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Abstract Global optimization is an active research area due to its ability to provide the best 

set of parameters to optimize an objective function in the area of interest. Most of real life 

problems are large-scale and nonlinear therefore it is felt necessary to find the global solution 

for large-scale and nonlinear optimization problems. Finding global minimizer of a function 

defined in an n-dimensional linear space is one of the most interesting areas in nonlinear 

programming. This paper considers the performance of the classical tunneling function in 

comparison with the exponential tunneling function in the tunneling algorithm. The proposed 

algorithm is applied to multivariable and nonlinear functions. For both tunneling functions, 

the tunneling algorithm was able to find the global minimizer. 
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1     Introduction 
 

Many problems in engineering, physics, economics, and other fields are reduced to global 

minimization with many local minimizers. Mathematically the problem is formulated as: 

 
* min ( )

x D
f f x

∈
= , : , ,N Nf R R D R→ ⊆  

 

where f is a nonlinear function of continuous variables and D is a feasible region and N  is the number 

of variables. Besides the global minimum 
*f , one or all global minimizers 

*x such that 

* * *
: ( )x f x f= should be found. No assumptions on unimodality are included into formulation of the 

problem. Global optimization problems are classified difficult in the sense of the algorithmic complexity 

theory. Therefore, global optimization algorithms are computationally intensive, and solution time 

crucially depends on the dimensionality of a problem. 

     A point 
*x  is a local minimum point of the function f if  

  

                                          
*( ) ( )f x f x≤  for ,x N∈   

 

where N is a neighborhood of 
*x . A local minimum point can be found by using local optimization 

methods such as steepest descent method, conjugate gradient method and Newton’s method. Without 

additional information, one cannot say if the local minimum is global. Global optimization methods not 

only try to find a good function value fast, but also try to explore the whole feasible region by evaluating 

function values at sampling points or investigating sub-regions of the feasible region. A major drawback 

of any local optimization algorithm is that, it does not search the whole domain, which is evidently 
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necessary in global optimization. Global optimization methods are important in many applications 

because even better solution can translate into large saving in time, money and resources. Most of real life 

problems are large-scale and nonlinear therefore it is felt necessary to find the global solution for these 

problems. Finding global minimizer of a function is one of the most interesting areas in nonlinear 

problems [1]. The classical global optimization techniques for example, “the hill climbing method”, 

“multiple random start method” and “the function modification method” are applicable only for low 

dimensionality problems [1]. Finding the global minimizer of a function with higher dimensionality is a 

lot more challenging and time consuming. The main drawback of the classical global minimization 

methods is premature convergence because they get stuck in the local minimum. These methods always 

get stuck in the local minimum since their searching efficiency is affected by the initial points and the 

topology of the surface associated with the objective function
 
[2]. 

     In order to improve the efficiency of the classical techniques Levy and Montalvo (1977) presented the 

tunneling algorithm (TA) for unconstrained minimization problems in Dundee conference then the 

unconstrained minimization problem expanded to constrained minimization problems by Levy and 

Gomez (1985) [3]. The name of the algorithm describes its goal to tunnel from one valley of the objective 

function to another to find a sequence of local minima with decreasing values. 

     Tunneling algorithm is composed of a sequence of cycles, where each cycle has two phases: a 

minimization phase and a tunneling phase. In the first phase, we start from a given initial point and use 

any local minimization method to find a local minimizer 
*x of ( )f x . In the second phase, a classical 

tunneling function or exponential tunneling function is used as a transformation function at 
*x and 

minimize the classical or exponential tunneling function in order to identify a point 
0x with

0 *( ) ( )f x f x< . We can then use 
0x as the initial point for the next minimization phase, hence we 

can find a better local minimizer 
**x of ( )f x  with 

** *( ) ( )f x f x<  . This process repeats until the local 

minimization of the classical or exponential tunneling function does not yield a better point. The current 

local minimum will then be taken as a global minimizer of ( )f x . Existing global optimization algorithms 

can be divided into deterministic and stochastic ones. In either case, only approximate solutions are 

obtained. This paper considers the tunneling algorithm as a deterministic method of global optimization. 

In this paper both tunneling functions namely classical tunneling function and exponential tunneling 

function will be employed to compare the performance of them in the tunneling algorithm. 

 

 

2     Fundamental of Tunneling Algorithm  
 

The tunneling algorithm consists of two phases, a minimization phase and a tunneling phase. At the 

minimization phase for a given starting point 
00x  the local minimum 

*x is found by using any 

minimization algorithm with a descent property on ( )f x . The tunneling phase starts from 
*x that was 

obtained in the minimization phase and then proceeds to find a point 
0x ∈Ω  such that 

 

                                            0 * 0 *( ) ( ), , { : }.nf x f x x x x R a x b≤ ≠ Ω = ∈ ≤ ≤   

 

In order to move away from
*x , auxiliary functions ( )T x  (classical tunneling function or exponential 

tunneling function) are defined as follows: 

 

                                       
*

*

* 2

( )
( ) ,

| | | |
c

f x f
T x

x x λ

−
=

−
                                                           (1) 

or 
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*

*

*
( ) ( ( ) ) exp( ).

|| ||
eT x f x f

x x

λ
= −

−
                                                 (2) 

 

The functions cT  and eT  are called the classical tunneling function (CTF) and the exponential tunneling 

function (ETF) respectively. Both of them create a pole placed at 
*x  with pole strength

*λ . This pole is 

needed to move away from the current local minimizer. When the 
0x in the tunneling phase is found such 

that:  

                     

                      0 * 0 *
( ) ( ), ,f x f x x x≤ ≠  

 

then x
0 
will serve as the initial point for the new minimization phase that will locate a new minimizer for 

the next iteration. On the other hand, as we are trying to find a point 
0x in another valley with less or 

equal value than 
*f  we need to solve the following inequality 

 

                              
*

, ( ) ( ) ( ) 0,c eT x f x f x= − ≤                                                     (3) 

 

solving problem (3) consists in finding 
0x such that  

 

                                     
0( ) 0cT x ≤  or  

0( ) 0eT x ≤ .                                                  (4)                                                           

 

The cycle of minimization phase and tunneling phase is repeated until it finds the global minimizer [4].  If 

a large value of 
*λ is taken, both tunneling functions will be smoother and the danger of encountering 

critical points during the research will be reduces therefore the search for the point 
0x  in the inequality (4) 

will be more expensive for large value of 
*λ  . Thus it is better to choose pole strength 

*λ with small 

value [5].   

     Assume that there is a continuous function ( )f x with the ( )x f x− relation plotted in Figure1, the 

tunneling method starts with an initial point x1and uses a local minimization technique such as gradient 

descent or Newton’s method to find the nearest local minimum ‘a’ in the minimization phase.  The 

tunneling phase starts from point ‘a’ and finds the tunneling point x2. The tunneling point x2 is used as the 

starting point for the next minimization phase in the second cycle and in this phase the second lowest 

minimum point ‘c’ will be located.  Here tunneling phase starts from  minimum point ‘c’ which was 

obtained in the previous minimization phase and finds the tunneling point x3. The tunneling point x3 will 

be an initial point for the next minimization phase. The minimization phase starts from x3 and finds the 

global minimum at ‘e’. Generally, the tunneling algorithm will terminate after a specified maximum 

number of iterations. All of the above procedures are shown in Figure 1. 
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Figure 1 Finding the global minimum of the non-linear function by using tunneling algorithm 

 

 

 

3     Problem Formulation 
 

The optimization problem can be stated as ( ) :f x D R→ , where x is a state vector having a finite 

dimension in
nD R⊆ , D is called the domain or the search space, R represents the range and ( )f x  will 

denote the objective function. In this work one of the objectives is to find the global minimizer Gx with its 

minimum value ( )Gf x : 

 

                            min ( ),x B f x∈

2

min max{ | }, : , , ,
n n

B x x x x f R R x R f C= ≤ ≤ → ∈ ∈  

 

n denotes the dimensionality of the problem.  In this work ( )f x  is a twice continuously differentiable 

function on the set B. It could have many local and global minima. The tunneling algorithm can be used 

for unconstrained and constrained problem but this paper confined to the unconstrained problem since it 

is appeared that the local minimum problem for the unconstrained problem is already difficult enough. 

Therefore in this paper tunneling method applies for solving nonlinear unconstrained minimization 

problem on ( )f x with continuous first and second derivatives and x is an n-vector. 

 

 

4     The Global Optimization Method 

The basic idea of tunneling is to tunnel from one valley of the objective function to another to find a 

sequence of local minima with decreasing function values: 

 

                                                       1 2{ ( ) ( ) ... ( )}Gf x f x f x≥ ≥ ≥                                            (5)  

 

where 
Gx is the global minimum of ( )f x . 
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4.1 Minimization Phase 

The problem here is to find a local bounded minimum: 

 

 Find      arg(min ( ))m
x B

x f x
∈

=                                                                                         (6)                                                                                         

 

To perform minimization phase any minimization algorithm with bounds on the variables and descent 

property on ( )f x  can be used. We used Quasi Newton method with BFGS hessian update to find the 

local solution. 

 

 

4.2 Tunneling Phase 

 
Once a local minimum has been found, we want to find a point in another valley therefore we need to 

solve the following inequality problem: 

 

Find   
*

mx B∈  such that 
*( ) ( )m mf x f x≤                                                               (7) 

 

To be able to find a point 
*

mx  in another valley with less or equal value than ( )mf x  we first create 

classical tunneling function ( )cT x  or exponential tunneling function  ( )eT x  such that, if 

( ) ( )mf x f x≤ then ( ) 0cT x ≤ or ( ) 0eT x ≤ . Whenever tunneling phase starts to tunnel from one valley to 

another using gradient-type method, it is necessary to destroy the minimum, placing a pole at the 

minimum point mx  and then to start tunneling from an initial point nears the minimum. In this paper both 

tunneling functions namely classical tunneling function (CTF) and exponential tunneling function (ETF) 

will be employed to compare the performance of them in the tunneling algorithm. We need to take 

descent directions to solve the inequality 
*( ) 0c mT x ≤  or 

*( ) 0e mT x ≤ . Thus we use the same algorithm 

used to solve equation (6). 

 

 

4.3 Stopping Conditions 

 

The algorithm stops when any of the following criteria is satisfied: 

• In the tunneling phase when , ( ) 0c eT x ≤  or a maximum number of iterations is reached and 

the last minimum found is the putative global minimum.  

• The stopping criterion is considered as || ( ) ||mg x ε≤ for local minimization techniques in the 

minimization phase. Here g is the gradient of the objective function. The value 
410ε −=  was 

chosen in the minimization phase. 

 

 

5     Numerical Experiment 
 

The main objective of this work is to compare the performance of the exponential tunneling function with 

the classical tunneling function in the tunneling algorithm when tunneling algorithm locates the global 
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minimizer Gx . Making the sequence of decreasing function values is another objective of using tunneling 

algorithm in this paper. In order to facilitate a comparison of the performance of the tunneling algorithm 

when using both tunneling functions (classical and exponential tunneling functions) in the tunneling 

phase, three test functions are taken as objective functions. These are then compared with the results 

available in literatures [6,7] in terms of the obtained global minimizer and the computed value of the 

objective function at that point. The results are presented below in Table 1. Whenever the minimum point 

in the minimization phase is found then tunneling phase starts from an initial point near the minimum 

point to tunnel from one valley to another. That is why we need a small perturbation ∈ such that 
0

m mx x= +∈, where mx  is founded at the minimization phase. Therefore tunneling phase starts from
0

mx . 

Small perturbations  0.01∈=  and 0.1δ = are selected for classical and exponential tunneling function 

respectively for all test functions. Also, the pole strength 
*λ  is selected to be 1. Table 1 gives the local 

solutions obtained in the minimization phase in every cycle, the new initial points obtained in the 

tunneling phase, function values for every local solution and the number of iterations for each phase in 

every cycle. 

 

 

5.1 Test Function 1 

 

It is an n-dimensional function. In this test function 2n =  and initial solution 
0 [4.0,6.4]x =   were 

selected. 

                                                   
4 2

1

( ) 1/ 2 ( 16 5 )
n

i i i

i

f x x x x
=

= − +∑                                            (8)   

 

The tunneling algorithm started from initial solution 
0 [4.0,6.4]x =   with the function value f=537.181 

when we used CTF in the tunneling phase. It is clear from Table 1 that in the minimization phase the local 

solution *1 [2.747, 2.904]x = −  was found after seven iterations in the first cycle which is an initial point for 

the tunneling phase to tunnel from x
*1
 to another valley by using CTF. After eight iterations the tunneling 

phase offered the new tunneling point 01 [ 2.747, 2.904]x = − − . In the second cycle the algorithm started from the 

new initial point 01
[ 2.747, 2.904]x = − −  and the local solution *2

[ 2.904, 2.904]x = − −  was found by the 

minimization phase after two iterations. After that the tunneling phase did not find any new starting point, 

hence the last local solution was accepted as the global optimum and the algorithm terminated. The 

sequence of decreasing function values for this test function when we use CTF in the tunneling phase is   

as follow: 

 

{537.181, 64.1956, 77.9306, 78.3323}− − − . 

 

     The last value in this sequence considers as the value of objective function for the global minimizer. 

Therefore the point *2 [ 2.904, 2.904]x = − −  is a global minimizer with the corresponding minimum value 

78.3323f = −  which is found after two cycles.  

     When we use ETF in the tunneling phase, the algorithm started from the initial point 
0 [4.0,6.4]x = with the function value 537.181.f = The local solution 

*1 [2.747, 2.904]x = −  was found 

by the minimization phase in the cycle 1 after seven iterations, after which the tunneling phase offered the 

new initial point 
01 [ 2.891, 2.904]x = − −  after five iterations. 
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     In the second cycle the algorithm started from the new initial point 
01 [ 2.891, 2.904]x = − −  and the 

local solution *2 [ 2.904, 2.904]x = − −  was found by the minimization phase after two iterations. After that 

the tunneling phase did not find any new initial point, and then the last local solution was considered as 

the global minimizer. The sequence of decreasing function values for this test function when we use ETF 

in the tunneling phase is as follow:  

 

{537.181, 64.1956, 78.3296, 78.3323}− − −  

 

     It can be seen from Table 1 that when the ETF was used in the tunneling phase, the tunneling 

algorithm can find the global minimizer *2 [ 2.904, 2.904]x = − −  which is the same as the global 

minimizer that was found by using CTF in the tunneling phase. When the ETF is used in the tunneling 

phase, the function value  
01( ) 78.3296f x = − is obtained after five iterations. This function value is less 

than the function value 
01( ) 77.9306f x = −  which was found after eight iterations in the tunneling phase 

when the CTF was used, that is why the ETF is more efficient than CTF. It is obvious that, for finding the 

tunneling point 
01x , the ETF needs less iterations than CTF.  

 

 

5.2     Test Function 2: Rosenbrock Function 

 

     The Rosenbrock function is selected for the second test function.  This function also known as Banana 

function.  

  

                            
1

2 2 2

1

1

( ) [100( ) ( 1) ]
n

i i i

i

f x x x x
−

+

=

= − + −∑                          (9) 

 

Search domain for this test problem is usually 5 10, 1,2,...,ix i n− ≤ ≤ =  and n denotes the dimensionality of 

the problem. For this problem n=4 and the initial point 
0 [ 4, 4,0, 2]x = − −  were selected.  

     The tunneling algorithm started from 
0 [ 4, 4,0, 2]x = − −  with the function value 66051f = when we 

used CTF in the tunneling phase. It is clear from Table 1 that after fifty-three iterations, 

minimization phase can find the minimum point  
*1 [0.999,0.999,0.997,0.994]x =  with the 

function value 2.1101 4f e= − . This point is an initial point for the tunneling phase.  After that the 

tunneling phase, started from local solution 
*1 [0.999,0.999,0.997,0.994]x =  and found the tunneling 

point 
01 [0.999,0.999,0.997,0.994]x =  after thirty-six iterations in the first cycle. It is obvious that the 

tunneling phase did not change the minimum point
*1x . In the second cycle, the algorithm started from the 

new initial point (tunneling point)
01 [0.999,0.999,0.997,0.994]x = , and the local solution 

*2 [1,1,1,1]x =  was found by the minimization phase after nineteen iterations. The tunneling phase could 

not offer any tunneling point as new initial point for the next phase then the last local solution 
*2 [1,1,1,1]x =  was accepted as the a global minimizer and the algorithm terminated. 

     When we used ETF in the tunneling phase, the tunneling algorithm started from initial solution  
0 [ 4, 4,0, 2]x = − −  with the function value 66051f = , and the local solution 

*1 [0.999,0.999,0.997,0.994]x =  was found after fifty-three iterations by the minimization phase in the 

first cycle, after that the tunneling phase found the new initial point
01 [1,1,1,1]x =  after eighteen iterations. 
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     In the second cycle, the algorithm started from the new initial point
01 [1,1,1,1]x = , and then the local 

solution 
*2 [1,1,1,1]x =  was found by the minimization phase after one iteration. After that the tunneling 

phase did not offer new initial point and the point 
*2x  is the same as the reported global minimizer with 

the function value f=0, thus the algorithm terminated. 

    The tunneling point 
01 [1,1,1,1]x =  was found after eighteen iterations when the ETF was used in the 

tunneling phase. This point is the same as the reported global minimizer. But the tunneling point 
01 [0.999,0.999,0.997,0.994]x =  was found after thirty-three iterations when the CTF was used in the 

tunneling phase. This point is so close to the reported global minimizer. Therefore the ETF is more 

efficient than CTF in the tunneling phase. It can be seen that for finding the tunneling point
01x , the ETF 

needs less iterations than CTF to locate the tunneling point
01x . The tunneling algorithm can locate the 

global minimizer 
*2 [1,1,1,1]x =  with the function value 0f =  after two cycles for both tunneling 

functions CTF and ETF.  It is obvious that the exponential tunneling function can create a pole at a local 

minimizer independent of the precision of the local minimum found. 

     The sequences of decreasing function values for this test function when we use CTF and ETF are 

{66051,2.1101 4,2.1101 4,0}e e− −  and {66051,2.1101 4,0,0}e−  respectively. The last values of both 

sequences are considered as the function value for the global minimizer 
*2 [1,1,1,1]x = . 

 

 

5.3 Test Function 3 

 

The third test function is stated as below: 

                                        

1
2 2

1

1

2 2

1

( ) { sin ( ) [( )

(1 sin ( ))] ( ) },

10 10, 1, 2,..., ,

n

i

i

i n

i

f x k x x A
n

k x x A

x i n

π
π

π

−

=

+

= + −

+ + −

− ≤ ≤ =

∑

                                          (10) 

 

where the constants k and A were fixed at 10 and 1 respectively and n denotes the dimensionality of the 

problem. For this test problem n=8 and the initial solution  [ ]0 8,  8,  8,  8,  8,  8,  8,  8x =  were selected. 

     When we used CTF in the tunneling phase the algorithm started from the initial point 

[ ]0 8,  8,  8,  8,  8,  8,  8,  8x =  with the function value 153.9380f =  and the local solution 

*1 [0.972,1,1,1,1,1,1,1]x =  was found by the minimization phase in the initial cycle after two iterations, 

after which the tunneling phase offered the initial point 
01 [0.972,1,1,1,1,1,1,1]x =   after twelve iterations 

which is the same as 
*1x .  

     In the second cycle the algorithm started from the new initial point 
01 [0.972,1,1,1,1,1,1,1]x = , and the 

local solution 
*2 [1,1,...,1]x =  was found by the minimization phase after three iterations. After that, the 

tunneling phase did not find any new starting point, hence the last local solution was accepted as the 

global optimal solution and the algorithm terminated. When we use ETF in the tunneling phase, the 

algorithm started from the initial point  [ ]0 8,  8,  8,  8,  8,  8,  8,  8x = with the function value 

153.9380f =  and the local solution 
*1 [0.972,1,1,1,1,1,1,1]x =  was found by the minimization phase in 

the first cycle after two iterations.  Then the tunneling phase found the new initial point 
01x  after twenty–
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two iterations in the first cycle with the function value 0.0210f =  such that: 

 
01 [0.978,1.016,0.994,1.006,0.934,1.017,1.01,0.997].x =

 
 

     Although tunneling phase by using ETF found the point
01x   after twenty-two iterations which is more 

than the number of iterations for finding 
01x  by using CTF but it found the new initial point that is 

different from local solution 
*1x . It can be seen that when CTF used in the tunneling phase, the tunneling 

phase did not offer the new initial point for the next minimization phase.  It found 
01 [0.972,1,1,1,1,1,1,1]x =  that is the same as the local solution 

*1x . Therefore ETF is more efficient than 

CTF because it created a point that is different from local solution 
*1x . The sequences of decreasing 

function values for this test function when we use CTF and ETF are as follows: 

 

{153.9380,0.0306,0.0306,5.8895 32}e − for CTF 

and  

 

{153.9380,0.0306,0.0210,5.8895 32}e − for ETF. 

 

     The last values for both sequences are considered as the global minimum. At the end the tunneling 

algorithm can locate the global minimizer  
*2 [1,1,...,1]x =  with the corresponding minimum value  

*2( ) 5.8895 32f x e= − when both CTF and ETF were used in the tunneling phase. 
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Table 1  Simulation Results for three Test Functions when both tunneling functions namely Classical Tunneling 

function (CTF) and Exponential Tunneling Function (ETF) are employed in the Tunneling Phase 

 

 

 

6     Conclusion 
 

This paper considered the tunneling algorithm for finding the global minimizer of the nonlinear 

unconstrained minimization problem on f (x) with continuous first and second derivatives.  In this paper 

the performance of the CTF in comparison with the ETF in the tunneling phase of the tunneling algorithm 
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was considered. In order to facilitate a comparison of the performance of the tunneling algorithm when 

using both CTF and ETF in the tunneling phase, three test functions were taken as objective functions. In 

conclusion the tunneling algorithm can locate the global minimizer of three test functions. The tunneling 

algorithm was verified by numerical experiments with typical 2-dimensional, 4-dimensional and 8-dimensional 

non-constrained global optimization problems.  The results of this work support the idea that, the ETF is 

more efficient than the CTF because it can create a pole at a local minimizer independent of the accuracy 

of the local minimum found. The ETF found the tunneling point 
01x  in less iterations than CTF for test 

functions one and two.  For all test functions ETF found the new tunneling point 
01x which is different 

from previous local minimum 
*1x . 
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