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Abstract The extremal index characterizes the degree of local dependence in the

extremes of a stationary time series. In this paper, we discuss an alternative interpre-

tation of extremal index as a ratio of the limiting expected value of two random variable

defined by extreme levels and a partition of the stationary sequence into blocks. We

use the run and the block definition for the cluster to analyse the clustering to find ex-

tremal index. These experiments highlight the importance of block size selection. The

practical implications are examined through the E-coli data from rivers in Selangor.

Keywords Block and Run Estimators; Dependency; E-coli; Extremal Index

2010 Mathematics Subject Classification 60G70, 62G32, 58E15.

1 Introduction

The extremal index, θ, is an important parameter for extending extreme value theory re-
sults from independent and identically distributed sequences to stationary sequences. For
discrete-time continuous-valued stationary time series sequence, we consider the impact of
dependence on the extreme values. With practical applications, it is usual to assume a
condition that limits the extent of long range dependence at extreme levels, so that the
events Xi > u and Xj > u are approximately independent, provided u is high enough
and time points i and j have a large separation. Only processes with any form of short
range dependence for which at long lags the extreme are independent are consider. In other
words, extreme events are close to independent at times that are far enough apart. Many
stationary series satisfy this property.

In this paper, we are going to implement the extreme index to check the dependency of
E-coli bacteria in Selangor rivers. We found that within our knowledge that no researcher
has been carried out the relationship of existence of E-coli in Malaysia rivers. We are aim
to look at the influence of the group of E-coli by the existing of other group of E-coli by
estimating the extremal indexes using two methods i.e. block selection and run methods.

A condition that makes precise the notion of extreme events being near-independent
if they sufficiently distant in time. Let X1, . . . , Xn be a stationary sequence of random
variables satisfying the long-range asymptotic independence condition D(un) of Leadbetter
[1] then

Pr{max(X1, . . . , Xn) ≤ un} → {G(x)}θ, asn → ∞ (1)

where un is a threshold and un = anx + bn with an > 0 and bn selected to ensure that the
limit distribution is non-degenerate, and G(x) is the limit distribution of

Pr{max(X∗
1 , . . . , X∗

n) ≤ un}, (2)
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where the sequence of random variables X∗
1 , . . . , X∗

n are independent but with the same
univariate marginal distribution as X1 , . . . , Xn [2].

The extremal index gives a measure of the short range dependence exhibited by the
extremes of a process. In particular case, the tendency of the extremes to occur in cluster
can be indicated. A particularly important special case is when θ = 1 which, as well
as occurring for independent sequences, arises for a broad range of dependent sequences
for which the limiting clusters occur as single values. For example, all weakly mixing
Gaussian processes have θ = 1, see [1] and [3]. When D(un) condition is satisfied then
G(x) condition also being satisfied leading to value of θ = 1. This result shows that θ

is the parameter measure of short range dependence in extreme values as the asymptotic
behavior of max(X1, . . . , Xn) and max(X∗

1 , . . . , X∗
n) is identical even though X1, . . . , Xn

may be dependent.
There are at least two ways of analyzing the clustering. We might define clustering with

respect to a block of some period or with respect to run of exceedances above the threshold.
Each definition of a cluster reveals a different aspect of the study. The second one gives us
information on the stable behaviour of estimated extremal index above the threshold. In
case of a large clustering it indicates none rapidly varying estimated extremal index series
around the threshold. A significant change of the cluster index would show a change of this
stability of longer or shorter periods of study.

The limiting mean cluster size where a cluster is defined as the set of exceedances of the
threshold, un is clarified by [2] and [4] . Given that at least one exceedance occurs in the
block where the sample of size n is divided into blocks of length rn with rn = o(n). With
this definition of a cluster, the cluster size distribution πn is defined as

πn(j; un, rn) = Pr

{

rn
∑

i=1

I(Xi > un) = j|

rn
∑

i=1

I(Xi > un) > 0

}

, for j = 1, . . . , rn (3)

with

I(Xi > un) =

{

1 if Xi > un,

0 otherwise

where I is the indicator function. Later, Hsing and Leadbetter [12] showed that

θ−1 = lim
n→∞

rn
∑

j=1

jπn(j; un, rn) (4)

is the limiting mean cluster size [3]. An alternative representation for θ was given by
O’Brien [5] who showed that

θ = lim
n→∞

Pr(Xi ≤ un, 2 ≤ i|X1 > un) (5)

where rn = o(n) [3].
These suggest that estimating θ and identifying independent clusters are fundamentally

important for statistical applications for stationary processes. The mean cluster size is
estimated by the sample average cluster size. It has been developed based on two charac-
terizations for θ. Both estimators can be expressed as

θ̂n =
Cn(un)

Nn(un)
, asn → ∞ (6)
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where Nn(un) is the total number of exceedances of a high threshold, un by X1, . . . , Xn

and Cn(un) is the number of independent clusters above threshold, un. Thus, estimating θ

is equivalent to identifying independent clusters.

2 Estimation of the Extremal Index

Clustering of such extreme events can be measured by the extremal index. It can be inter-
preted as the inverse of the mean number of extreme events in a cluster. The extremal index
has a value of unity in independently distributed data. If the data are serially dependent
but show no tendency to give clusters of extreme values then this might suggest that the
underlying process has extremal index, θ = 1. If extreme values display some clustering, it
suggest that an extremal index, θ < 1, which means the assumption of independent excess
losses is less satisfactory.

There are two methods to estimate the extremal index, θ. These two methods estimate
a mean number of observations in a cluster. Using either of these two methods requires a
definition of a cluster, so that distinct clusters maybe identified and separated, and of an
associated de-clustering parameter, r. The first method divides the data into approximately
kn blocks of length rn, where n ≈ knrn. Each block is treated as one cluster. On each
block, compute the maximum,

M (i)
r = max

i=1,...,k
(X(i−1)r+i, . . . , Xir). (7)

The extremal index can be estimated by the sample analogue of

r−1

[

Pr(M
(i)
r > un)

Pr(Xi > un)

]

(8)

or

θ̂ =

∑k

i=1 I(M
(i)
r > un)

∑k

i=1 I(Xi > un)
=

nB

n
(9)

where I is the indicator function, un is the threshold, nB is the number of blocks showing
at least one value in excess of the threshold, and n is the total number of exceedances of the
threshold on the sample. The interpretation of extremal index, θ as the inverse of the mean
cluster size is then natural, where each block showing at least one exceedance is defined to
be a cluster.

The second method based on a de-clustering method is that of run, in which a cluster is
defined as the fist cluster starts with the firrst exceedance of threshold, un and stops as soon
as there is a value below threshold, un. The second cluster starts with the next exceedance
of threshold, un and so on. Define a set of clusters by the condition Ci : Xi > un, i + 1 ≤
un, · · · , Xi+r ≤ un. Then the number of clusters is the number of times that the condition
holds on the sample,

nC =

T−r
∑

I(Ci)

. (10)

The estimator of the extremal index is

θ̂ =

∑T−r

i=1 I(Ci)
∑k

i=1 I(Xi > u)
=

nC

n
(11)
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We call this the run estimator. For each of these estimators we must have r = r(n) such
that r → ∞.

In applications, the sample size is always finite. If it has overlapping between two
successive subintervals, a run of exceedances is split up into two clusters. Run of exceedances
within a subinterval are joined to give a block of exceedances. Therefore, it is obvious that
the definition of cluster will be influence by the estimation of θ.

Figure 1 shows portion the daily maxima of E-coli level recorded by all rivers in Selangor
From the figure we count the point which is above the threshold, n = 9. Then, we count
the number of clusters, nC = 7. Hence, θ̂ = 7

9 = 0.77778 . The θ̂ being close to 1 indicates
to closely independence of clustering. So, we can say that it is gives closely independent
results.

Figure 1: Portion the Daily Maxima of E-coli Level Recorded by All Rivers in Selangor

The extremal index measures the strength of the dependence. The value of θ = 0
corresponds to a long memory sequence, 0 < θ < 1 a short memory sequence, and θ = 1 is
a no memory. If θ > 0, then the dependence is weak so that Mn from equation (1) can be
normalized with the normalization which is appropriate for the maximum of n independent
and identically distributed random variables from F , whereas if θ = 0, then the dependence
is so strong that a different normalization is called for. Thus the nature of long memory
sequences is very different from that of short or no memory sequences.

Consistency of the block and run estimators was established by [1] and [6] respectively,
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and consistency and asymptotic normality are established under different sets of conditions
by [7] and [8] for the block and run estimator [9].

The theoretical properties of the blocks estimator have been studied by [10], [11]. It is a
natural starting point for any statistical study because probabilistic analyses of the extremal
index [1] and [12] used the same definition. However, the runs estimator seems more natural
from a statistical point of view. For example, Smith [13] used precisely this method of
separating clusters, calling rn the cluster interval. Nandagopalan [14] and Leadbetter [15]
have used a version of the runs estimator with rn = 1 and Nandagopalan [14] derived
theoretical properties for it, but in general there seems no reason to confine ourselves to
rn = 1 and a more general estimator is desirable [16].

2.1 Selection of Threshold

The estimation of extremal index, θ is also influenced by the choice of threshold, un. Select-
ing a rather large threshold, un would mean that, there are only very few exceedances (with
large probability). We know from the theory that the boundary threshold, un is chosen
such that n(1 − F (un)) → τ > 0. Since the number of exceedances has asymptotically a
Poisson distribution, there is a positive probability that no exceedances above the boundary
threshold, un occurs in which case extremal index, θ cannot be estimated.

For some boundaries threshold, un we have n = 1 and therefore nC = 1 which gives
θ̂n = 1. For example, if threshold, un is such that n = 2 then θ̂n = 1 or = 1

2 depending on

nC , similarly for n > 2. This implies that the estimator θ̂n cannot be consistent for every
θ ∈ (0, 1], if threshold, un is chosen in such a way that n is fixed.

Therefore it was proposed to use vn < un such that n tends to ∞, i.e. n(1−F (vn)) → ∞

(slowly). Hsing [11] and Nandagopalan [14] proved that, with this choice the estimator θ̂n

of θ is consistent, whether one use the run or the block definition for clusters. Leadbetter
and Rootzen [15] proposed to use vn approximately 5 percent, 7.5 percent or 10 percent.
Hsing [11] showed using the block definition for clusters and the above choice of vn that under

certain additional conditions the estimator θ̂n has asymptotically a normal distribution.

2.2 Choice of De-clustering Parameter, r

In a particular choice of threshold, un the separation of extreme events into clusters is
likely to be sensitive. To overcome these deficiencies, consider a cluster to be active until
r consecutive values fall below the threshold, un for some pre-specified value of r. For
example Figure 2 shows the effect of different choices of r on cluster identification. With
r = 1 seven clusters are obtained. With r = 2 just four clusters are obtained. The choice of
r requires care. If a value of r is too small, it will lead to the problem of independence being
unrealistic for nearby clusters. If a value of r is too large, it will lead to a concatenation of
clusters that could reasonably have been considered as independent and therefore to a loss
of valuable data.

Under rather general conditions, there exists some finite r such that

lim
x→∞

Pr(V1≤j≤rξj ≤ x|ξ0 > x) = θ (12)

If equation (12) holds for some r = m then it holds for all r ≥ m. Therefore, it is clear that
if {ξj} is m−dependent, then equation (12) holds with r = m. In many cases where the
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Figure 2: Portion the Daily Maxima of E-coli Recorded for Selected Rivers in Selangor with
Two Possible Cluster Groupings

range of dependence is infinite, equation (12) actually hold with r = 1. See [7], [17], [5], [16]
and [18].

If we are given data ξ1, . . . , ξn we can choose some r which reasonably covers the range
of dependence. The estimated θ is

θ̂ =

(

∑

1≤j≤n−r I(ξj > x)
∑

1≤j≤n−r I(ξj > x ≤ Vj+1≤i≤j+rξi)

)

(13)

where x is a properly chosen large value. This is known as the runs estimate of the extremal
index. A good way of interpreting this procedure is that, first identify clusters of exceedances
in the data as those that are separated by at least r non-exceedances and then estimate θ

by the reciprocal of the average number of exceedances in such clusters.

3 Applications

In this section we will apply both methods which are the run and the block definition for the
cluster to the real data. From the data, we observe that, the numbers of E-coli (in part per
thousand) were recorded between 2 to 13 times per day, approximately 8 days per month
from 35 rivers in Selangor from January 2007 through out December 2007. Also recorded
40 others parameter such that temperature, pH of the river water and weather.

The quality of the data can be described as generally quite good. However, for data of
this size, it is inevitable to have missing observations and round-off and other types of error.
For our purpose we use the data segment of which the quality exceptional, namely the daily
maxima of E-coli level recorded by rivers in Selangor from January 2007 to December 2007.
We obtained this data from Malaysia’s Department of Environment.

Our major concern here is to illustrate how to find the estimator of the extremal index
of the E-coli to predict wether the data is dependent or independent and also bring up some
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issues that need to be addressed in statistical extreme value theory for dependent data.
The number of E-coli was measured 545 times at rivers in Selangor for 12 months. From

the data, we only use the maximum level of E-coli per day. Then, we will get n = 80
numbers of measurement for E-coli to represent this study.

In order to obtain approximately 10 percent, 7.5 percent or 5 percent for N
n

, vn should
be 397, 398 and 399 (in thousand) E-coli, respectively. Thus N = 8; 6 and 4, respectively.
Only the values larger than 397 (in thousand) E-coli were recorded. See Table 1.

To analyse the behaviour of the estimator with respect to vn, we continuously change
the value of vn, from 397 up to the maximal possible value 590.

Table 1: The Values Larger Than 397 (in Thousand) E-coli

Number of Measurement, i E-coli

36 540
143 590
299 490
309 399
315 510
442 398
486 399
530 398

3.1 Clusters by Run

In our analysis we first use the run definition of clusters and later the block definition.
From the Figure 3, obviously, θn is a piecewise constant of vn. But we cannot say that
the estimator is monotonically increasing. We can observe that θn has tendency to increase
in vn.

Figure 3: Estimation of θ by θ̂n using the Run Definition for Clusters
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From Table 2, we observed that the estimation of θ for vn = 399 is 1. We can say that
it is gives independent results for this data. This fact can also be deduced from Figure 3.
There is large enough interval of vn where θ̂n is stable at 1, which could be used as creation.

Table 2: Estimation of θ Based on vn using the Run Definition for Clusters

vn N Z θ̂n

397 8 7 0.875
398 6 5 0.833
399 4 4 1.000
510 2 2 1.000
540 1 1 1.000

3.2 Clusters by blocks

When we use the block definition for the clusters, we carry out the analysis of the same
data using subintervals of length 5 and 10 as a blocks, see Table 3, again for all levels vn

larger than 397 to indicate the dependency of θn.
We deduce from these case, that the estimates of θ are equal for the three cluster

definitions if vn ≤ 399. The same is true for the cluster size distributions gives a good
reason for selecting vn = 399 as an appropriate level for the estimation. The θ̂n = 0.75 is
selected as the estimated for θ. θn being close to 1 indicates independence of clustering.
So, we also can say that it is gives independent results for this data. See Figure 4.

Table 3: Estimation of θ Based on vn using the Block Definition for Clusters

vn N Z θ̂n vn N Z θ̂n

397 8 7 0.750 397 8 7 0.500
398 6 5 0.667 398 6 5 0.667
399 4 3 0.750 399 4 3 0.750
510 2 2 1.000 510 2 2 1.000
540 1 1 1.000 540 1 1 1.000

4 Discussion and Conclusion

This research focuses on the estimation of the extremal index for E-coli data in rivers at
Selangor. We found that each E-coli observation is closely independent to others E-coli in
all Selangor rivers that have been selected. This may be due to different climatic factors or
sources of the different findings from the surrounding water.

We also can make the highlight that the importance of block size selection. From this
research, when we are using the run definition for the cluster to analyse the clustering to
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Figure 4: Estimation of θ by θ̂n using the Block Definition for Clusters for Interval of Length
5 and 10

find extremal index, we only can see at the interval of vn where θn is stable, which could be
used as creation to select the estimated for θ. By using the block definition for the cluster,
we can find the appropriate value of vn by looking at the three cluster definitions and then
can find the estimated for θ. There are two number of issues that need to be addressed i.e.
more studies are required on the extreme of non-stationary models and models with seasonal
features and in the estimation of the extremal index, further investigation is required to
enhance the understanding of how to choose the tuning parameters.
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