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Abstract K-means clustering is being widely studied problem in a variety of application 

domains. The computational complexity of the basic k-means is very high, the number of 

distance calculations also increases with the increase of the dimensionality of the data. 

Several algorithms have been proposed to improve the performance of the basic k-means. 

Here we investigate the behavior of the basic k-means clustering algorithm and two 

alternatives to it, we have analyzed the performances of three different standardization 

methods. Equivalently, we prove that z-score and principal components are the best pre-

processing methods that will simplify the analysis and visualize the multidimensional 

dataset. The analyzed result revealed that the z-score outperform min-max and decimal 

scaling also principal component analysis picks up the dimensions with the largest 

variances. Our results also provide effective ways to solve the k-means clustering 

problems. 
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1     Introduction 

The purpose of clustering is to reveal the natural structure inherent by datasets and extracting useful 

information from noisy data. The main objective in cluster analysis is to group objects that are similar in 

one cluster and separate objects that are dissimilar by assigning them to different clusters. One of the most 

popular clustering methods is k-means clustering algorithm [1, 2]. It classifies objects to a pre-defined 

number of clusters, which is given by the user (assume k clusters). The idea is to choose random cluster 

center points, one for each cluster. These center points are preferred to be as far as possible from each 

other. In this algorithm mostly Euclidean distance is used to find the distance between data points and 

centroids [3]. 

     The computational complexity of the basic k-means clustering algorithm is very high. In addition the 

number of distance calculations increases tremendously with the increase of the dimensionality of the 

data. When the dimensionality increases normally, just a small number of dimensions are relevant to 

certain clusters, but data in the insignificant dimensions may possibly produce very much noise and 

conceal the real clusters to be discovered. Moreover when dimensionality increases, data normally turn 

out to be increasingly sparse, due to which data points positioned at various dimensions can be viewed as 

all equally distanced and also the distance measure, which, basically for cluster analysis, turns into 

meaningless. However, if there are some features, with a large size or great variability, these kinds of 

features will strongly affect the clustering result. In this case, dimensionality reduction and data 

standardization are important preprocessing task to scale or control the variability of the datasets. 

     Preprocessing [3] is actually essential before using any data exploration algorithms to enhance the 

results’ performance. Standardization of the dataset is among the preprocessing processes in data 
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exploration, in which the attribute data are scaled to fall in a small specified range. Standardization before 

clustering is specifically needed for distance metric, like the Euclidian distance that are sensitive to 

variations within the magnitude or scales from the attributes. In actual applications, due to the variations 

in selection of the attribute's value, one attribute might overpower another one. Standardization prevents 

outweighing features having a large number over features with smaller numbers. The aim would be to 

equalize the dimensions or magnitude and also the variability of those features. But what kind of 

standardization is suitable for k-means clustering algorithm. In this article, we take the advantage to 

compare the three different standardization methods on a basic k-means clustering algorithm. 

     However, dimensional datasets are sometimes transformed into lower dimension by applying principal 

component analysis [4] (or singular value decomposition) whereby coherent patterns could be detected 

more easily. This type of unsupervised dimension reduction is commonly employed in tremendously 

broad areas which includes meteorology, image processing, genomic analysis, and information retrieval. 

It is also well-known that principal component analysis can be used to project dimensional data into a 

reduced dimensional subspace and then k-means will then be applied to the subspace [5]. In other 

instances, data are embedded in a low dimensional space just like the eigenspace from the graph 

Laplacian, and k-means will then be employed [6]. 

     A very important reason for principal component analysis based dimension reduction is that, it picks 

up the dimensions with the largest variances. Mathematically, this is equivalent to finding the best low 

rank approximation (in L2 norm) of the data applying singular value decomposition [7].  

     The result also provides best ways to address the basic k-means clustering problem. K-means 

technique employs k prototypes, the centroids of clusters to characterize the data. These are determined 

by minimizing error sum of squares. 

 

 

1.1   K-means Clustering Algorithm 

A conventional procedure for k-means clustering is straightforward. Getting started we can decide the 

amount of groups k and that we presume a centroid or center of those groups. Immediately consider any 

kind of random items as initial centroids or a first k items within the series which can also function as an 

initial centroids.   

     After that the k-means technique will perform the 3 stages listed here before convergence.  Iterate until 

constant (= zero item move group):  

1. Decide the centroid coordinate. 

2. Decide the length of every item to the centroids.  

3. Cluster the item according to minimal length. 

 

1.2   Principal Component Analysis 

The principal component analysis can be looked at mathematically as the transformation of the linear 

orthogonal of the data to a different coordinate so that the largest variance of any of the data projections 

lies on the first coordinate (known as the first principal coordinate), the next largest on the second 

coordinate, and so on. It transforms a numerous possibly correlated variables into a compact quantity of 

uncorrelated variables called principal components. principal component analysis is a statistical technique 

for determining key variables in a high dimensional dataset which accounts for differences in the 

observations and is very important for analysis and visualization where information is very little lacking. 
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1.3   Principal Component 

Principal components can be determined by the Eigen value decomposition of a data sets correlation 

matrix/ covariance matrix or singular value decomposition of the data matrix, normally after mean 

centering the data for every feature. Covariance matrix is preferred when the variances of features are 

extremely large on comparison to correlation. It will be best to choose the type of correlation once the 

features are of various types. Likewise singular value decomposition method is employed for statistical 

precisions. 

 

 

2     Some Related Works 

Several efforts have been made by different researchers to enhance the performance as well as the 

efficiency of the basic k-means algorithm. Principal component analysis by [8] and [9] is known as an 

unsupervised Feature Reduction technique meant for projecting huge dimensional data into a new reduced 

dimensional representation of the data that explains as much of the variance within the data as possible 

with minimum error reconstruction. 

     Chris and Xiaofeng [10] Proved that principal components remain the continuous approaches to the 

discrete cluster membership indicators for k-means clustering and also, proved that the subspace spanned 

through the cluster centroids are given by the spectral expansion of the data covariance matrix truncated 

at k-1 terms. The effect signifies that unsupervised dimension reduction is directly related to unsupervised 

learning. In dimension reduction, the effect gives new insights to the observed usefulness of principal 

component analysis based data reductions, beyond the traditional noise-reduction justification. Mapping 

data points into a higher dimensional space by means of kernels indicates that the solution for kernel k-

means provided by kernel principal component analysis. On learning, the results suggest effective 

techniques for k-means clustering. In [11], principal component analysis is used to reduce the 

dimensionality of the data set and then the k-means algorithm is used in the principal component analysis 

subspaces. Executing principal component analysis is the same as carrying out singular value 

decomposition (singular value decomposition) on the covariance matrix of the data. Karthikeyani and 

Thangavel [12] employed the singular value decomposition technique to determine arbitrarily oriented 

subspaces with very good clustering. 

     Karthikeyani and Thangavel [12] extended k-means clustering algorithm by applying global 

normalization before performing the clustering on distributed datasets, without necessarily downloading 

all the data into a single site. The performance of proposed normalization based distributed k-means 

clustering algorithm was compared against distributed k-means clustering algorithm and normalization 

based centralized k-means clustering algorithm. The quality of clustering was also compared by three 

normalization procedures, the min-max, z-score and decimal scaling for the proposed distributed 

clustering algorithm. The comparative analysis shows that the distributed clustering results depend on the 

type of normalization procedure. Alshalabi et al., [13] designed an experiment to test the effectiveness of 

different normalization methods for accuracy and simplicity. The experiment results suggested choosing 

the z-score normalization as the method that will give much better accuracy. 

 

 

3     Materials and Methods 

Let 
1 2{ , ,..., }nY X X X=  imply the d-dimensional raw data set. 

Then the data matrix is an n × d matrix given by: 
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3.1   Z-score 

The z-score is a form of standardization used for transforming normal variants to standard score form. 

Given a set of raw data Y, the z-score standardization formula is defined as 

( ) ij j

ij ij

j

x x
x Z x

σ

−
= =       (2) 

where x
j
 and 

j
σ  are the sample mean and standard deviation of the jth attribute, respectively. The 

transformed variable will have a mean of 0 and a variance of 1. The location and scale information of the 

original variable has been lost [14]. One important restriction of the z-score standardization Z  is that it 

must be applied in global standardization and not in within-cluster standardization [15]. 

 

3.2   Min-Max 

Min-Max standardization is the process of taking data measured in its engineering units and transforming 

it to a value between 0.0 and 1.0. Whereby the lowest (min) value is set to 0.0 and the highest (max) value 

is set to 1.0. This provides an easy way to compare values that are measured using different scales or 

different units of measure. The standardized value is defined as: 

min
( )

max min

X X
ij

MM X
ij X X

−
=

−
     (3) 

 

3.3   Decimal Scaling 

Standardization by decimal scaling: standardizes by moving the decimal point of values of feature X. The 

number of decimal points moved depends on the maximum absolute value of X. A modified value DS(X) 

corresponding to X is obtained using: 

( )
10

X
ij

DS X
ij c

=
     (4) 

where c is the smallest integer such that max [|DS(Xij)|] < 1 
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3.4   Principal Component Analysis 
 

Let v = ( )
'

, , ...,
1 2

v v v
d

 be a vector of d random variables, where 
'
 is the transpose operation. The first 

step is to find a linear function 1
'a v  of the elements of v that maximizes the variance, where 1a  is a d-

dimensional vector ( )'

11 12 1, ,..., da a a  so 

 

1 1
1

' .
n

ii
i

a v a v
=

= ∑       (5) 

 

after finding 
' ' '

1 2, ,..., j ia v a v a v− , we look for a linear function 
'

ja v  that is uncorrelated with 

' ' '

1 2, ,..., j ia v a v a v−  and has maximum variance. Then we will find such linear functions after d steps. The 

jth derived variable 
'

ja v  is the jth PC. In general, most of the variation in v will be accounted for by the 

first few PCs.  

     To find the form of the PCs, we need to know the covariance matrix ∑  of v. In most realistic cases, 

the covariance matrix ∑  is unknown, and it will be replaced by a sample covariance matrix. That is for 

j = 1, 2, . . . , d, it can be shown that the jth PC is: 
'

j jz a v= , where 
ja  is an eigenvector of ∑  

correspond with the jth main eigenvalue 
jλ . 

     In fact, in the first step, 
'

1z a v=  can be found by solving the following optimization problem: 

Maximize var ( )'

1a v  subject to 
'

1a a  = 1,  

Where var ( )'

1a v   is computed as 

var ( )' '

1 1 1a v a a= Σ . 

To solve the above optimization problem, the technique of Lagrange multipliers can be used. Let λ be a 

Lagrange multiplier. We want to maximize 

( )' '

1 1 1 1a a a aλΣ − − .     (6) 

Differentiating Equation (6) with respect to 1a , we have 

     1 1 0a aλΣ − = , 

or 

        
( ) 1 0dI aλΣ − = , 

where dI  is the d × d identity matrix. 

Thus λ is an eigenvalue of Σ  and 1a  is the corresponding eigenvector. Since 
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1 1 1 1
' 'a a a aλ λΣ = = , 

1a  is the eigenvector corresponding with the main eigenvalue of Σ . In fact, it can be shown that the jth 

PC is 
'
ja v , where ja   is an eigenvector of Σ  corresponding to its jth largest eigenvalue jλ  

[4]. 

 

 

3.5   Singular Value Decomposition  
 

Let D = { 1 2, ,..., nx x x } be a numerical data set in a d-dimensional space. Then D can be represented by 

an n × d matrix X as 

 

( )ij n d
xX

×
=  , 

where ijx  is the j-component value of ix  . 

Let ( )1 2, ,..., dµ µ µ µ=  be the column mean of X, 

1

, 1, 2,...,
1 n

j ij
i

j dx
n

µ
=

== ∑  

and let ne  be a column vector of length n with all elements equal to one. Then SVD expresses nX e µ−  

as  

T
nX e USVµ− =       (7) 

where U is an n×n column orthonormal matrix, i.e., 
TU U  = I is an identity matrix, S is an n×d diagonal 

matrix containing the singular values, and V is a d×d unitary matrix, i.e.,  

HV V  = I , where 
HV  is the conjugate transpose of V . The columns of the matrix V are the eigenvectors 

of the covariance matrix C of X; precisely, 

1 T T TC X X V V
n

µ µ= − = Λ      (8) 

Since C is a d×d positive semi definite matrix, it has d nonnegative eigenvalues and d orthonormal 

eigenvectors. Without loss of generality, let the eigenvalues of C be ordered in decreasing order: 

1 2 ... dλ λ λ≥ ≥ ≥ . Let jσ  (j = 1, 2, . . . , d) be the standard deviation of the jth column of X, i.e., 

1

2
2

1

1
( )

n

j ij j
i

x
n

σ µ
=

 
 
 

= −∑ . 

The trace Σ  of C is invariant under rotation, i.e., 
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2

1 1

d d

j j
j j

σ λ
= =

Σ = =∑ ∑ . 

Noting that  
T
ne X nµ=  and 

T
n ne e n=   from Equations (7) and (8), we have 

T T T T TVS SV VS U USV=  

 
( ) ( )T

n nX e X eµ µ= − −   

 
T T T T T T

n n n nX X e X X e e eµ µ µ µ= − − +  

 
T TX X nµ µ= −  

   
TnV V= Λ                (9) 

Since V is an orthonormal matrix, from Equation (9), the singular values are related to the eigenvalues by: 

 
2 , 1, 2,...,j j j dS nλ == . 

The eigenvectors constitute the PCs of X, and uncorrelated features will be obtained by the transformation 

( )nY X e Vµ= −  . PCA selects the features with the highest eigenvalues. 

 

3.6     K-means Clustering 

Provided some series involving observations (x1, x2, …, xn), in which each observation is known as a d-

dimensional real vector, k-means clustering is designed to partition an n observations to k units (k = n) S 

= S1, S2, …, Sk as a way to reduce the within-cluster sum of squares (WCSS): 

 

2
arg min / / / /

1

k
x j iS i x Sj i

µ−∑ ∑
= ∈       (10) 

at which µi stands out as the mean for items within Si. 

 

4     Results and Discussions 

The presence of noise in a dataset can easily be filtered out by applying data standardization and principal 

component analysis, since such a treatment was specifically designed to denoise both smaller and larger 

numerical sets of data. 

     In this section, we evaluate and examine the performances of three different standardization methods 

and principal component analysis approaches on a basic k-means clustering algorithm with infectious 

diseases dataset having 14 data objects and 8 attributes as shown in Table 1. The accuracy of the 

clustering are also evaluated, whereby accuracy is measured by the intra-cluster distance, that is a 
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distance between the data vectors in a cluster and the centroid of the cluster, the smaller the sum of the 

distances is, the better the accuracy of clustering and the error sum of squares. 

 

Table 1  The original datasets with 14 data objects and 8 attributes 

 X1 X2 X3 X4 X5 X6 X7 X8 

Day 1 9 6 7 5 3 6 2 3 

Day 2 16 5 5 11 4 5 1 1 

Day 3 6 7 6 2 8 7 2 2 

Day 4 7 3 2 2 6 3 2 2 

Day 5 10 12 3 5 6 12 5 5 

Day 6 13 5 13 8 10 5 4 4 

Day 7 2 3 2 3 8 3 1 3 

Day 8 3 2 3 3 9 2 3 3 

Day 9 17 3 19 3 4 3 3 3 

Day 10 8 7 1 1 5 2 1 1 

Day 11 7 3 7 1 8 3 1 1 

Day 12 15 9 5 5 13 9 5 5 

Day 13 13 2 3 2 5 3 2 1 

Day 14 6 1 7 5 4 2 1 2 

 

 

Figure 1  Basic k-means algorithm 

Figure 1 presents the result of the basic k-means algorithm using the original dataset having 14 data 

objects and 8 attributes as shown in Table 1, with error sum of squares equal 206.00 
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Table 2  The variances cumulative percentages 

 Variances Percentage of 

Variances 

Cumulative 

Percentage of 

Variances 

PC1 37.9134 45.0055 45.0055 

PC2 22.7305 26.9825 71.9880 

PC3 10.4788 12.4390 84.4270 

PC4 5.9049 7.0095 91.4365 

PC5 5.2974 6.2884 97.7249 

PC6 1.1322 1.3439 99.0688 

PC7 0.6689 0.7940 99.8628 

PC8 0.1156 0.1372 100.0000 

 

Table 2 presents the variances, the percentage of the variances and cumulative percentage which 

corresponds to the principal components. 

 

Table 3  Reduced principal components 

PC1 PC2 PC3 PC4 

0.6953 0.1289 0.4595 0.2590 

0.1081 0.5791 -0.0802 -0.3898 

0.6367 -0.4670 -0.5110 -0.2626 

0.2402 0.1402 0.2707 0.3439 

-0.0204 0.2346 -0.5728 0.7141 

0.1554 0.5445 -0.1467 -0.2851 

0.1093 0.1810 -0.1979 0.0498 

0.0730 0.1614 -0.2435 0.0016 

 

Table 3 presents the reduced principal components that have variances greater than mean variance. But 

the number of principal components found is the same with the number of the original data set, here we 

present only the eighty percent to be considered for further analysis. 

 

Table 4  The reduced data set with 14 data objects and 4 attributes. 

 X1 X2 X3 X4 

Day 1 1.0256 0.1354 1.2886 -3.4995 

Day 2 5.5207 1.4200 7.4900 2.2379 

Day 3 -2.3292 1.9301 -3.2384 -2.1515 

Day 4 -5.1939 -1.0366 1.3179 0.4293 

Day 5 1.1679 10.4433 -0.3684 -3.9448 

Day 6 8.2323 -0.6884 -3.5493 2.7680 

Day 7 -8.5072 -1.0916 -1.9002 0.8582 

Day 8 -7.2406 -1.9567 -2.6934 2.3434 

Day 9 13.0461 -7.6722 -1.7983 -2.4772 

Day 10 -5.2604 0.6139 2.8580 -1.4327 
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Day 11 -2.4738 -3.3848 -2.2117 0.1494 

Day 12 4.9839 8.4253 -2.4217 3.8489 

Day 13 -0.5462 -1.7050 4.4606 1.3948 

Day 14 -2.4252 -5.4327 0.7662 -0.5242 

 

Table 4 presents the transformed data set having 14 data objects and 4 attributes which are generated 

using the reduced principal component analysis and the original data set shown in Table 3 and 1 

respectively. 

 

Figure 2  K-means applying principal component analysis 

 

Figure 2 presents the result of the k-means algorithm applying a principal component analysis to the 

original dataset. The reduced datasets containing 14 data objects and 4 attributes as shown in Table 4, 

with error sum of squares equal 147.68 
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Figure 3  K-means with z-score standardized dataset 

Figure 3 presents the result of the k-means algorithm using the standardized dataset with z-score method, 

having 14 data objects and 8 attributes with error sum of squares equal 65.17 

 

Figure 4  K-means with min-max standardized dataset 

Figure 4 presents the result of the k-means algorithm using the rescale dataset with min-max data 

standardization method, having 14 data objects and 8 attributes with error sum of squares equal 10.94 
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Figure 5  K-means with decimal scaling standardized dataset 

Figure 5 presents the result of the k-means algorithm using the rescale dataset with decimal scaling data 

standardization method, having 14 data objects and 8 attributes with error sum of squares equal 0.197, 

converted to 197.00 

 

Table 5  The variances cumulative percentages 

  

Variances 

Percentage of 

Variances 

Cumulative 

Percentage of 

Variances 

PC1 3.6476 45.5953 45.5953 

PC2 1.7497 21.8707 67.4660 

PC3 1.0900 13.6248 81.0908 

PC4 0.6704 8.3800 89.4708 

PC5 0.4658 5.8228 95.2936 

PC6 0.2425 3.0317 98.3253 

PC7 0.0861 1.0766 99.4019 

PC8 0.0478 0.5981 100.0000 

 

Table 5 presents the variances, the percentage of the variances and cumulative percentage which 

corresponds to the principal components. 
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Table 6  Reduced PCs with variances greater than mean variance. 

PC1 PC2 PC3 PC4 

0.2398 0.5687 -0.0831 0.1394 

0.4136 -0.1814 -0.4261 0.2683 

0.0983 0.5683 0.4766 0.2956 

0.2164 0.4178 -0.2873 -0.7842 

0.2525 -0.3467 0.5175 -0.4163 

0.4630 -0.1105 -0.3298 0.1333 

0.4796 -0.0392 0.2431 0.1177 

0.4548 -0.1103 0.2571 -0.0369 

 

Table 6 presents the reduced principal components that have variances greater than mean variance. But 

the number of principal components found is the same with the number of the original dataset, here we 

present only the eighty percent to be considered for further analysis. 

 

Table 7  The reduced dataset with 14 data objects and 4 attributes. 

 X1 X2 X3 X4 

Day 1 0.1360 0.5295 -0.9484 0.4306 

Day 2 -0.2681 2.1891 -1.9860 -1.4727 

Day 3 0.1445 -1.0275 -0.2006 0.5407 

Day 4 -1.2233 -0.7455 0.0178 0.0953 

Day 5 3.7568 -1.0019 -1.4293 0.7553 

Day 6 2.0177 1.2608 1.3165 -0.9561 

Day 7 -1.2263 -1.4947 0.3862 -0.7351 

Day 8 -0.6925 -1.3390 1.2353 -0.7616 

Day 9 0.1819 2.7332 1.3918 1.4944 

Day 10 -1.6357 -0.8606 -0.9725 0.7398 

Day 11 -1.6768 -0.4499 0.6264 0.3290 

Day 12 3.8091 -0.7409 0.7115 -0.4053 

Day 13 -1.4481 0.3528 -0.2187 0.4200 

Day 14 -1.8753 0.5946 0.0699 -0.4744 

 

Table 7 presents the transformed data set having 14 data objects and 4 attributes which are generated 

using the reduced principal component analysis and z-score standardized dataset. 
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Figure 6  K-means applying standardization and principal component analysis 

Figure 6 presents the result of the k-means algorithm applying z-score standardization method and 

principal component analysis to the original dataset. The reduced datasets containing 14 data objects and 

4 attributes shown in Table 7 with error sum of squares equal 46.39. 

Table 8  Summary of the results for cluster formations 

 Cluster 1 

points out 

Cluster 2 

points out 

ESSs 

Basic K-means 1 1 206.00 

K-means with PCA 0 0 147.68 

K-means with Z-score 0 0 65.18 

K-means with Min-Max 2 1 10.94 

K-means with Decimal Scaling 3 1 197.00 

K-means with z-score and PCA 0 0 46.39 

 

Table 8 shows the number of points that are out of cluster formations for both cluster 1 and cluster 2. The 

total error sum of squares for all the methods employed, indicating the accuracy of the z-score 

standardization method and principal component analysis. 

 

5     Conclusion 

In this work, two pre-processing methods and unsupervised clustering are studied for low dimensional 

datasets to avoid clustering with redundant data so as to improve the quality of clustering techniques. The 

methods were tested with infectious diseases datasets and analysis the performance of cluster values using 

the within cluster scatter for cluster i, which has to be as low as possible and also the separation between 

the i
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 and the j
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 cluster, which ideally has to be as large as possible shown in Figure 4 with the error sum 
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of squares equal 46.39 which is the minimum among all the cluster formations. This also shows the 

efficiency and effectiveness of the techniques. 
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