MATEMATIKA, 2013, Volume 29, Number 2, 215–227 ©Department of Mathematical Sciences, UTM.

On Pi-prenormal Spaces

¹Sadeq Ali Saad Thabit and ²Hailiza Kamarulhaili

 1,2 School of Mathematical Sciences, Universiti Sains Malaysia 11800 USM Penang, Malaysia e-mail: ¹sthabit1975@gmail.com, ²hailiza@cs.usm.my

Abstract The main aim of this paper is to obtain some characterizations of piprenormal spaces by using the notion of pi-generalized closed sets. Also, by using these characterizations we establish various preservation theorems of pi-prenormality under continuous and some generalized sense of continuous mappings. We give some characterizations of almost preregular spaces and present some relationships between prenormality and almost preregularity.

Keywords closed domain; p-closed; almost p-regular; p₃-paracompact.

2010 Mathematics Subject Classification 54D15, 54B10, 54D10, 54D70.

1 Introduction

Throughout this paper, a space X always means a topological space on which no separation axioms are assumed, unless explicitly stated. For a subset A of a space X, $X \setminus A$, \overline{A} and int(A) denote to the complement, the closure and the interior of A in X, respectively. A subset A of a space X is said to be a regularly-open or an open domain if it is the interior of its own closure, or equivalently if it is the interior of some closed set, [1]. A set A is said to be a regularly-closed or a closed domain if its complement is an open domain. A subset A of a space X is called π -closed if it is a finite intersection of closed domain sets, [2]. A subset A is called π -open if its complement is π -closed. Two sets A and B of a space X are said to be *separated* if there exist two disjoint open sets U and V in X such that $A \subseteq U$ and $B \subseteq V$, [3–5]. A subset A of a space X is said to be *pre-open* (briefly; *p-open*), [6], if $A \subseteq \operatorname{int}(\overline{A})$. A subset A of a space X is said to be *semi-open* if $A \subseteq \operatorname{int}(A)$, [7]. A space X is called *pre-normal* (briefly; *p-normal*), [8], if any two disjoint closed subsets A and B of X can be separated by two disjoint pre-open subsets. A space X is called an *almost p-normal*, [9], if any two disjoint closed subsets A and B of X, one of which is closed domain, can be separated by two disjoint pre-open subsets. A space X is called a *mildly p-normal*, [9], if any pair of disjoint closed domain subsets A and B of X, can be separated by two disjoint pre-open subsets. A space X is said to be a π -prenormal (briefly; πp -normal), [10], if any pair of disjoint closed subsets A and B of X, one of which is π -closed, can be separated by two disjoint pre-open subsets. A space X is said to be a π -normal, [11], if any pair of disjoint closed subsets A and B of X, one of which is π -closed, can be separated by two disjoint open subsets. The complement of pre-open (resp. semi-open) set is called pre-closed (resp. semi-closed). The intersection of all pre-closed sets containing A is called *pre-closure* of A, [12], and denoted by $p \operatorname{cl}(A)$. Dually, the *pre-interior* of A denoted by $p \operatorname{int}(A)$, is defined to be the union of all pre-open sets contained in A. Let A be a subset of a space X, then a subset V of a space X is said to be a *pre-neighborhood* (briefly; *p-neighborhood*) of A if there is a pre-open set U of X such that $A \subset U \subset V$, [13].

Clearly, every normal space is π -normal as well as *p*-normal, every π -normal space is πp -normal and we have:

p-normal $\implies \pi p$ -normal \implies almost p-normal \implies mildly p-normal

Observe that none of the above implications is reversible as shown by the examples in [10]. In this paper, we give various characterizations and preservation theorems of πp normal spaces. Also, some characterizations of almost *p*-regularity as well as its relations with πp -normality are presented.

2 Characterizations of πp -normality

Some characterizations of πp -normality have been given in [10]. In this paper, we present various characterizations of it by using the notion of π -generalized closed sets. First, we need to recall the following definitions.

Definition 1 A subset A of a space X is called:

- (i) generalized closed (briefly; g-closed), [14], if $\overline{A} \subseteq U$ whenever $A \subseteq U$ and U is open.
- (ii) strongly generalized closed (briefly; g^* -closed), [15], if $\overline{A} \subseteq U$ whenever $A \subseteq U$ and U is g-open.
- (iii) π -generalized closed (briefly; π g-closed), [16], if $\overline{A} \subseteq U$ whenever $A \subseteq U$ and U is π -open.
- (iv) generalized pre-closed, [17], (briefly; gp-closed) if $p \operatorname{cl}(A) \subseteq U$ whenever $A \subseteq U$ and U is open.
- (v) strongly generalized pre-closed, [18], (briefly; g^*p -closed), if $p \operatorname{cl}(A) \subseteq U$ whenever $A \subseteq U$ and U is g-open.
- (vi) π -generalized pre-closed, [19], (briefly; πgp -closed) if $p \operatorname{cl}(A) \subseteq U$ whenever $A \subseteq U$ and U is π -open.

The complement of g-closed (resp. g^* -closed, πg -closed, gp-closed, g^*p -closed, πgp -closed) is called g-open (resp. g^* -open, πg -open, gp-open, g^*p -open, πgp -open). From the above definitions we have:

closed $\implies g^*$ -closed $\implies g$ -closed $\implies \pi g$ -closed closed $\implies p$ -closed $\implies g^*p$ -closed $\implies gp$ -closed $\implies \pi gp$ -closed

Now, we give the following theorem, which is useful for giving some characterizations of πp -normal spaces.

Theorem 1 For a space X, the following are equivalent:

- (a) X is πp -normal.
- (b) For each π -closed set A and each closed set B with $A \cap B = \emptyset$, there exist two gp-open subsets U and V of X such that $A \subseteq U$, $B \subseteq V$ and $U \cap V = \emptyset$.

On πp -Normal Spaces

- (c) For each π -closed set A and each closed set B with $A \bigcap B = \emptyset$, there exist a πgp -open set U and a gp-open set V such that $A \subseteq U$, $B \subseteq V$ and $U \bigcap V = \emptyset$.
- (d) For each π -closed set A and each open set B with $A \subseteq B$, there exists a gp-open subset U of X such that $A \subseteq U \subseteq p \operatorname{cl}(U) \subseteq B$.
- (e) For each π-closed set A and each open set B with A ⊆ B, there exists a πgp-open subset U of X such that A ⊆ U ⊆ p cl(U) ⊆ B.
- (f) For each π -closed set A and each πg -open set B such that $A \subseteq B$, there exists a pre-open set U such that $A \subseteq U \subseteq p \operatorname{cl}(U) \subseteq \operatorname{int}(B)$.
- (g) For each π -closed set A and each πg -open set B such that $A \subseteq B$, there exists a g^*p -open set U such that $A \subseteq U \subseteq p \operatorname{cl}(U) \subseteq \operatorname{int}(B)$.
- (h) For each π -closed set A and each πg -open set B such that $A \subseteq B$, there exists a gp-open set U such that $A \subseteq U \subseteq p \operatorname{cl}(U) \subseteq \operatorname{int}(B)$.
- (i) For each π-closed set A and each πg-open set B such that A ⊆ B, there exists a πgp-open set U such that A ⊆ U ⊆ p cl(U) ⊆ int(B).
- (j) For each πg -closed set A and each π -open set B such that $A \subseteq B$, there exists a pre-open set U such that $\overline{A} \subseteq U \subseteq p \operatorname{cl}(U) \subseteq B$.
- (k) For each πg -closed set A and each π -open set B such that $A \subseteq B$, there exists a g^*p -open set U such that $\overline{A} \subseteq U \subseteq p \operatorname{cl}(U) \subseteq B$.
- For each πg-closed set A and each π-open set B such that A ⊆ B, there exists a gp-open set U such that A ⊆ U ⊆ p cl(U) ⊆ B.
- (m) For each g-closed set A and each π -open set B such that $A \subseteq B$, there exists a pre-open set U such that $\overline{A} \subseteq U \subseteq p \operatorname{cl}(U) \subseteq B$.
- (n) For each g^* -closed set A and each π -open set B such that $A \subseteq B$, there exists a pre-open set U such that $\overline{A} \subseteq U \subseteq p \operatorname{cl}(U) \subseteq B$.

Proof In fact, $(a) \Longrightarrow (b) \Longrightarrow (c) \Longrightarrow (d) \Longrightarrow (e) \Longrightarrow (f) \Longrightarrow (g) \Longrightarrow (h) \Longrightarrow (i) \Longrightarrow (j) \Longrightarrow (k) \Longrightarrow (l) \Longrightarrow (m) \Longrightarrow (n) \Longrightarrow (a)$. Now, we prove some of these implications and the rest can be proved as the same arguments.

 $(c) \implies (d)$. Let A be a π -closed set and B be an open set such that $A \subseteq B$. Then, $A \bigcap (X \setminus B) = \emptyset$, where $X \setminus B$ is closed. By (c), there exist a πgp -open set U and a gp-open set V such that $A \subseteq U$, $X \setminus B \subseteq V$ and $U \bigcap V = \emptyset$. Thus, $A \subseteq p$ int(U), $X \setminus B \subseteq p$ int(V)and p int $(U) \bigcap p$ int $(V) = \emptyset$. Let G = p int(U). Then, G is pre-open set in X (hence gpopen) such that $A \subseteq G \subseteq p$ cl $(G) \subseteq B$.

 $(e) \Longrightarrow (f)$. Let A be a π -closed and B be a πg -open such that $A \subseteq B$. Then, $A \subseteq \operatorname{int}(B)$ and $\operatorname{int}(B)$ is an open subset of X. Then by (e), there exists a πgp -open subset U of X such that $A \subseteq U \subseteq p \operatorname{cl}(U) \subseteq \operatorname{int}(B)$. Since A is π -closed, then we have $A \subseteq p \operatorname{int}(U)$. Now, let $V = p \operatorname{int}(U)$. Then, we obtain a pre-open set V such that $A \subseteq V \subseteq p \operatorname{cl}(V) \subseteq \operatorname{int}(B)$.

 $(i) \Longrightarrow (a)$. Let A be a π -closed and B be a closed such that $A \bigcap B = \emptyset$. Then, $A \subseteq X \setminus B$, where $X \setminus B$ is open and hence πg -open. By (i), there exists a πgp -open set U such that

 $A \subseteq U \subseteq p \operatorname{cl}(U) \subseteq \operatorname{int}(X \setminus B) = X \setminus B$. Thus, we get $A \subseteq p \operatorname{int}(U) \subseteq U \subseteq p \operatorname{cl}(U) \subseteq X \setminus B$. Let $G = p \operatorname{int}(U)$ and $H = X \setminus p \operatorname{cl}(U)$. Therefore, G and H are disjoint pre-open subsets of X such that $A \subseteq G$ and $B \subseteq H$. Hence, X is πp -normal.

 $(i) \Longrightarrow (j)$. Let A be a πg -closed and B be a π -open sets in X such that $A \subseteq B$. Then, $X \setminus B \subseteq X \setminus A$, where $X \setminus B$ is π -closed and $X \setminus A$ is πg -open. Then by (i), there exists a πgp -open subset U of X such that $X \setminus B \subseteq U \subseteq p \operatorname{cl}(U) \subseteq \operatorname{int}(X \setminus A) = X \setminus \overline{A}$. Thus, we have $X \setminus B \subseteq p \operatorname{int}(U)$. Now, let $G = X \setminus p \operatorname{cl}(U)$ and $H = p \operatorname{int}(U)$. Then, G and H are disjoint pre-open subsets of X such that $\overline{A} \subseteq G$ and $X \setminus B \subseteq H$. Hence, we have $\overline{A} \subseteq G \subseteq p \operatorname{cl}(G) \subseteq B$.

 $(l) \Longrightarrow (m)$. Let A be a g-closed and B be a π -open subsets of X such that $A \subseteq B$. Then, A is πg -closed. Thus by (l), there exists a gp-open set U such that $\overline{A} \subseteq U \subseteq p \operatorname{cl}(U) \subseteq B$. Then, we have $\overline{A} \subseteq p \operatorname{int}(U)$. Now, let $V = p \operatorname{int}(U)$. Then, V is pre-open subset of X such that $\overline{A} \subseteq V \subseteq p \operatorname{cl}(V) \subseteq B$.

 $(n) \implies (a)$. Let A and B be any disjoint closed subsets of X such that B is π -closed. Since $A \cap B = \emptyset$, then $A \subseteq X \setminus B$. Since A is g^* -closed and $X \setminus B$ is π -open, then by (n) there exists a pre-open subset U of X such that $\overline{A} = A \subseteq U \subseteq p \operatorname{cl}(U) \subseteq X \setminus B$. Put $V = X \setminus p \operatorname{cl}(U)$. Then, V is pre-open subset of X. Thus, we have $A \subseteq U$, $B \subseteq V$ and $U \cap V = \emptyset$. Hence, X is πp -normal. \Box

The following result is obvious and it can be proved easily.

Theorem 2 A space X is πp -normal if it satisfies one of the following:

- (1) For each πgp -closed set A and each gp-open set B with $A \subseteq B$, there exists a pre-open set U such that $p \operatorname{cl}(A) \subseteq U \subseteq p \operatorname{cl}(U) \subseteq p \operatorname{int}(B)$.
- (2) For each πgp -closed set A and each g^*p -open set B with $A \subseteq B$, there exists a pre-open set U such that $p \operatorname{cl}(A) \subseteq U \subseteq p \operatorname{cl}(U) \subseteq p \operatorname{int}(B)$.
- (3) For each gp-closed set A and each g^*p -open set B with $A \subseteq B$, there exists a pre-open set U such that $p \operatorname{cl}(A) \subseteq U \subseteq p \operatorname{cl}(U) \subseteq p \operatorname{int}(B)$.
- (4) For each gp-closed set A and each gp-open set B with $A \subseteq B$, there exists a pre-open set U such that $p \operatorname{cl}(A) \subseteq U \subseteq p \operatorname{cl}(U) \subseteq p \operatorname{int}(B)$.
- (5) For each gp-closed set A and each π gp-open set B with $A \subseteq B$, there exists a pre-open set U such that $p \operatorname{cl}(A) \subseteq U \subseteq p \operatorname{cl}(U) \subseteq p \operatorname{int}(B)$.
- (6) For each g^*p -closed set A and each gp-open set B with $A \subseteq B$, there exists a pre-open set U such that $p \operatorname{cl}(A) \subseteq U \subseteq p \operatorname{cl}(U) \subseteq p \operatorname{int}(B)$.
- (7) For each g^*p -closed set A and each g^*p -open set B with $A \subseteq B$, there exists a pre-open set U such that $p \operatorname{cl}(A) \subseteq U \subseteq p \operatorname{cl}(U) \subseteq p \operatorname{int}(B)$.
- (8) For each g^*p -closed set A and each πgp -open set B with $A \subseteq B$, there exists a pre-open set U such that $p \operatorname{cl}(A) \subseteq U \subseteq p \operatorname{cl}(U) \subseteq p \operatorname{int}(B)$.

3 Characterizations of Almost *p*-regularity

Let us recall the following definition.

Definition 2 A space X is called a *p*-regular (resp. an almost *p*-regular) if for each closed (resp. closed domain) set F and each $x \notin F$, there exist disjoint pre-open sets U and V in X such that $x \in U$ and $F \subseteq V$, [6,12].

In view of the fact that if A is a π -closed and $x \notin A$, then there exists a closed domain set D such that $A \subseteq D$ and $x \notin D$, we present the following result that gives a useful characterization of almost p-regular spaces and it can be proved easily.

Theorem 3 A space X is an almost p-regular if and only if for each π -closed set F and each $x \notin F$, there exist disjoint pre-open sets U and V in X such that $x \in U$ and $F \subseteq V$.

Observe that if U and V are disjoint pre-open sets in X, then $pcl(U) \cap V = \emptyset$ and $U \cap pcl(V) = \emptyset$. Now, the following theorem is useful for giving some other characterizations of almost p-regular spaces.

Theorem 4 For a space X, the following statements are equivalent:

- (a) X is almost p-regular.
- (b) For each x ∈ X and for each π-open set V with x ∈ V, there exists a pre-open set U such that x ∈ U ⊆ p cl(U) ⊆ V.
- (c) For each $x \in X$ and for each π -open set V with $x \in V$, there exists a g^*p -open set U such that $x \in U \subseteq p \operatorname{cl}(U) \subseteq V$.
- (d) For each $x \in X$ and for each π -open set V with $x \in V$, there exists a gp-open set U such that $x \in U \subseteq p \operatorname{cl}(U) \subseteq V$.
- (e) For each x ∈ X and for each π-open set V with x ∈ V, there exists a πgp-open set U such that x ∈ U ⊆ p cl(U) ⊆ V.
- (f) Every π -closed subset A of X is expressible as an intersection of some pre-closed preneighborhoods of A.
- (g) Every π -closed set A is identical with the intersection of all pre-closed pre-neighborhoods of A.
- (h) For every set A and every π -open set B such that $A \cap B \neq \emptyset$, there exists a pre-open set G such that $A \cap G \neq \emptyset$ and $p \operatorname{cl}(G) \subseteq B$.
- (i) For every non-empty set A and every π-closed set B such that A ∩ B = Ø, there exist disjoint pre-open sets G and H such that A ∩ G ≠ Ø and B ⊆ H.

Proof Observe that $(a) \Longrightarrow (b) \Longrightarrow (c) \Longrightarrow (d) \Longrightarrow (e) \Longrightarrow (f) \Longrightarrow (g) \Longrightarrow (h) \Longrightarrow (i) \Longrightarrow (a)$. Now, we prove some of these implications and the others can be proved as the same arguments.

 $(a) \Longrightarrow (b)$. Let V be a π -open subset of X such that $x \in V$. Then, $x \notin X \setminus V$, where $X \setminus V$ is π -closed. Since X is almost p-regular, then by the Theorem 3 there exist pre-open sets U_1 and U_2 in X such that $x \in U_1$, $X \setminus V \subseteq U_2$ and $U_1 \cap U_2 = \emptyset$. Thus, we have $p \operatorname{cl}(U_1) \cap U_2 = \emptyset$. Let $U = U_1$. Then, we have $x \in U \subseteq p \operatorname{cl}(U) \subseteq V$.

 $(b) \Longrightarrow (f)$. Let A be a π -closed subset of X. For each $x \notin A$, we have $x \in X \setminus A$, where $X \setminus A$ is π -open. By (b), there exist a pre-open set U_x such that $x \in U_x \subseteq p \operatorname{cl}(U_x) \subseteq X \setminus A$. Let $H_x = X \setminus p \operatorname{cl}(U_x)$. Then, H_x is pre-open subset of X such that $A \subseteq H_x$ and $U_x \cap H_x = \emptyset$. Thus, $U_x \cap p \operatorname{cl}(H_x) = \emptyset$. Therefore, for each $x \notin A$ we have $A \subseteq H_x$ and $x \notin p \operatorname{cl}(H_x)$. Now, we shall show that $A = \bigcap_{x \notin A} p \operatorname{cl}(H_x)$. Since $A \subseteq p \operatorname{cl}(H_x)$ for each $x \notin A$, then

$$A \subseteq \bigcap_{x \notin A} p \operatorname{cl}(H_x) \tag{1}$$

Now, let $y \in \bigcap_{x \notin A} p \operatorname{cl}(H_x)$. Then, $y \in p \operatorname{cl}(H_x)$ for each $x \notin A$. Thus, $y \notin U_x$ for each $x \notin A$. Therefore, $y \notin \bigcup_{x \notin A} U_x$. Since $X \setminus A \subseteq \bigcup_{x \notin A} U_x$, then $y \notin X \setminus A$. Hence, $y \in A$. Therefore,

$$\bigcap_{x \notin A} p \operatorname{cl}(H_x) \subseteq A \tag{2}$$

From (1) and (2), we have $A = \bigcap_{x \notin A} p \operatorname{cl}(H_x)$, where each $p \operatorname{cl}(H_x)$ is pre-closed preneighborhood of A.

 $(f) \Longrightarrow (g)$. Let A be a π -closed subset of X and $\{F_{\alpha}\}_{\alpha \in \Lambda}$ be a family of all pre-closed pre-neighborhoods of A. Then,

$$A \subseteq \bigcap_{\alpha \in \Lambda} F_{\alpha}$$

But by (f), there is a subset $S \subseteq \Lambda$ such that

$$A = \bigcap_{s \in S} F_s \supseteq \bigcap_{\alpha \in \Lambda} F_\alpha$$

Thus, $A = \bigcap_{\alpha \in \Lambda} F_{\alpha}$. Hence, A is identical with intersection of all pre-closed pre-neighborhoods of it.

 $(g) \Longrightarrow (h)$. Let A be any set and let B be a π -open subset of X such that $A \bigcap B \neq \emptyset$. Thus, there exists an element $x \in A \bigcap B$. Since $X \setminus B$ is π -closed, then by (g) we have $X \setminus B = \bigcap_{\alpha \in \Lambda} M_{\alpha}$, where $\{M_{\alpha}\}_{\alpha \in \Lambda}$ is a family of all pre-closed pre-neighborhoods of $X \setminus B$. Since $x \in B$, then $x \notin X \setminus B = \bigcap_{\alpha \in \Lambda} M_{\alpha}$. Then, $x \notin M_{\alpha}$ for some $\alpha \in \Lambda$. Since M_{α} is preneighborhood of $X \setminus B$, then there exists a pre-open set H such that $X \setminus B \subseteq H \subseteq M_{\alpha}$. Let $G = X \setminus M_{\alpha}$. Then, G is pre-open subset of X such that $x \in G$. Since $x \in A$, then $x \in G \cap A$. Hence, $G \cap A \neq \emptyset$. Also, $X \setminus H$ is pre-closed. Therefore, $G = X \setminus M_{\alpha} \subseteq X \setminus H \subseteq B$. Thus, $p \operatorname{cl}(G) \subseteq B$.

 $(h) \Longrightarrow (i)$. Let A be any set and let B be a π -closed subset of X such that $A \cap B = \emptyset$. Then, $X \setminus B$ is π -open such that $A \subseteq X \setminus B$. So, we have $A \cap (X \setminus B) \neq \emptyset$. By (h), there exists a pre-open set G such that $A \cap G \neq \emptyset$ and $p \operatorname{cl}(G) \subseteq X \setminus B$. Let $H = X \setminus p \operatorname{cl}(G)$. Then, H is pre-open subset of X such that $G \cap H = \emptyset$. Therefore, there exist disjoint pre-open subsets G and H of X such that $A \cap G \neq \emptyset$ and $B \subseteq H$. $(i) \Longrightarrow (a)$. Let A be a π -closed subset of X such that $x \notin A$. Then, $\{x\} \bigcap A = \emptyset$. By (i), there exist disjoint pre-open subsets G and H of X such that $\{x\} \bigcap G \neq \emptyset$ and $A \subseteq H$. Thus, G and H are disjoint pre-open subsets of X such that $x \in G$ and $A \subseteq H$. Hence, X is almost p-regular. \Box

Now, we have the following corollary.

Corollary 1 A space X is an almost p-regular if and only if for any π -closed set A and for each $x \notin A$, there exists a pre-open set U such that $x \in U$ and $p \operatorname{cl}(U) \cap A = \emptyset$.

4 Some Relationships Between πp -normality and Almost *p*-regularity

First, we recall the following definitions.

Definition 3 A space X is called *strongly-compact*, [6], if every pre-open cover of X has a finite subcover.

Definition 4 A space X is called p_1 -paracompact (resp. p_2 -paracompact), [6], if every pre-open cover of X has a locally finite open (resp. pre-open) refinement.

Definition 5 A collection $\mathcal{F} = \{F_{\alpha} : \alpha \in \Lambda\}$ of subsets of X is called *pre-locally finite*, [20], if for each $x \in X$, there exists a pre-open set W_x in X such that $x \in W_x$ and W_x intersects at most finitely many members of \mathcal{F} .

Definition 6 A space X is called p_3 -paracompact, [20], if every pre-open cover of X has a pre-locally finite pre-open refinement.

Observe that every p_1 -paracompact is p_2 -paracompact as well as paracompact, and every paracompact is p_3 -paracompact, [20]. The following theorem can be proved easily.

Theorem 5 Let $\{A_{\alpha} : \alpha \in \Lambda\}$ be a pre-locally finite collection of subsets of a space X. Then, $p \operatorname{cl}(\bigcup_{\alpha \in \Lambda} A_{\alpha}) = \bigcup_{\alpha \in \Lambda} p \operatorname{cl}(A_{\alpha}).$

Now, we prove the following result.

Theorem 6 Every almost p-regular p_3 -paracompact space is πp -normal.

Proof Let X be an almost p-regular p_3 -paracompact space. Let A be a π -closed and B be a closed set in X such that $A \cap B = \emptyset$. Then, for each $x \in B$ we have $x \notin A$. By almost p-regularity of X and by the Corollary 1, there exists a pre-open set U_x in X such that $x \in U_x$ and $p \operatorname{cl}(U_x) \cap A = \emptyset$. So, the family $\{U_x : x \in B\} \bigcup \{X \setminus B\}$ is pre-open cover for X. Since X is p_3 -paracompact, then there exists a pre-locally finite pre-open refinement of it. Let $\mathcal{U} = \{U_\alpha : \alpha \in \Lambda\}$ denote to the members of the family which have a non-empty intersection with B. Let $V_1 = \bigcup_{\alpha \in \Lambda} U_\alpha$, which is pre-open set in X such that $B \subseteq V_1$. Let $V_2 = X \setminus \bigcup_{\alpha \in \Lambda} p \operatorname{cl}(U_\alpha)$, which is pre-open set in X, because $\{U_\alpha : \alpha \in \Lambda\}$ is pre-locally finite and $p \operatorname{cl}(\bigcup_{\alpha \in \Lambda} U_\alpha) = \bigcup_{\alpha \in \Lambda} p \operatorname{cl}(U_\alpha)$ (by the Theorem 5). Thus, $V_1 \cap V_2 = \emptyset$. Since \mathcal{U}

is a refinement and each member of it intersects B, then for each $U_{\alpha} \in \mathcal{U}$ there exists $x \in B$ such that $U_{\alpha} \subseteq U_x$. Now, $p \operatorname{cl}(U_{\alpha}) \subseteq p \operatorname{cl}(U_x) \subseteq X \setminus A$. Thus, $A \subseteq X \setminus p \operatorname{cl}(U_x) \subseteq X \setminus p \operatorname{cl}(U_{\alpha})$ for each $U_{\alpha} \in \mathcal{U}$. So, $A \subseteq \bigcap_{\alpha \in \Lambda} (X \setminus p \operatorname{cl}(U_{\alpha})) = X \setminus \bigcup_{\alpha \in \Lambda} p \operatorname{cl}(U_{\alpha}) = V_2$. Thus, $A \subseteq V_2$. So, we have two pre-open sets V_1 and V_2 in X such that $B \subseteq V_1$, $A \subseteq V_2$ and $V_1 \cap V_2 = \emptyset$. Therefore, X is πp -normal. \Box

Since every p_1 -paracompact (resp. p_2 -paracompact, paracompact) space is p_3 -paracompact, then we have the following corollary.

Corollary 2 Every almost *p*-regular, p_2 -paracompact (resp. p_1 -paracompact, paracompact) space is πp -normal.

Now, we prove the following result.

Theorem 7 Every almost p-regular strongly-compact space is πp -normal.

Proof Let X be an almost p-regular strongly compact space. Let A and B be any disjoint closed subsets of X such that A is π -closed. Since $A \cap B = \emptyset$, then for each $x \in B$ we have $x \notin A$. By almost p-regularity of X and by the Corollary 1, we have for each $x \in B$ there exists a pre-open subset U_x of X such that $x \in U_x$ and $p \operatorname{cl}(U_x) \cap A = \emptyset$. Therefore, the family $\{U_x : x \in B\} \bigcup \{X \setminus B\}$ is a pre-open cover of X. Since X is strongly compact, then there exists a finite set $\{x_1, x_2, ..., x_n\} \subset B$ such that $X = (\bigcup_{i=1}^n U_{x_i}) \bigcup \{X \setminus B\}$. Now, let $G = \bigcup_{i=1}^n U_{x_i}$. Then, G is pre-open set in X such that $B \subseteq G$ and $p \operatorname{cl}(G) \cap A = \emptyset$. Thus, $A \subseteq X \setminus p \operatorname{cl}(G)$. Let $H = X \setminus p \operatorname{cl}(G)$. Then, H is pre-open set in X such that $A \subseteq H$. Therefore, G and H are pre-open sets in X such that $A \subseteq H$, $B \subseteq G$ and $H \cap G = \emptyset$. Hence, X is πp -normal. \Box

Since every regular (resp. almost regular) space is almost p-regular, then we get the following corollary.

Corollary 3 Every almost regular (resp. regular), strongly-compact space is πp -normal.

5 Preservation Theorems of πp -normal Spaces

In this section, we need to recall the definitions of some functions that help us to give various preservation theorems of πp -normality. The following definitions are in [21], [22], [12], [6], [9], [23], [24] and [25].

Definition 7 A function $f: X \longrightarrow Y$ is said to be:

- (i) almost continuous (resp almost π -continuous, almost p-continuous or almost precontinuous) if $f^{-1}(F)$ is closed (resp. π -closed, pre-closed) set in X for each closed domain subset F of Y.
- (ii) π -continuous (resp. p-continuous or pre-continuous) if $f^{-1}(F)$ is π -closed (resp preclosed) set in X for each closed subset F of Y.

On πp -Normal Spaces

- (iii) almost closed (resp. rc-preserving, almost π -closed) function if f(F) is closed (resp. closed domain, π -closed) set in Y for each closed domain subset F of X.
- (iv) weakly open if for each open subset U of X, $f(U) \subseteq int(f(\overline{U}))$.
- (v) pre gp-continuous if $f^{-1}(F)$ is gp-closed in X for every pre-closed subset F of Y.
- (vi) *R-map* (resp. *completely continuous*) if $f^{-1}(V)$ is open domain in X for every open domain (resp. open) subset V of Y.
- (vii) pre gp-closed if f(F) is gp-closed set in Y for every pre-closed subset F of X.
- (viii) almost pre-irresolute if for each $x \in X$ and each pre-neighborhood V of f(x) in Y, $p \operatorname{cl}(f^{-1}(V))$ is a pre-neighborhood of x in X.
- (ix) pre-closed (resp pre-open, semi-open) if f(F) is pre-closed (resp pre-open, semi-open) set in Y for each pre-closed (resp. pre-open, semi-open) subset F of X.
- (x) Mp-closed or M-preclosed (resp. Mp-open or M-preopen) if f(U) is pre-closed (resp. pre-open) set in Y for each pre-closed (resp. pre-open) set U in X.

Now, we give the following definition.

Definition 8 A function $f : X \longrightarrow Y$ is said to be *weakly p-open* (or *weakly pre-open*) if for each pre-open subset U of X, we have $f(U) \subseteq p \operatorname{int}(f(p \operatorname{cl}(U)))$.

The following lemmas, which are in [23], will be needed.

Lemma 1 If a function $f: X \longrightarrow Y$ is pre-open continuous function, then f is Mp-open.

Lemma 2 If a function $f : X \longrightarrow Y$ is weakly open continuous function, then f is Mp-open and R-map.

Lemma 3 If a function $f : X \longrightarrow Y$ is semi-open pre-continuous function, then f is pre-irresolute (or briefly; *p*-irresolute).

Lemma 4 A surjection $f: X \longrightarrow Y$ is pre *gp*-closed if and only if for each subset *B* of *Y* and each pre-open subset *U* of *X* containing $f^{-1}(B)$, there exists a *gp*-open subset *V* of *Y* such that $B \subset V$ and $f^{-1}(V) \subseteq U$.

Clearly, every pre-irresolute function is an almost pre-irresolute, every completely continuous function is R-map as well as π -continuous and also:

 π -continuous \Longrightarrow continuous \Longrightarrow pre-continuous \Longrightarrow gp-continuous

Now, we investigate various preserving theorems for πp -normal spaces.

Theorem 8 If $f :\longrightarrow Y$ is an *R*-map pre-open continuous almost pre-irresolute surjection and X is πp -normal, then Y is πp -normal. **Proof** Let A be a closed and B be a π -open subset of Y such that $A \subseteq B$. Since f is *R*-map continuous function, then we have $f^{-1}(A)$ is closed and $f^{-1}(B)$ is π -open subsets of X such that $f^{-1}(A) \subseteq f^{-1}(B)$. Since X is πp -normal, then by the Theorem 1 there exists a pre-open subset U of X such that $f^{-1}(A) \subseteq U \subseteq p \operatorname{cl}(U) \subseteq f^{-1}(B)$. Then, $f(f^{-1}(A)) \subseteq f(U) \subseteq f(p \operatorname{cl}(U)) \subseteq f(f^{-1}(B))$. Since f is pre-open continuous almost preirresolute surjection, then by the Lemma 1, we have f is Mp-open. Therefore, f(U) is pre-open subset of Y such that $A \subseteq f(U) \subseteq p \operatorname{cl}(f(U)) \subseteq B$. Hence by the Theorem 1, Y is πp -normal. \Box

Theorem 9 If $f : X \longrightarrow Y$ is a pre-open π -continuous almost pre-irresolute surjection and X is πp -normal, then Y is πp -normal.

Proof The proof is entirely analogous to the proof of the Theorem 8. \Box

Theorem 10 If $f : X \longrightarrow Y$ is a weakly open π -continuous almost pre-irresolute surjection and X is π p-normal, then Y is π p-normal.

Proof Let f be a weakly open π -continuous almost pre-irresolute surjection from a πp -normal space X to a space Y. Since f is weakly open continuous function, then by the Lemma 2 f is Mp-open and R-map. Therefore, by the Theorem 8 we have Y is πp -normal space. \Box

Theorem 11 If $f : X \longrightarrow Y$ is a pre-open π -continuous semi-open surjection and X is πp -normal, then Y is πp -normal.

Proof The proof follows from Theorem 8 using the Lemma 2 and the Lemma 3. \Box

Theorem 12 If $f : X \longrightarrow Y$ is a pre gp-closed π -continuous surjection and X is πp -normal, then Y is πp -normal.

Proof Let A and B be any disjoint closed subsets of Y such that A is π -closed. Then by π -continuity of f, we have $f^{-1}(A)$ and $f^{-1}(B)$ are disjoint π -closed subsets of X. Since X is πp -normal, then there exist disjoint pre-open subsets U and V of X such that $f^{-1}(A) \subseteq U$ and $f^{-1}(B) \subseteq V$. By the Lemma 4, there exist gp-open (hence πgp -open) subsets G and H of Y such that $A \subseteq G$, $B \subseteq H$, $f^{-1}(G) \subseteq U$ and $f^{-1}(H) \subseteq V$. Since U and V are disjoint, then G and H are also disjoint. Thus, we have $A \subseteq pint(G)$, $B \subseteq pint(H)$ and $pint(G) \cap pint(H) = \emptyset$. Therefore, pint(G) and pint(H) are disjoint pre-open subsets of Y such that $A \subseteq pint(G)$ and $B \subseteq pint(H)$. Hence, Y is πp -normal. \Box

Theorem 13 If $f : X \longrightarrow Y$ is an *R*-map continuous pre gp-closed surjection and X is πp -normal, then Y is πp -normal.

On πp -Normal Spaces

Proof Let A and B be any disjoint closed subsets of Y such that A is π -closed. Since f is R-map continuous function, then $f^{-1}(A)$ and $f^{-1}(B)$ are disjoint closed subsets of X such that $f^{-1}(A)$ is π -closed. By πp -normality of X, there exist disjoint pre-open subsets U and V of X such that $f^{-1}(A) \subseteq U$ and $f^{-1}(B) \subseteq V$. By continuing as the same proof as that of the Theorem 12, we obtain two disjoint pre-open subsets G and H of Y such that $A \subseteq G$ and $B \subseteq H$. Hence, Y is πp -normal. \Box

The following statements can be proved easily by using arguments similar to those in the above theorems as well as by using the Definition 7.

Theorem 14 Let $f : X \longrightarrow Y$ be a function. Then,

- (i) If f is completely continuous pre gp-closed surjection and X is mildly p-normal, then Y is πp-normal.
- (ii) If f is a continuous pre gp-closed surjection and X is pre-normal, then Y is πp -normal.
- (iii) If f is a π-continuous, weakly open pre gp-closed surjection and X is πp-normal, then Y is πp-normal.
- (iv) If f is a pre gp-continuous closed rc-preserving injection and Y is πp -normal, then X is πp -normal.
- (v) If f is a pre-gp-continuous closed injection and Y is pre-normal, then X is π p-normal.
- (vi) If f is π -continuous, weakly p-open, pre-closed surjection and X is π p-normal, then Y is π p-normal.
- (vii) If f is a pre-continuous, almost π -closed, open injection and Y is πp -normal, then X is πp -normal.
- (viii) If f is an almost p-continuous closed rc-preserving injection function and Y is π -normal, then X is π p-normal.
- (ix) If f is continuous, an almost π -continuous and pre gp-closed surjection and X is πp -normal, then Y is πp -normal.
- (x) If f is a continuous, an almost continuous pre gp-closed surjection and X is prenormal, then Y is πp -normal.

6 Conclusion

We used the notion of π -generalized closed sets to obtain various characterizations of πp normality and we established some various preservation theorems of it. Also, some characterizations of almost *p*-regularity were given and some relationships between πp -normality and almost *p*-regularity were presented.

Acknowledgements

The authors would like to thank University Sains Malaysia, Research University Grant and USM Fellowship for funding and supporting this research.

References

- [1] Kuratowski, C. Topology I. vol. 4th Edition(in French). New York: Hafner. 1958.
- [2] Zaitsev, V. On certain classes of topological spaces and their bicompactifications. Doklady Akademii Nauk SSSR. 1968. 178: 778–779.
- [3] Dugundji, J. Topology. London: Allyn and Bacon, Inc. 1966.
- [4] Engelking, R. General Topology. vol. 6. Poland: Berlin: Heldermann (Sigma series in pure mathematics). 1989. ISBN 3-88538-006-4. URL http://www.heldermann.de/ SSPM/SSPM06/sspm06.htm.
- [5] Patty, C. Foundation of Topology. Boston: PWS-KENT Publishing Company. 1993. ISBN 0-534-93264-9. URL http://www.bookfinder.com/dir/i/Foundationsof-Topology/0534932649.
- [6] Mashhour, A. S., El-Monsef, M. E. A. and Hasanein, I. A. On pretopological spaces. Bulletin Mathématique de la Société des Scinces Mathématiques de la République Socialiste de Roumanie. 1984. 28(76): 39–45.
- [7] Crossley, S. G. and Hildebrand, S. K. Semiclosure. Texas Journal of Science. 1970. 22: 99–112.
- [8] Paul and Bhattacharyya. On p-normal spaces. Soochow Journal of Mathematics. 1995. 21(3): 273–289.
- [9] Navalagi, G. B. p-normal, almost p-normal and mildly p-normal spaces. Topology Atlas Preprint # 427.. 1999. URL http://at.yorku.ca/i/d/e/b/71.htm.
- [10] Thabit, S. A. S. and Kamaruhaili, H. πp-normal topological spaces. Int. Journal of Math. Analysis. 2012. 6(21): 1023-1033. URL http://www.m-hikari.com/ijma/ ijma-2012/.../thabitIJMA21-24-2012.pdf.
- [11] Kalantan, L. π-normal topological spaces. Filomat. 2008. 22-1: 173-181. URL http://www.doiserbia.nb.rs/img/doi/0354-5180/2008/0354-51800801173K.pdf.
- [12] Mashhour, A. S., El-Monsef, M. E. A. and El-Deeb, S. N. On precontinuous and weak precontinuous mappings. *Proceedings of the Mathematical and Physical Society* of Egypt. 1982. 53: 47–53.
- [13] V.Popa. On characterizations of h-almost continuous functions. *Glasnik Matematicki*. 1987. 22(42): 157–161.

- [14] Levine, N. Generalized closed sets in topology. Rendiconti del Circolo Matematico di Palermo. 1970. 19: 89–96.
- [15] Sundaram, P. and John, M. S. On w-closed sets in topology. Acta Ciencia Indica. 2000. 4: 389–392.
- [16] Dontchev, J. and Noiri, T. Quasi- normal spaces and πg -closed sets. Acta Mathematica Hungarica. 2000. 89(3): 211–219.
- [17] Maki, H., Umbehara, J. and Noiri, T. Every topological space is pre-t₁. Memoirs of the Faculty of Science Kochi University Series A (Mathematics). 1996. 17: 33–42.
- [18] Veerakumar, M. K. R. S. g*-preclosed sets. Acta Ciencia Indica. 2002. XXVIIIM(1): 51–60.
- [19] Sarsak, M. S. and Rajesh, N. π-generalized semi-preclosed sets. International Mathematical Forum. 2010. 5(12): 573–578.
- [20] Al-Zoubi, K. and Al-Ghour, S. On p₃-paracompact spaces. International Journal of Mathematics and Mathematical Sciences, Hindawi Publishing Corporation. 2007. (2007)(Article ID 80697): 12 pages. doi:10.1155/2007/80697.
- [21] Aslim, A., Guler, A. G. and Noiri, T. On πgs-closed sets in topological spaces. Acta Mathematica Hungarica. 2006. P.T.1, 4: 275–283.
- [22] Benchalli, S. S. and Wali, R. S. On rw-closed sets in topological spaces. Bulletin of Malaysian Mathematical Sciences Society. 2007. (2)30(2): 99–110.
- [23] Park, J. H. Almost p-normal, mildly p-normal spaces and some functions. Chaos, Solitions and Fractals. 2003. 18: 267–274.
- [24] Park, J. K. and Park, J. H. Mildly generalized closed sets, almost normal and mildly normal spaces. *Chaos, Solitions and Fractals*. 2004. 20: 1103–1111.
- [25] Singal, M. K. and Singal, A. R. Almost-continuous mappings. Yokohama Mathematical Journal. 1968. 16: 63–73.