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Abstract The main aim of this paper is to obtain some characterizations of pi-

prenormal spaces by using the notion of pi-generalized closed sets. Also, by using

these characterizations we establish various preservation theorems of pi-prenormality

under continuous and some generalized sense of continuous mappings. We give some

characterizations of almost preregular spaces and present some relationships between

prenormality and almost preregularity.
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1 Introduction

Throughout this paper, a space X always means a topological space on which no separation
axioms are assumed, unless explicitly stated. For a subset A of a space X, X \ A, A and
int(A) denote to the complement, the closure and the interior of A in X, respectively. A
subset A of a space X is said to be a regularly-open or an open domain if it is the interior
of its own closure, or equivalently if it is the interior of some closed set, [1]. A set A is said
to be a regularly-closed or a closed domain if its complement is an open domain. A subset
A of a space X is called π-closed if it is a finite intersection of closed domain sets, [2]. A
subset A is called π-open if its complement is π-closed. Two sets A and B of a space X are
said to be separated if there exist two disjoint open sets U and V in X such that A ⊆ U

and B ⊆ V , [3–5]. A subset A of a space X is said to be pre-open (briefly; p-open), [6], if
A ⊆ int(A). A subset A of a space X is said to be semi-open if A ⊆ int(A), [7]. A space X is
called pre-normal (briefly; p-normal), [8], if any two disjoint closed subsets A and B of X can
be separated by two disjoint pre-open subsets. A space X is called an almost p-normal, [9],
if any two disjoint closed subsets A and B of X, one of which is closed domain, can be
separated by two disjoint pre-open subsets. A space X is called a mildly p-normal, [9], if
any pair of disjoint closed domain subsets A and B of X, can be separated by two disjoint
pre-open subsets. A space X is said to be a π-prenormal (briefly; πp-normal), [10], if any
pair of disjoint closed subsets A and B of X, one of which is π-closed, can be separated by
two disjoint pre-open subsets. A space X is said to be a π-normal, [11], if any pair of disjoint
closed subsets A and B of X, one of which is π-closed, can be separated by two disjoint
open subsets. The complement of pre-open (resp. semi-open) set is called pre-closed (resp.
semi-closed). The intersection of all pre-closed sets containing A is called pre-closure of
A, [12], and denoted by p cl(A). Dually, the pre-interior of A denoted by p int(A), is defined
to be the union of all pre-open sets contained in A. Let A be a subset of a space X, then
a subset V of a space X is said to be a pre-neighborhood (briefly; p-neighborhood) of A if
there is a pre-open set U of X such that A ⊂ U ⊂ V , [13].
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Clearly, every normal space is π-normal as well as p-normal, every π-normal space is πp-
normal and we have:

p-normal =⇒ πp-normal=⇒ almost p-normal=⇒ mildly p-normal
Observe that none of the above implications is reversible as shown by the examples

in [10]. In this paper, we give various characterizations and preservation theorems of πp-
normal spaces. Also, some characterizations of almost p-regularity as well as its relations
with πp-normality are presented.

2 Characterizations of πp-normality

Some characterizations of πp-normality have been given in [10]. In this paper, we present
various characterizations of it by using the notion of π-generalized closed sets. First, we
need to recall the following definitions.

Definition 1 A subset A of a space X is called:

(i) generalized closed (briefly; g-closed), [14], if A ⊆ U whenever A ⊆ U and U is open.

(ii) strongly generalized closed (briefly; g∗-closed), [15], if A ⊆ U whenever A ⊆ U and U

is g-open.

(iii) π-generalized closed (briefly; πg-closed), [16], if A ⊆ U whenever A ⊆ U and U is
π-open.

(iv) generalized pre-closed, [17], (briefly; gp-closed) if p cl(A) ⊆ U whenever A ⊆ U and U

is open.

(v) strongly generalized pre-closed, [18], (briefly; g∗p-closed), if p cl(A) ⊆ U whenever
A ⊆ U and U is g-open.

(vi) π-generalized pre-closed, [19], (briefly; πgp-closed) if p cl(A) ⊆ U whenever A ⊆ U and
U is π-open.

The complement of g-closed (resp. g∗-closed, πg-closed, gp-closed, g∗p-closed, πgp-closed)
is called g-open (resp. g∗-open, πg-open, gp-open, g∗p-open, πgp-open). From the above
definitions we have:

closed =⇒ g∗-closed =⇒ g-closed =⇒ πg-closed
closed =⇒ p-closed =⇒ g∗p-closed =⇒ gp-closed =⇒ πgp-closed

Now, we give the following theorem, which is useful for giving some characterizations of
πp-normal spaces.

Theorem 1 For a space X, the following are equivalent:

(a) X is πp-normal.

(b) For each π-closed set A and each closed set B with A
⋂

B = ∅, there exist two gp-open
subsets U and V of X such that A ⊆ U , B ⊆ V and U

⋂
V = ∅.
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(c) For each π-closed set A and each closed set B with A
⋂

B = ∅, there exist a πgp-open
set U and a gp-open set V such that A ⊆ U , B ⊆ V and U

⋂
V = ∅.

(d) For each π-closed set A and each open set B with A ⊆ B, there exists a gp-open subset
U of X such that A ⊆ U ⊆ p cl(U) ⊆ B.

(e) For each π-closed set A and each open set B with A ⊆ B, there exists a πgp-open subset
U of X such that A ⊆ U ⊆ p cl(U) ⊆ B.

(f) For each π-closed set A and each πg-open set B such that A ⊆ B, there exists a pre-open
set U such that A ⊆ U ⊆ p cl(U) ⊆ int(B).

(g) For each π-closed set A and each πg-open set B such that A ⊆ B, there exists a g∗p-open
set U such that A ⊆ U ⊆ p cl(U) ⊆ int(B).

(h) For each π-closed set A and each πg-open set B such that A ⊆ B, there exists a gp-open
set U such that A ⊆ U ⊆ p cl(U) ⊆ int(B).

(i) For each π-closed set A and each πg-open set B such that A ⊆ B, there exists a πgp-
open set U such that A ⊆ U ⊆ p cl(U) ⊆ int(B).

(j) For each πg-closed set A and each π-open set B such that A ⊆ B, there exists a pre-open
set U such that A ⊆ U ⊆ p cl(U) ⊆ B.

(k) For each πg-closed set A and each π-open set B such that A ⊆ B, there exists a g∗p-open
set U such that A ⊆ U ⊆ p cl(U) ⊆ B.

(l) For each πg-closed set A and each π-open set B such that A ⊆ B, there exists a gp-open
set U such that A ⊆ U ⊆ p cl(U) ⊆ B.

(m) For each g-closed set A and each π-open set B such that A ⊆ B, there exists a pre-open
set U such that A ⊆ U ⊆ p cl(U) ⊆ B.

(n) For each g∗-closed set A and each π-open set B such that A ⊆ B, there exists a pre-open
set U such that A ⊆ U ⊆ p cl(U) ⊆ B.

Proof In fact, (a) =⇒ (b) =⇒ (c) =⇒ (d) =⇒ (e) =⇒ (f) =⇒ (g) =⇒ (h) =⇒ (i) =⇒
(j) =⇒ (k) =⇒ (l) =⇒ (m) =⇒ (n) =⇒ (a). Now, we prove some of these implications and
the rest can be proved as the same arguments.
(c) =⇒ (d). Let A be a π-closed set and B be an open set such that A ⊆ B. Then,
A

⋂
(X \B) = ∅, where X \B is closed. By (c), there exist a πgp-open set U and a gp-open

set V such that A ⊆ U , X \ B ⊆ V and U
⋂

V = ∅. Thus, A ⊆ p int(U), X \ B ⊆ p int(V )
and p int(U)

⋂
p int(V ) = ∅. Let G = p int(U). Then, G is pre-open set in X (hence gp-

open) such that A ⊆ G ⊆ p cl(G) ⊆ B.
(e) =⇒ (f). Let A be a π-closed and B be a πg-open such that A ⊆ B. Then, A ⊆ int(B)
and int(B) is an open subset of X. Then by (e), there exists a πgp-open subset U of X

such that A ⊆ U ⊆ p cl(U) ⊆ int(B). Since A is π-closed, then we have A ⊆ p int(U). Now,
let V = p int(U). Then, we obtain a pre-open set V such that A ⊆ V ⊆ p cl(V ) ⊆ int(B).
(i) =⇒ (a). Let A be a π-closed and B be a closed such that A

⋂
B = ∅. Then, A ⊆ X \B,

where X \ B is open and hence πg-open. By (i), there exists a πgp-open set U such that
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A ⊆ U ⊆ p cl(U) ⊆ int(X \B) = X \B. Thus, we get A ⊆ p int(U) ⊆ U ⊆ p cl(U) ⊆ X \B.
Let G = p int(U) and H = X \ p cl(U). Therefore, G and H are disjoint pre-open subsets
of X such that A ⊆ G and B ⊆ H . Hence, X is πp-normal.
(i) =⇒ (j). Let A be a πg-closed and B be a π-open sets in X such that A ⊆ B. Then,
X \ B ⊆ X \ A, where X \ B is π-closed and X \ A is πg-open. Then by (i), there exists
a πgp-open subset U of X such that X \ B ⊆ U ⊆ p cl(U) ⊆ int(X \ A) = X \ A. Thus,
we have X \ B ⊆ p int(U). Now, let G = X \ p cl(U) and H = p int(U). Then, G and
H are disjoint pre-open subsets of X such that A ⊆ G and X \ B ⊆ H . Hence, we have
A ⊆ G ⊆ p cl(G) ⊆ B.
(l) =⇒ (m). Let A be a g-closed and B be a π-open subsets of X such that A ⊆ B. Then,
A is πg-closed. Thus by (l), there exists a gp-open set U such that A ⊆ U ⊆ p cl(U) ⊆ B.
Then, we have A ⊆ p int(U). Now, let V = p int(U). Then, V is pre-open subset of X such
that A ⊆ V ⊆ p cl(V ) ⊆ B.
(n) =⇒ (a). Let A and B be any disjoint closed subsets of X such that B is π-closed.
Since A

⋂
B = ∅, then A ⊆ X \ B. Since A is g∗-closed and X \ B is π-open, then by

(n) there exists a pre-open subset U of X such that A = A ⊆ U ⊆ p cl(U) ⊆ X \ B. Put
V = X \ p cl(U). Then, V is pre-open subset of X. Thus, we have A ⊆ U , B ⊆ V and
U

⋂
V = ∅. Hence, X is πp-normal. �

The following result is obvious and it can be proved easily.

Theorem 2 A space X is πp-normal if it satisfies one of the following:

(1) For each πgp-closed set A and each gp-open set B with A ⊆ B, there exists a pre-open
set U such that p cl(A) ⊆ U ⊆ p cl(U) ⊆ p int(B).

(2) For each πgp-closed set A and each g∗p-open set B with A ⊆ B, there exists a pre-open
set U such that p cl(A) ⊆ U ⊆ p cl(U) ⊆ p int(B).

(3) For each gp-closed set A and each g∗p-open set B with A ⊆ B, there exists a pre-open
set U such that p cl(A) ⊆ U ⊆ p cl(U) ⊆ p int(B).

(4) For each gp-closed set A and each gp-open set B with A ⊆ B, there exists a pre-open
set U such that p cl(A) ⊆ U ⊆ p cl(U) ⊆ p int(B).

(5) For each gp-closed set A and each πgp-open set B with A ⊆ B, there exists a pre-open
set U such that p cl(A) ⊆ U ⊆ p cl(U) ⊆ p int(B).

(6) For each g∗p-closed set A and each gp-open set B with A ⊆ B, there exists a pre-open
set U such that p cl(A) ⊆ U ⊆ p cl(U) ⊆ p int(B).

(7) For each g∗p-closed set A and each g∗p-open set B with A ⊆ B, there exists a pre-open
set U such that p cl(A) ⊆ U ⊆ p cl(U) ⊆ p int(B).

(8) For each g∗p-closed set A and each πgp-open set B with A ⊆ B, there exists a pre-open
set U such that p cl(A) ⊆ U ⊆ p cl(U) ⊆ p int(B).



On πp-Normal Spaces 219

3 Characterizations of Almost p-regularity

Let us recall the following definition.

Definition 2 A space X is called a p-regular (resp. an almost p-regular) if for each closed
(resp. closed domain) set F and each x 6∈ F , there exist disjoint pre-open sets U and V in
X such that x ∈ U and F ⊆ V , [6, 12].

In view of the fact that if A is a π-closed and x 6∈ A, then there exists a closed domain
set D such that A ⊆ D and x 6∈ D, we present the following result that gives a useful
characterization of almost p-regular spaces and it can be proved easily.

Theorem 3 A space X is an almost p-regular if and only if for each π-closed set F and
each x 6∈ F , there exist disjoint pre-open sets U and V in X such that x ∈ U and F ⊆ V .

Observe that if U and V are disjoint pre-open sets in X, then pcl(U)
⋂

V = ∅ and
U

⋂
pcl(V ) = ∅. Now, the following theorem is useful for giving some other characterizations

of almost p-regular spaces.

Theorem 4 For a space X, the following statements are equivalent:

(a) X is almost p-regular.

(b) For each x ∈ X and for each π-open set V with x ∈ V , there exists a pre-open set U

such that x ∈ U ⊆ p cl(U) ⊆ V .

(c) For each x ∈ X and for each π-open set V with x ∈ V , there exists a g∗p-open set U

such that x ∈ U ⊆ p cl(U) ⊆ V .

(d) For each x ∈ X and for each π-open set V with x ∈ V , there exists a gp-open set U

such that x ∈ U ⊆ p cl(U) ⊆ V .

(e) For each x ∈ X and for each π-open set V with x ∈ V , there exists a πgp-open set U

such that x ∈ U ⊆ p cl(U) ⊆ V .

(f) Every π-closed subset A of X is expressible as an intersection of some pre-closed pre-
neighborhoods of A.

(g) Every π-closed set A is identical with the intersection of all pre-closed pre-neighborhoods
of A.

(h) For every set A and every π-open set B such that A
⋂

B 6= ∅, there exists a pre-open
set G such that A

⋂
G 6= ∅ and p cl(G) ⊆ B.

(i) For every non-empty set A and every π-closed set B such that A
⋂

B = ∅, there exist
disjoint pre-open sets G and H such that A

⋂
G 6= ∅ and B ⊆ H.
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Proof Observe that (a) =⇒ (b) =⇒ (c) =⇒ (d) =⇒ (e) =⇒ (f) =⇒ (g) =⇒ (h) =⇒
(i) =⇒ (a). Now, we prove some of these implications and the others can be proved as the
same arguments.
(a) =⇒ (b). Let V be a π-open subset of X such that x ∈ V . Then, x 6∈ X \ V , where
X \V is π-closed. Since X is almost p-regular, then by the Theorem 3 there exist pre-open
sets U1 and U2 in X such that x ∈ U1, X \ V ⊆ U2 and U1

⋂
U2 = ∅. Thus, we have

p cl(U1)
⋂

U2 = ∅. Let U = U1. Then, we have x ∈ U ⊆ p cl(U) ⊆ V .
(b) =⇒ (f). Let A be a π-closed subset of X. For each x 6∈ A, we have x ∈ X\A, where X\A
is π-open. By (b), there exist a pre-open set Ux such that x ∈ Ux ⊆ p cl(Ux) ⊆ X \ A. Let
Hx = X \ p cl(Ux). Then, Hx is pre-open subset of X such that A ⊆ Hx and Ux

⋂
Hx = ∅.

Thus, Ux

⋂
p cl(Hx) = ∅. Therefore, for each x 6∈ A we have A ⊆ Hx and x 6∈ p cl(Hx).

Now, we shall show that A =
⋂

x 6∈A
p cl(Hx). Since A ⊆ p cl(Hx) for each x 6∈ A, then

A ⊆
⋂

x 6∈A

p cl(Hx) (1)

Now, let y ∈
⋂

x 6∈A
p cl(Hx). Then, y ∈ p cl(Hx) for each x 6∈ A. Thus, y 6∈ Ux for each

x 6∈ A. Therefore, y 6∈
⋃

x 6∈A
Ux. Since X \ A ⊆

⋃
x 6∈A

Ux, then y 6∈ X \ A. Hence, y ∈ A.
Therefore, ⋂

x 6∈A

p cl(Hx) ⊆ A (2)

From (1) and (2), we have A =
⋂

x 6∈A
p cl(Hx), where each p cl(Hx) is pre-closed pre-

neighborhood of A.
(f) =⇒ (g). Let A be a π-closed subset of X and {Fα}α∈Λ be a family of all pre-closed
pre-neighborhoods of A. Then,

A ⊆
⋂

α∈Λ
Fα

But by (f), there is a subset S ⊆ Λ such that

A =
⋂

s∈S
Fs ⊇

⋂
α∈Λ

Fα

Thus, A =
⋂

α∈Λ
Fα. Hence, A is identical with intersection of all pre-closed pre-neighborhoods

of it.
(g) =⇒ (h). Let A be any set and let B be a π-open subset of X such that A

⋂
B 6= ∅.

Thus, there exists an element x ∈ A
⋂

B. Since X \ B is π-closed, then by (g) we have
X \B =

⋂
α∈Λ

Mα, where {Mα}α∈Λ is a family of all pre-closed pre-neighborhoods of X \B.
Since x ∈ B, then x 6∈ X \B =

⋂
α∈Λ

Mα. Then, x 6∈ Mα for some α ∈ Λ. Since Mα is pre-
neighborhood of X \B, then there exists a pre-open set H such that X \B ⊆ H ⊆ Mα. Let
G = X\Mα. Then, G is pre-open subset of X such that x ∈ G. Since x ∈ A, then x ∈ G

⋂
A.

Hence, G
⋂

A 6= ∅. Also, X \H is pre-closed. Therefore, G = X \Mα ⊆ X \H ⊆ B. Thus,
p cl(G) ⊆ B.
(h) =⇒ (i). Let A be any set and let B be a π-closed subset of X such that A

⋂
B = ∅.

Then, X \ B is π-open such that A ⊆ X \ B. So, we have A
⋂

(X \ B) 6= ∅. By (h), there
exists a pre-open set G such that A

⋂
G 6= ∅ and p cl(G) ⊆ X \ B. Let H = X \ p cl(G).

Then, H is pre-open subset of X such that G
⋂

H = ∅. Therefore, there exist disjoint
pre-open subsets G and H of X such that A

⋂
G 6= ∅ and B ⊆ H .
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(i) =⇒ (a). Let A be a π-closed subset of X such that x 6∈ A. Then, {x}
⋂

A = ∅. By
(i), there exist disjoint pre-open subsets G and H of X such that {x}

⋂
G 6= ∅ and A ⊆ H .

Thus, G and H are disjoint pre-open subsets of X such that x ∈ G and A ⊆ H . Hence, X

is almost p-regular. �

Now, we have the following corollary.

Corollary 1 A space X is an almost p-regular if and only if for any π-closed set A and for
each x 6∈ A, there exists a pre-open set U such that x ∈ U and p cl(U)

⋂
A = ∅.

4 Some Relationships Between πp-normality and Almost

p-regularity

First, we recall the following definitions.

Definition 3 A space X is called strongly-compact, [6], if every pre-open cover of X has a
finite subcover.

Definition 4 A space X is called p1-paracompact (resp. p2-paracompact), [6], if every
pre-open cover of X has a locally finite open (resp. pre-open) refinement.

Definition 5 A collection F = {Fα : α ∈ Λ} of subsets of X is called pre-locally finite, [20],
if for each x ∈ X, there exists a pre-open set Wx in X such that x ∈ Wx and Wx intersects
at most finitely many members of F .

Definition 6 A space X is called p3-paracompact, [20], if every pre-open cover of X has a
pre-locally finite pre-open refinement.

Observe that every p1-paracompact is p2-paracompact as well as paracompact, and every
paracompact is p3-paracompact, [20]. The following theorem can be proved easily.

Theorem 5 Let {Aα : α ∈ Λ} be a pre-locally finite collection of subsets of a space X.
Then, p cl(

⋃
α∈Λ

Aα) =
⋃

α∈Λ
p cl(Aα).

Now, we prove the following result.

Theorem 6 Every almost p-regular p3-paracompact space is πp-normal.

Proof Let X be an almost p-regular p3-paracompact space. Let A be a π-closed and B

be a closed set in X such that A
⋂

B = ∅. Then, for each x ∈ B we have x 6∈ A. By almost
p-regularity of X and by the Corollary 1, there exists a pre-open set Ux in X such that
x ∈ Ux and p cl(Ux)

⋂
A = ∅. So, the family {Ux : x ∈ B}

⋃
{X \ B} is pre-open cover for

X. Since X is p3-paracompact, then there exists a pre-locally finite pre-open refinement of
it. Let U = {Uα : α ∈ Λ} denote to the members of the family which have a non-empty
intersection with B. Let V1 =

⋃
α∈Λ

Uα, which is pre-open set in X such that B ⊆ V1. Let
V2 = X \

⋃
α∈Λ

p cl(Uα), which is pre-open set in X, because {Uα : α ∈ Λ} is pre-locally
finite and p cl(

⋃
α∈Λ

Uα) =
⋃

α∈Λ
p cl(Uα) (by the Theorem 5). Thus, V1

⋂
V2 = ∅. Since U
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is a refinement and each member of it intersects B, then for each Uα ∈ U there exists x ∈ B

such that Uα ⊆ Ux. Now, p cl(Uα) ⊆ p cl(Ux) ⊆ X\A. Thus, A ⊆ X\p cl(Ux) ⊆ X\p cl(Uα)
for each Uα ∈ U . So, A ⊆

⋂
α∈Λ

(X \ p cl(Uα)) = X \
⋃

α∈Λ
p cl(Uα) = V2. Thus, A ⊆ V2.

So, we have two pre-open sets V1 and V2 in X such that B ⊆ V1, A ⊆ V2 and V1

⋂
V2 = ∅.

Therefore, X is πp-normal. �

Since every p1-paracompact (resp. p2-paracompact, paracompact) space is p3-paracompact,
then we have the following corollary.

Corollary 2 Every almost p-regular, p2-paracompact (resp. p1-paracompact, paracom-
pact) space is πp-normal.

Now, we prove the following result.

Theorem 7 Every almost p-regular strongly-compact space is πp-normal.

Proof Let X be an almost p-regular strongly compact space. Let A and B be any disjoint
closed subsets of X such that A is π-closed. Since A

⋂
B = ∅, then for each x ∈ B we have

x 6∈ A. By almost p-regularity of X and by the Corollary 1, we have for each x ∈ B there
exists a pre-open subset Ux of X such that x ∈ Ux and p cl(Ux)

⋂
A = ∅. Therefore, the

family {Ux : x ∈ B}
⋃
{X \B} is a pre-open cover of X. Since X is strongly compact, then

there exists a finite set {x1, x2, ..., xn} ⊂ B such that X = (
⋃n

i=1
Uxi

)
⋃
{X \ B}. Now, let

G =
⋃n

i=1
Uxi

. Then, G is pre-open set in X such that B ⊆ G and p cl(G)
⋂

A = ∅. Thus,
A ⊆ X \ p cl(G). Let H = X \ p cl(G). Then, H is pre-open set in X such that A ⊆ H .
Therefore, G and H are pre-open sets in X such that A ⊆ H , B ⊆ G and H

⋂
G = ∅.

Hence, X is πp-normal. �

Since every regular (resp. almost regular) space is almost p-regular, then we get the
following corollary.

Corollary 3 Every almost regular (resp. regular), strongly-compact space is πp-normal.

5 Preservation Theorems of πp-normal Spaces

In this section, we need to recall the definitions of some functions that help us to give
various preservation theorems of πp-normality. The following definitions are in [21], [22],
[12], [6], [9], [23], [24] and [25].

Definition 7 A function f : X −→ Y is said to be:

(i) almost continuous (resp almost π-continuous, almost p-continuous or almost pre-
continuous) if f−1(F ) is closed (resp. π-closed, pre-closed) set in X for each closed
domain subset F of Y .

(ii) π-continuous (resp. p-continuous or pre-continuous) if f−1(F ) is π-closed (resp pre-
closed) set in X for each closed subset F of Y .
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(iii) almost closed (resp. rc-preserving, almost π-closed) function if f(F ) is closed (resp.
closed domain, π-closed) set in Y for each closed domain subset F of X.

(iv) weakly open if for each open subset U of X, f(U) ⊆ int(f(U )).

(v) pre gp-continuous if f−1(F ) is gp-closed in X for every pre-closed subset F of Y .

(vi) R-map (resp. completely continuous) if f−1(V ) is open domain in X for every open
domain (resp. open) subset V of Y .

(vii) pre gp-closed if f(F ) is gp-closed set in Y for every pre-closed subset F of X.

(viii) almost pre-irresolute if for each x ∈ X and each pre-neighborhood V of f(x) in Y ,
p cl(f−1(V )) is a pre-neighborhood of x in X.

(ix) pre-closed (resp pre-open, semi-open) if f(F ) is pre-closed (resp pre-open, semi-open)
set in Y for each pre-closed (resp. pre-open, semi-open) subset F of X.

(x) Mp-closed or M -preclosed (resp. Mp-open or M -preopen) if f(U) is pre-closed (resp.
pre-open) set in Y for each pre-closed (resp. pre-open) set U in X.

Now, we give the following definition.

Definition 8 A function f : X −→ Y is said to be weakly p-open (or weakly pre-open) if
for each pre-open subset U of X, we have f(U) ⊆ p int(f(p cl(U))).

The following lemmas, which are in [23], will be needed.

Lemma 1 If a function f : X −→ Y is pre-open continuous function, then f is Mp-open.

Lemma 2 If a function f : X −→ Y is weakly open continuous function, then f is Mp-open
and R-map.

Lemma 3 If a function f : X −→ Y is semi-open pre-continuous function, then f is
pre-irresolute (or briefly; p-irresolute).

Lemma 4 A surjection f : X −→ Y is pre gp-closed if and only if for each subset B of Y

and each pre-open subset U of X containing f−1(B), there exists a gp-open subset V of Y

such that B ⊂ V and f−1(V ) ⊆ U .

Clearly, every pre-irresolute function is an almost pre-irresolute, every completely con-
tinuous function is R-map as well as π-continuous and also:

π-continuous =⇒ continuous =⇒ pre-continuous =⇒ gp-continuous

Now, we investigate various preserving theorems for πp-normal spaces.

Theorem 8 If f :−→ Y is an R-map pre-open continuous almost pre-irresolute surjection
and X is πp-normal, then Y is πp-normal.
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Proof Let A be a closed and B be a π-open subset of Y such that A ⊆ B. Since f is
R-map continuous function, then we have f−1(A) is closed and f−1(B) is π-open subsets
of X such that f−1(A) ⊆ f−1(B). Since X is πp-normal, then by the Theorem 1 there
exists a pre-open subset U of X such that f−1(A) ⊆ U ⊆ p cl(U) ⊆ f−1(B). Then,
f(f−1(A)) ⊆ f(U) ⊆ f(p cl(U)) ⊆ f(f−1(B)). Since f is pre-open continuous almost pre-
irresolute surjection, then by the Lemma 1, we have f is Mp-open. Therefore, f(U) is
pre-open subset of Y such that A ⊆ f(U) ⊆ p cl(f(U)) ⊆ B. Hence by the Theorem 1, Y

is πp-normal. �

Theorem 9 If f : X −→ Y is a pre-open π-continuous almost pre-irresolute surjection
and X is πp-normal, then Y is πp-normal.

Proof The proof is entirely analogous to the proof of the Theorem 8. �

Theorem 10 If f : X −→ Y is a weakly open π-continuous almost pre-irresolute surjection
and X is πp-normal, then Y is πp-normal.

Proof Let f be a weakly open π-continuous almost pre-irresolute surjection from a πp-
normal space X to a space Y . Since f is weakly open continuous function, then by the
Lemma 2 f is Mp-open and R-map. Therefore, by the Theorem 8 we have Y is πp-normal
space. �

Theorem 11 If f : X −→ Y is a pre-open π-continuous semi-open surjection and X is
πp-normal, then Y is πp-normal.

Proof The proof follows from Theorem 8 using the Lemma 2 and the Lemma 3. �

Theorem 12 If f : X −→ Y is a pre gp-closed π-continuous surjection and X is πp-
normal, then Y is πp-normal.

Proof Let A and B be any disjoint closed subsets of Y such that A is π-closed. Then by
π-continuity of f , we have f−1(A) and f−1(B) are disjoint π-closed subsets of X. Since X is
πp-normal, then there exist disjoint pre-open subsets U and V of X such that f−1(A) ⊆ U

and f−1(B) ⊆ V . By the Lemma 4, there exist gp-open (hence πgp-open) subsets G and
H of Y such that A ⊆ G, B ⊆ H , f−1(G) ⊆ U and f−1(H) ⊆ V . Since U and V are
disjoint, then G and H are also disjoint. Thus, we have A ⊆ p int(G), B ⊆ p int(H) and
p int(G)

⋂
p int(H) = ∅. Therefore, p int(G) and p int(H) are disjoint pre-open subsets of Y

such that A ⊆ p int(G) and B ⊆ p int(H). Hence, Y is πp-normal. �

Theorem 13 If f : X −→ Y is an R-map continuous pre gp-closed surjection and X is
πp-normal, then Y is πp-normal.
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Proof Let A and B be any disjoint closed subsets of Y such that A is π-closed. Since f

ia R-map continuous function, then f−1(A) and f−1(B) are disjoint closed subsets of X

such that f−1(A) is π-closed. By πp-normality of X, there exist disjoint pre-open subsets
U and V of X such that f−1(A) ⊆ U and f−1(B) ⊆ V . By continuing as the same proof as
that of the Theorem 12, we obtain two disjoint pre-open subsets G and H of Y such that
A ⊆ G and B ⊆ H . Hence, Y is πp-normal. �

The following statements can be proved easily by using arguments similar to those in
the above theorems as well as by using the Definition 7.

Theorem 14 Let f : X −→ Y be a function. Then,

(i) If f is completely continuous pre gp-closed surjection and X is mildly p-normal, then
Y is πp-normal.

(ii) If f is a continuous pre gp-closed surjection and X is pre-normal, then Y is πp-normal.

(iii) If f is a π-continuous, weakly open pre gp-closed surjection and X is πp-normal, then
Y is πp-normal.

(iv) If f is a pre gp-continuous closed rc-preserving injection and Y is πp-normal, then X

is πp-normal.

(v) If f is a pre gp-continuous closed injection and Y is pre-normal, then X is πp-normal.

(vi) If f is π-continuous, weakly p-open, pre-closed surjection and X is πp-normal, then
Y is πp-normal.

(vii) If f is a pre-continuous, almost π-closed, open injection and Y is πp-normal, then X

is πp-normal.

(viii) If f is an almost p-continuous closed rc-preserving injection function and Y is π-
normal, then X is πp-normal.

(ix) If f is continuous, an almost π-continuous and pre gp-closed surjection and X is
πp-normal, then Y is πp-normal.

(x) If f is a continuous, an almost continuous pre gp-closed surjection and X is pre-
normal, then Y is πp-normal.

6 Conclusion

We used the notion of π-generalized closed sets to obtain various characterizations of πp-
normality and we established some various preservation theorems of it. Also, some charac-
terizations of almost p-regularity were given and some relationships between πp-normality
and almost p-regularity were presented.
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