameters used in training and validating the 

model are well designed and the assumptions hold, the entire classification procedure tends to perform 

optimally.  

 

 

4     Simulation 
 

The numerical simulation is designed to compare the comparative classification accuracy of the 

conventional FLDA and the proposed robust FLDA. The group means and covariance matrices are 

fixed. The sample size are equal, 1 2 100n n= = . The simulation is designed using scaled normal data 

and unscaled normal data. The sample data set used in this experiment is generated and is divided into 

training sample and validation sample; say 70% for training sample and 30% for validation. The focus 

of this study is to obtain the classification accuracy using hit ratio to access their comparative 

performance. The study criterion is to avoid upward biased when the training sample is used to build 

and validate the model. Based on this, the sample observations were reshuffled via zero one uniform 

distribution for each group. The reshuffled data set, say 70% was used for training and 30% was 

applied to validate the learned model. The experiment was replicated 100 times and the average 

number of runs reported (that is, mean of correct classification was reported). Table 1 below gives the 

classification rate of both techniques for unscaled  normal data. This analysis supports the view that 

classical FLDA performs optimally when the assumptions of normality and equal variance covariance 

matrix hold, however the proposed approach based on these assumptions outperform the classical 

approach. Figure 1 and Figure 2 illustrate the separations between the group means. We observed that 

both techniques are well separated, this also support the classification rate. 
 

Table 1 Unscaled normal data 

Method 
Observation (%) 

Correctly Classified Observation Misclassified 

CFLDA 99.7 0.3 

RFLDA 100 0 
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Figure 1 Unscaled normal data for CFLDA 

 

 

 

Figure 2 Unscaled normal data for RFLDA 
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Figure 3 Scaled normal data for CFLDA 

 

 

Figure 4 Scaled normal data for RFLDA 

 

Table 2 below illustrates the classification rate of the classical FLDA and the robust FLDA for scaled 

normal data set. This experiment shows that classical FLDA perform poorly with scaled normal data, 

it also attest that the robust approach is actually robust in all conditions. We therefore conclude that in 

both situations the proposed approach outperformed classical approach. The classification error for 

the classical FLDA is 39.2 compared to 18.9 for the robust approach for scaled normal data. The 

conclusion is that 0.3 classification error for classical FLDA for the unscaled data is quiet reasonable 

and insignificant. The separability of the group means can be observed in Figures 3 and 4 

respectively. 
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Table 2 Scaled normal data 

Methods 

Observation (%) 

Correctly 

Classified 

Observations 

Misclassified 

CFLDA 60.8 39.2 

RFLDA 81.1 18.9 

 

 

5     Conclusions  
 

The proposed robust approach combines features of the conventional approach and weighting 

condition to robustify conventional sample mean and covariance matrix. The robust approach show 

high degree of classification and prediction accuracy. Simulation result shows that the new approach 

and the conventional approach perform similar for unscaled data. However, the robust approach 

outperforms the classical approach when simulation is performed with scaled normal data. The 

experiment also reveals the maximum separations between the group means. The results also affirm 

that classical FLDA perform optimally if normality and equal variance covariance matrix assumptions 

hold and poorly when the assumptions are violated. The classification rate investigated based on hit 

ratio shows that the robust approach performs better in both situations. 
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