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1 Introduction

Throughout this paper all Lie algebras are considered over a fixed field F and [, ] denotes
the Lie bracket. A Lie algebra is called nilpotent if it has a central series, that is a series

〈0〉 = L0 ⊆ L1 ⊆ ... ⊆ Lt = L

of ideals L such that Li+1/Li is contained in the center of L/Li for all i ( or equivalent by
[Li+1, L] ⊆ Li, for all i).

Recall that the lower central series of a Lie algebra L is defined to be the series with
terms

γ1(L) = L and γk+1(L) = [γk(L), L] for any natural number k.

Then

L = γ1(L) ⊇ γ2(L) ⊇ . . . .

One may see that a Lie algebra L is nilpotent if and only if the lower central series reaches the
identity after a finite number steps. Robinson [1] showed that how the first lower central
factor Gab = G/G′ exerts a very strong influence on subsequent lower central factors of
a group G. We prove an analogue of Robinson Theorem for Lie algebras. It is known
that an extension of a nilpotent group by another nilpotent group may not be nilpotent
in general. The following example shows that an extension of a nilpotent Lie algebra by
another nilpotent Lie algebra may not be nilpotent in general.

Example 1 Let L be a 2-dimensional non-abelian Lie algebra. Then it have a basis {x, y}
with [x, y] = x. Hence, if put M = 〈x〉, then M is an ideal of L such that M and L/M are
nilpotent but L is not.

Hall [1] obtained a criterion under which such an extension of groups can be nilpotent.
We prove an analogue of the Hall Theorem for Lie algebras. Indeed we prove if M is an
ideal of lie algebra L such that M and L/[M, M ] are nilpotent, then L is nilpotent.
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2 Preliminaries

In this section we apply the notation and terminology of [2], which will be used in the proof
of our results.

Definition 1 For any two arbitrary Lie algebras L and K, an action of L on K means a
F -bilinear map L × K → K sending (l, k) to lk satisfying

(i) [l,l′ ]k = l(l′k) − l′ (lk),

(ii) l[k, k′] = [lk, k′] + [k,l k′],

for all l, l′ ∈ L and k, k′ ∈ K.

If L is a subalgebra of some Lie algebra P and K is an ideal in P , then the Lie multiplication
in P can induce an action of L on K via lk = [l, k], for all l ∈ L and k ∈ K.

Definition 2 Let L and K be Lie algebras acting on each other and, on themselves by Lie
multiplications. Then for each Lie algebra P a bilinear function α : L × K → P is called a
Lie pairing if for all l, l′ ∈ L and k, k′ ∈ K,

(i) α([l, l′], k) = α(l, l′k) − α(l′, lk),

(ii) α(l, [k, k′]) = α(k′

l, k) − α(kl, k′),

(iii) α(kl, l′k′) = −[α(l, k), α(l′, k′)].

Now we give the definition of the tensor product of Lie algebras due to Ellis[2].

Definition 3 The non-abelian tensor product L⊗K of the Lie algebras L and K is the Lie
algebra generated by the symbols l ⊗ k(l ∈ L, k ∈ K) with the following defining relations:

(i) r(l ⊗ k) = rl ⊗ k = l ⊗ rk,

(ii) (l + l′) ⊗ k = l ⊗ k + l′ ⊗ k,

l ⊗ (k + k′) = l ⊗ k + l ⊗ k′,

(iii) [l, l′] ⊗ k = l ⊗ (l′k) − l′ ⊗ (lk),

l ⊗ [k, k′] = (k′

l) ⊗ k − (kl) ⊗ k′,

(iv) [(l ⊗ k), (l′ ⊗ k′)] = −(kl) ⊗ (l′k′),

for all r ∈ F, l, l′ ∈ L and k, k′ ∈ K.(see [2] and [3] for more information)

Lie pairings allow us to determine homomorphic images of L⊗K as follows. The proof
of the following lemma is left to the reader.

Lemma 1 For every Lie algebra P, L, K and each Lie pairing ϕ : L ×K → P , there exists
a unique homomorphism ϕ∗ : L⊗K → P such that ϕ∗(l⊗ k) = ϕ(l, k) for all l ∈ L, k ∈ K.

In [2,3] the results on the non-abelian tensor product L ⊗ K are obtained by assuming
the actions of L and K on each other are compatible, in the following sense.
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Definition 4 The actions are compatible if

(kl)k′ = [k′, lk] and (lk)l′ = [l′, kl]

for all l, l′ ∈ L and k, k′ ∈ K.

The following definition is very useful in our further investigations.

Definition 5 Let L and K be Lie algebras such that L acts on K. Then we say L
acts nilpotently on K if K having the series

〈0〉 = K0 ⊆ K1 ⊆ ... ⊆ Kt = K

of ideals of K, where lki+1 ∈ Ki, (i ≥ 0) for all l ∈ L and ki+1 ∈ Ki+1.

Remark 1 Let M and N be ideals of some Lie algebra L such that N ⊆ M . Then the Lie
algebra L acts on M

N
by the following defined action:

l(m + N) = [l, m] + N for l ∈ L and m ∈ M .

Hence, L acts nilpotently on M
N

, if M
N

having the series

〈0〉 = M0

N
⊆ M1

N
⊆ ... ⊆ Mt

N
= M

N

where [L, Mi+1] ⊆ Mi for all i ≥ 0.

3 The results

The following theorem is analogue to the work of Robinson for Lie algebras.

Theorem 1 Let L be a Lie algebra and Fi = γi(L)
γi+1(L) for i ≥ 1. Then the map

Fi ⊗
L

[L, L]
→ Fi+1 (1)

(x + γi+1(L)) ⊗ (l + [L, L]) 7→ [x, l] + γi+2(L) (2)

is a well-defined epimorphism.

Note that in the above theorem it is obvious that the Lie algebras γi(L)
γi+1(L) and L

[L,L] act

trivial on each other.

Proof We define a function α of the Lie algebra Fi ×
L

[L,L] to the Lie algebra Fi+1, given

by
(x + γi+1(L), l + [L, L]) 7→ [x, l] + γi+2(L)

for all x ∈ γi(L) and l ∈ L. Since the Lie algebras γi(L)
γi+1(L)

and L
[L,L]

act trivial on each other

and γi+1(L) = [γi(L), L] for any natural number i, we have

α([x, y], l) = α([x,y l]) − α([y,x l])
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such that x = x + γi+1(L), y = y + γi+1(L) and l = l + [L, L] for all x, y ∈ γi(L) and l ∈ L.
Similarly the function α satisfy in the other conditions of Definition 2. Hence, the function
α is a Lie pairing. So, by the Lemma 1 there exists an induced homomorphism of the Lie
algebra Fi ⊗

L
[L,L] to the Lie algebra Fi+1, given by

(x + γi+1(L)) ⊗ (l + [L, L]) 7→ [x, l] + γi+2(L)

for all x ∈ γi(L) and l ∈ L. It can be easily seen that the induced homomorphism is onto,
and the proof is complete. 2

In the following corollary, we intend to give sufficient conditions under which a Lie
algebra can be finite-dimensional.

Corollary 1 If L is a nilpotent Lie algebra such that L
[L,L]

is finite-dimensional, then L is

finite-dimensional.

Proof Let Fi = γi(L)
γi+1(L)

be finite-dimensional. Then by Theorem 1, Fi+1 is also finite-

dimensional, since the finite-dimensional property is inherited by images of tensor products.
Hence, by induction on i every lower central factor is finite-dimensional. Since L is nilpotent,
then γc+1(L) = 〈0〉, for some non-negative integer c. As the finite-dimensional property is
closed under forming extensions, thus L is finite-dimensional. 2

Lemma 2 Let A, B, C and D be ideals of a Lie algebra L such that B ⊆ A and D ⊆ C.
Also let A

B
and C

D
act compatibly on each other. If L acts nilpotently on A

B
and C

D
, then L

acts nilpotently on A
B
⊗ C

D
.

Proof Since L acts nilpotently on A
B

and C
D

, then there are series

〈0〉 = A0

B
⊆ A1

B
⊆ ... ⊆ At

B
= A

B
and 〈0〉 = C0

D
⊆ C1

D
⊆ ... ⊆ Cs

D
= C

D

of ideals A
B

and C
D

respectively, such that [L, Ai+1] ⊆ Ai and [L, Cj+1] ⊆ Cj , for all 0 ≤ i < t

and 0 ≤ j < s. We claim L acts on A
B
⊗ C

D
by the following defined action:

l(a ⊗ c) = [l, a]⊗ c + a ⊗ [l, c]

such that l ∈ L, a = a + B ∈ A
B

and c = c + D ∈ C
D

. With using Remark 1 we have

[l,l′ ](a ⊗ c) = [[l, l′], a]⊗ c + a ⊗ [[l, l′], c]

= [l, [l′, a]]− [l′, [l, a]]⊗ c + a ⊗ [l, [l′, c]]− [l′, [l, c]]

= ([l, [l′, a]]⊗ c − [l′, [l, a]]⊗ c) + (a ⊗ [l, [l′, c]]− a ⊗ [l′, [l, c]])

= ([l, [l′, a]]⊗ c + a ⊗ [l, [l′, c]]) − ([l′, [l, a]]⊗ c + a ⊗ [l′, [l, c]])

= ([l, [l′, a]]⊗ c + [l′, a]⊗ [l, c] + [l, a]⊗ [l′, c] + a ⊗ [l, [l′, c]])−

([l′, [l, a]]⊗ c + [l, a]⊗ [l′, c] + [l′, a]⊗ [l, c] + a ⊗ [l′, [l, c]])

= l([l′, a]⊗ c + a ⊗ [l′, c]) − l′ ([l, a]⊗ c + a ⊗ [l, c])

= l(l′ (a ⊗ c)) − l′ (l(a ⊗ c)),
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for all l, l′ ∈ L, a = a + B ∈ A
B

and c = c + D ∈ C
D

. Similarly

l[a ⊗ c, a′ ⊗ c′] = [l(a ⊗ c), a′ ⊗ c′] + [a⊗ c, l(a′ ⊗ c′)],

for all l ∈ L, a = a + B ∈ A
B

, a′ = a′ + B ∈ A
B

, c = c + D ∈ C
D

and c′ = c′ + D ∈ C
D

.

Now let ai = ai + B ∈ Ai

B
and cj = cj + D ∈

Cj

D
. Then we construct the following series of

ideals T = A
B
⊗ C

D
:

〈0〉 = T0 ⊆ T1 ⊆ ... ⊆ Tt+s = T

where Tr = 〈am ⊗ cn | m + n ≤ r, 0 ≤ m ≤ t, 0 ≤ n ≤ s〉. Hence, for any l ∈ L and
am ⊗ cn ∈ Tr+1 we have l(am ⊗ cn) = [l, am] ⊗ cn + am ⊗ [l, cn] ∈ Tr. This completes the
proof. 2

Now we are able to prove the analogue of Hall Theorem for Lie algebras.

Theorem 2 Let M be an ideal of Lie algebra L. If M and L
[M,M ] are nilpotent Lie algebras,

then L is nilpotent.

Proof Since L
[M,M ] is nilpotent, then it has a central series as follows:

〈0〉 = L0

[M,M ]
⊆ L1

[M,M ]
⊆ ... ⊆ Lt

[M,M ]
= L

[M,M ]
(1).

Now we construct the following series for M
[M,M ]

:

〈0〉 = M0

[M,M ] ⊆
M1

[M,M ] ⊆ ... ⊆ Mt

[M,M ] = M
[M,M ] ,

where Mj = Lj ∩M , (0 ≤ j ≤ t). The Lie algebra L acts on M
[M,M ] by the following defined

action:

l(m + [M, M ]) = [l, m] + [M, M ] for l ∈ L and m ∈ M .

Hence, by the above central series, the action of L on M
[M,M ] is nilpotent. Put Fi = γi(M)

γi+1(M)

for i ≥ 1. Then L acts nilpotently on F1. Suppose that L acts nilpotently on Fi, then by
Lemma 2, L acts nilpotently on Fi ⊗

M
[M,M ] . By Theorem 1, Fi+1 is an image of Fi ⊗

M
[M,M ]

and hence, L acts nilpotently on Fi+1. Therefore by induction on i, L acts nilpotently on
every lower central factor of M . Since M is nilpotent, then there exists a non-negative
integer c such that γc+1(M) = 〈0〉. Now, combining the lower central series of M and (1)
we obtain

〈0〉 = γc+1(M) ⊆ ... ⊆ γ2(M) = [M, M ] = L0 ⊆ ... ⊆ Lt = L.

By the fact that L acts nilpotently on Fi, there is a series

〈0〉 =
Ki1

γi+1(M) ⊆ ... ⊆
Kir

γi+1(M) = Fi

such that [L, Kij+1
] ⊆ Kij

. Now we obtain a central series of L which provides the nilpotency
of L, as required. 2
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