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Abstract In ship motion stability, generally, capsizing occurs due to the fol-
lowing effects: loss in directional control such as in broaching-to; loss in stabil-
ity (pure loss of stability) and transient effect like parametric excitation. It is
generally accepted that hydrodynamic forces due to waves are dominant that
cause vessels’ capsizing. It is generally accepted that numerical simulation using
computers are reliable to study the ship motions. As a result, the 6 degrees-of-
freedom time domain simulation will be used to study the ship motions especially
the large amplitude motions. In this paper, we adopt three classes of numerical
approach namely explicit Runge-Kutta, implicit Runge-Kutta and Rosenbrock-
type Runge-Kutta methods in order to verify the effect of stiffness in ship motion
simulation.

Keywords Time Domain Ship Simulation, Explicit Runge-Kutta method, Im-
plicit Runge-Kutta method, Rosenbrock-type Runge-Kutta method. Stiff Ordi-
nary Differential Equations.

Abstrak Dalam aspek kestabilan pergerakan kapal, secara amnya, kapal terse-
but terbalik disebabkan oleh keadaan berikut: kehilangan kawalan arah seperti
“broaching-to”; kehilangan keseimbangan (kehilangan keseimbangan tulen) dan
keadaan ketidaktetapan seperti rangsangan parametrik. Daya hidrodinamik
merupakan daya dominan yang menyebabkan kapal terbalik. Pada masa kini,
penggunaan simulasi berpandukan komputer telah menjadi terkenal dan boleh
dipercayai untuk mengkaji pergerakan kapal. Seterusnya, simulasi enam dar-
jah kebebasan domain masa akan digunakan untuk mengkaji pergerakan kapal
khususnya pergerakan beramplitud besar. Dalam penyelidikan ini, kita menggu-
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nakan tiga kelas pendekatan berangka iaitu kaedah Runge-Kutta jenis tak ter-
sirat, kaedah Runge-Kutta jenis tersirat dan kaedah Runge-Kutta jenis Rosen-
brock untuk mengkaji kesan kaku dalam simulasi pergerakan kapal.

Katakunci Simulasi kapal berlandas domain masa, kaedah Runge-Kutta je-
nis tak tersirat, kaedah Runge-Kutta jenis tersirat, kaedah Runge-Kutta jenis
Rosenbrock. Sistem Persamaan Terbitan Biasa kaku.

1 Background

The study of stability in following seas has been conducted by many distinguished re-
searchers including W. Froude, Wendel and Paulling [10]. The prediction of capsizing in
following/quartering seas was studied through the research carried out in the University
of California by Paulling and his team of researchers (Paulling et al, [11]). Subsequently,
Paulling et al [11] and Hamamoto & Akiyoshi, [7] also use the technique of simulating cap-
sizing in astern seas situation using a time domain simulation approach. This technique
becomes popular because of its capability for incorporating non-linear forces and its ability
to simulate non-linear modes of motion.
The presently developed mathematical model follows the ideas introduced by Paulling et
al, [11]. In his model, Paulling emphasized the dominant effect of Froude-Krylov forces on
the motions and capsizing characteristics of a vessel in quartering/following seas. However,
according to Umeda et al [13], the diffraction effect is inevitable since it will affect the
wave-induced sway force, yaw moment and roll moment. Subsequently, this research adopts
a six-degrees-of-freedom system which incorporates Froude-Krylov forces and diffraction
effect. In the present model, the main interest is on the detection of stiffness effect of ship
motions.

2 Equations of Motion

A vessel is assumed as a rigid body having six degrees of freedom. For this vessel, Euler
equations of motion can be described as follows:
m(V̇ + ω × V ) = F
Ḣ + ω ×H = G (1)

where m is the mass and H is the angular momentum of the vessel. G and F are the
external force and moment vectors acting on the vessel. V and ω are the linear and angular
velocity vectors. Then V and ω can be resolved into u, v and w along the respective x, y, z
axis and p, q and r about each axis.
For six-degrees-of-freedom, the equations of motion referred to body axes can be written as
follows :

Linear motions and forces
Surge(x)
m(u̇+ wq − vr) = Fx (2)
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Sway(y)
m(v̇ + ur − wp) = Fy (3)
Heave(z)
m(ẇ + vp− uq) = Fz (4)

Angular motions and moments
Roll(φ)
Ixṗ+ (Iz − Iy)qr = K (5)
Pitch(θ)
Iy q̇ + (Ix − Iz)rp = M (6)
Y aw(ψ)
Iz ṙ + (Iy − Ix)pq = N (7)

where Ix, Iy and Iz are the principal moments of inertia about the x, y and z axes re-
spectively. The corresponding external forces and moments acting are Fx, Fy, Fz ,K,M and
N . In addition,u, v and w are the velocity vectors along the x, y and z axes.

2.1 Treatment of Forces/Moments

Usually, the fluid forces comprise of Froude-Krylov and diffraction forces or moments act-
ing on the vessel. In ship simulation program, the vessel heading is controlled by rudder
moment which is activated by autopilot system as mentioned by Clarke et al, [2].
As indicated by Equations (1), the fluid force, F and moment, G on the vessel can be de-
duced from the integration of the pressure acting over the total wetted surface area:
F = −

∫∫
S

p · ndS (8)

G = −
∫∫
S

p · (n× r)dS (9)

where,

S is the wetted surface of the body,
n is the unit normal vector directed out of the body surface,
r is the position vector from the C.G. of the vessel, and
p is the pressure at a point on the surface at the instantaneous time, t.

Based on the potential flow theory, the pressure, p acting on the surface element can be
described by Bernoulli’s equation in the following manner:
P = −ρgz − ρ∂Φ

∂t − 1
2ρ|∇Φ|2 (10)

As indicated by Equations (8) to (10), the fluid-dynamic force and moment can be deduced
by solving the total velocity potential. The total velocity potential can be expressed as
follows:
Φ(x, y, z, t) = [−Ux+ φs(x, y, z)] + φT e

iωet (11)
The term (−Ux + φs) is a time independent steady part due to the steady flow (Ux) and
steady wave pattern (φs) surrounding the vessel. The last term is the time dependent veloc-
ity potential associated with unsteady body motions, incident and diffracted waves. This
velocity potential, φT can be further expressed as follows:

φT = φI + φD +
6∑

j=1

ηjφRj (12)
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where,
φI is the incident wave potential,
φD is the diffracted wave potential, and
φRj is the generated/radiation wave potential due to unit motion in jth direction.

The forces and moments derived from φI and φD are usually described as wave excitation
forces/moments. The forces/moments obtained from the incident wave potential φI are
then termed Froude-Krylov forces and moments.
However, the diffraction potential must satisfy five conditions namely: Laplace equation,
linearized free surface condition, kinematics condition on the ship hull, radiation condition
and condition at infinity (∞).
The present method adopts Ohkusu method [9] in following oblique waves and it is assumed
that the encounter frequency is very low. For simplicity, it is assumed that the ship’s beam
and draft are small compared to the length L(ε = B/L) by factors of order ε << 1. Sub-
sequently, the diffraction potential will be analyzed in inner and outer regions. Finally, the
diffracted wave profile will be included in order to modify the current wave profile.
In order to simplify the calculation of force and moment in Equations (8) and (9), the
surface integrals could be replaced by volume integrals using Gauss’s divergence theorem
as below:
F = −

∫∫∫
V

∇pdV (13)

G = −
∫∫∫

V

(∇p× r)dV (14)

According to Equation (13) and (14), the Froude-Krylov forces and moments can be ob-
tained by integrating the pressure p derived from incident wave over the entire submerged
volume V of the vesesl.

2.2 Simulation Conditons

The ship simulation also includes the smith effect, current effect and auto-pilot system.
For ship motion stability, the parameters that affect ship stability can be divided into four
groups namely: (1) the environment, (2) vessel geometry, (3) loading condition and (4)
vessel/environment interaction.
In the time domain simulation, we incorporate auto-pilot system in order to study the ship
stability as mentioned by D. Clarke, et. al. [2]. According to an auto-pilot system, the
rudder motion is governed by the equation below:
δ + tδ̇ = k1ψ + k2ψ̇ (15)
where,

• δ and δ̇ are rudder angle and velocity respectively,
• ψ and ψ̇ are yaw angle and yaw velocity respectively,
• k1 and k2 are the coefficient related to the yaw amplitude and velocity respectively.

2.3 Time Domain Integration

According to Equations (2) to (7), the motions of the vessel can be derived by solving the
Euler’s equations of motion using numerical integration. The present methods provide three
methods of numerical integration namely explicit Runge-Kutta, implicit Runge-Kutta and
Rosenbrock-type Runge-Kutta methods for a system of ordinary differential equations. A
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computer program is written in Borland C++ version 5 and executed using Pentium per-
sonal computer (PC) with Windows 95 platform. The final form of the system of equations
used is as follows:

aj ẍ+ bj ẋ+ cjx+
6∑

k 6=j

ajkẍk +
6∑

k=1

bjkẋk +
6∑

k=1

cjkxk = Fj , j = 1, . . . , 6 (16)

To derive velocities and displacements of motions, the set of accelerations need to be inte-
grated as below:

ẍ =

(
Fj − bj ẋ− cjx−

6∑
k 6=j

ajkẍk −
6∑

k=1

bjkẋk −
6∑

k=1

cjkxk

)
/aj , j = 1, . . . , 6 (17)

To integrate the above system of equations, the second - order term is transformed into first
- order system of differential equations in the following way:
Let,
y1 = x, y2 = ẋ (18)
Finally, the first-order system of ordinary differential equations become:
ẏ1 = y2 (19)

ẏ2 =

(
Fj − bjy2 − cjy1 −

6∑
k 6=j

ajk ẏ2k −
6∑

k=1

bjky2k −
6∑

k=1

cjky1k

)
/aj , j = 1, . . . , 6(20)

After substituting Equation (18) into Equation (19) & (20), the motions of the vessel in
time domain can be obtained.

3 Numerical Integration Method

In this paper, we use one-step Runge-Kutta method to calculate the ship motion. The
present method use three approaches namely explicit, implicit & Rosenbrock-type Runge-
Kutta methods. The explicit Runge-Kutta method is not applicable for stiff problem.
Implicit, even Rosenbrock-type (semi-implicit) methods, are very expensive to implement
and cannot rival explicit method in efficiency when the problem is not stiff. They are more
restricted to stiff systems, in which their superior stability properties justify the high cost
of implementation.

For explicit and implicit Runge-Kutta method, the following scheme is used:
For the system of ordinary differential equations as below:
ẏ(t) = f(t, y(t)), 0 ≤ t ≤ T, y(0) = y0, (21)
Here y(t) is a real vector of m elements and f a real-valued vector function, possibly non-
linear in the dependent and independent variables.
All the one-step Runge-Kutta formula has the form

yn+1 = yn + h
s∑

i=1

biki, (22)

where
ki = f(tn + cih, yn + h

s∑
j=1

aijkj), h = tn+1 − tn, (1 ≤ i ≤ s). (23)

The real parameters bi, ci and aij define the method. The formula above is called an s-stage
formula because it is based on s evaluations of the derivative function f . If aij = 0 for j ≥ i
and all i, then the ki can be computed in an explicit way from k1, . . . , ki−1. Such formulas
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are therefore called explicit. If aij = 0 for j > i and aii 6= 0, such Runge-Kutta methods
are called diagonally implicit. If the method is neither explicit, nor diagonally implicit, it
is just called implicit; then all ki must be computed simultaneously.

For Rosenbrock-type Runge-Kutta method, the following non-autonomous system is adopted:(
1

hγii
I − ∂f

∂y (t0, y0)
)
ui = f(t0 + αih, y0 +

i−1∑
j=1

aijuj) +
i−1∑
j=1

( cij

h )uj + γih
∂f
∂t (t0, y0). (24)

If γii 6= 0 for all i, the matrix Γ = (γij) is invertible, where

αi =
i−1∑
j=1

αij , γi =
i∑

j=1

γij . (25)

(aij) = (αij)Γ−1, (m1, . . . ,ms) = (b1, . . . , bs)Γ−1. (26)
C = diag(γ−1

11 , . . . , γ
−1
ss ) − Γ−1. (where cij elements of matrix C) (27)

For simplification of the order conditions, the following assumption is made:
γii = γ, for all i, (28)
The solution of Equation (21) is given by

yn+1 = yn +
s∑

j=1

mjuj , (29)

3.1 Explicit Runge-Kutta Method

In this paper, we adopt two explicit Runge-Kutta methods namely: 5-stages explicit Runge-
Kutta-Merson method & 7-stage Step-Control Stable Explicit Runge-Kutta1. The former is
5-stage, order 4(5) (for linear equations) or 4(3), (for nonlinear equations) which produces a
second approximation ỹ1 by using embedded method, E.Hairer et.al[6]. The latter is order
5(4), introduced by D.J. Higham & G. Hall [6]. Step-control stability will cause the step
sizes hn behave smoothly and less step rejections.

3.2 Implicit Runge-Kutta Method

Presently, we use four type of implicit Runge-Kutta methods for stiffness verification. 2-
Stages Gauss-Legendre Runge-Kutta method with 4th order is used. It is an implicit Runge-
Kutta method with the characteristic of B-stable, algebraically stable and B-convergent
behaviour. We adopt this code since it has fewer stages as well as of higher order. The
second method is 3-stages 4th order Diagonally Implicit Runge-Kutta method. We also
adopt 3-stages Radau IIA method which is A-stable, L-stable, stiffly accurate and high
order with order 5. Finally, we adopt a 4th order 5-stages singly diagonal implicit Runge-
Kutta method with L-stable characteristic. It also satisfies the stiffly accurate behaviour.

3.3 Semi-Implicit Runge-Kutta Methods

In this research, two approaches are adopted by using accurate Jacobian or inaccurate
Jacobian matrices as mentioned below :

Approach I : 3rd order linearly implicit L-stable Method

1The coefficients of this method are used for stiffness detection.
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We adopt Type A1 method for stiff ordinary differential equation which was introduced by
R.E. Scraton (for autonomous problem, R.E. Scraton [12]).
We consider a system of differential equations:
ẏ = f(y) (30)
where,

y is a vector,

f is a vector-valued function, and

ẏ denotes differentiation with respect to the independent variable t.

The values of x, y and f(y) at the beginning and end of a step are denoted by x0, y0, f0 and
x1, y1, f1 respectively, the interval (x1 − x0) being denoted by h.
We get,
z0 = (I − 0.55hK)−1hf0
z1 = (I − 0.55hK)−1z0
y(2) = y0 + 1.0490950708z0 − 0.1857285894z1
z2 = (I − 0.55hK)−1(z1 − 1.1601352857hf (2))
y(3) = y0 + 0.5286554427z0 − 0.1943049474z1 − 0.3114735159z2
z3 = (I − 0.55hK)−1(z2 + 0.6876300395hf (2) + 1.0701819460hf (3))
y1 = y0 + 1.0460771164z0 − 0.9233005966z1 − 0.4975710601z2 + 0.4991903534z3 (31)
E = −0.1195847349(y1−y0)+0.0148758403hf0+0.0408237989hf (2)+0.0638850956hf (3)(32)

where E is the approximation error. The z1, z2, z3 are the interim values and y(i) is an
intermediate value of y.

Approach II : Runge-Kutta Kaps-Rentrop Method

This is a 4th order, 4-stages Rosenbrock-type method which requires accurate Jacobian
evaluation. It involves the evaluation of ∂f(t,y)

∂t for non-autonomous system. It is A(α) −
stable for α ≤ 89.3o and |R(∞)| = 0.454.
The value of coefficients is not unique and is calculated by solving a system of nonlinear
equation which is the whole set of order conditions.
For Kaps-Rentrop method with γ = 0.231, we derived the following coefficients values:
(m1,m2,m3,m4) = (4.78507293, 7.506159769, 0.543508635, 0.489547912), (33)
(α1, α2, α3, α4) = (0.0, 0.462, 1.128542758, 1.128542758), (34)

(aij) =




0 0 0 0
2.0 0 0 0

6.345080376 8.508038521 0 0
6.345080376 8.508038521 0.0 0


 (35)

(cij) =




0 0 0 0
−5.071675325 0 0 0
−0.1468358363 −16.17294805 0 0
−2.537290077 −32.42414949 −4.80617153 0


 (36)
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γi =
i∑

j=1

γij =




γ
−0.270629667+ γ

1.003223868− 0.863004681 + γ
0.777813216− 0.772055131− 0.256462119+ γ


 (37)

4 Rate of Convergence

According to Butcher [1], if the iterated approximations to y (where ẏ = f(t, y)) are y[0],
y[1], y[2], . . ., then the convergence rate, r can be estimated as

r ≈ ‖y[k] − y[k−1]‖/‖y[k−1] − y[k−2]‖ for k= 2, 3, ... . (38)

By adjusting the value of h, the convergence rate can be set between 0 and 1. If r is
too close to 0, the number of steps will be excessive, whereas if r is close to 1, the conver-
gence will be slow. Since the convergence rate is subjected to change, we use the average
convergence rate. Butcher pointed out that the optimal value of r is approximated to 0.366
(e−1). Butcher further point out that the value of r can be used to determine an appropriate
stepsize. However, in ship motion simulation, it is required to calculate the motion results
in a certain time which is requested by the user/customer. Consequently, the steps size
control mechanism is not required/allowed.

5 Automatic Stiffness Detection

In order to detect the stiffness of a system of ordinary differential equation, we adopt the
ideas of Shampine & Hiebert [E.Hairer,5] by introducing two error estimators namely :
err1 = y1 − ŷ1 and second error estimator ẽrr1 where ẽrr1 ≈ Ẽ(hJ)d0 which we defined
E(z) = R(z) − R̂(z) where R(z) is stability function. The second error estimator must
satisfy the following conditions:

(i) |Ẽ(z)| ≤ θ|E(z)| on ∂S ∩ C− with a small θ < 1;

(ii) ẽrr1 = O(h2) for h → 0.

The condition (ii) leads to ‖ẽrr1‖ � ‖err1‖ when the problem is not stiff. The above
conditions imply that if
‖ ẽrr1‖ < ‖err1‖ (39)
occurs several times, β (say 15 times as mentioned by E.Hairer,[5]) in succesion, then a stiff
code might be more efficient near the yn+1.
For the construction of ẽrr1 we put
ẽrr1 = h(d1k1 + d2k2 + . . .+ dsks) (40)
where ki = f(x0+cih, gi). In order to fulfil the above two condition, (i) & (ii), the coefficients
di need to satisfy the following conditions:
s∑

i=1

di = 0,
s∑

i=1

dici = 0.02. (41)

The solution of Equations (41) is not unique and one of the solutions for 5-stage SDIRK is:



The Effect of Numerical Integration Stiffness in Ship Motion Simulation 81

(d1, d2, d3, d4, d5) = (−0.54, 0.44, 0.1, 0.1,−0.1) (42)
The second possibility for detecting stiffness is to estimate directly the dominant eigenvalue
of the Jacobian of the problem. The eigenvalue can be approximated as below:
|λ| ≈ ‖f(x,y+υ)−f(x,y)‖

‖υ‖ (43)
where υ denotes an approximation to the corresponding eigenvector with ‖υ‖ sufficiently
small. Whenever the stiffness is detected, the product of the step size with the dominant
eigenvalue of the Jacobian lies near the border of the stability domain.
We apply the second method in SC-stable explicit method introduced by D.J. Higham &
G. Hall where c6 = c7 = 1. The stability domain of SC-stable is approximated in order to
detect the stiffness as:
h|λ| > 4.0 (44).
If the inequality (44) is satisfied, then it is stiff near the solution of yn.

6 Results and Discussion

In variable sea environment, the analytical solution is not available. In order to validate
the solution, all the generated results will be compared to a more reliable solution which
is produced by L-Stable implicit Runge-Kutta method. Basically, the effect of stiffness will
be measured in two different sea environment namely: beam sea and capsize mode. For
the following graphs, ‘stiffness’ refers to Equation (44) (1 means stiffness is detected) and
β refers to inequality (39) (number of occurrence).

6.1 Beam Sea

Refering to the Figures 1, 2 and 3, it is shown that ship simulation suffers from numerical
integration stiffness in beam sea. The effect of stiffness is more obvious in implicit Runge-
Kutta methods as indicated in Figures 1, 2 and 4. However, for explicit and semi-explicit
methods, the speed of calculation is more stable especially for Kaps Rentrop method as
shown in Figure 3. Figure 4 showed that the stiffness induced a significant changing of time
consumption and convergence rate. Obviously, the convergence rate affects the computation
time not proportionally since the convergence rate is measured at the beginning step of yn.
Figures 2 and 4 showed some discrepency of stiffness detection when the simulation is runned
using L-stable 5-stage SDIRK (Fig.2) and L-stable 3-stage RadauIIA (Fig.4). In terms of
simulated motions, two categories of methods are compared, namely explicit Merson Runge-
Kutta and L-stable Implicit RadauIIA. As shown in Figures 5, 6, 7 and 8, the dominant
forces like roll & yaw motion are promising. The recessive component like yaw velocity is
seem slightly different in phase, however it is still acceptable as shown in Table 1.

The average time consumption of explicit and semi explicit methods in beam sea are:

Explicit Merson method = 0.65 sec.
SC stable explicit method = 0.85 sec.
Linear implicit method = 4.43 sec.
Kaps Rentrop method = 5.52 sec.
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6.2 Capsizing mode

In capsizing mode, Table 2 showed that only four methods can successfully detect the
stiffness at the same time (t = 6). Basically, only the capsizing time calculated by Gauss
Legendre method is obviously deviated from common capsizing range (6.4 ≤ t ≤ 6.5).
The result produced by Linear Implicit method is slightly deviated from this acceptable
range. As shown in Figure 9, obviously the stiffness detected using inequality (44) is more
promising than β (number of occurrence) which was based on inequality (39).

The average time consumption of explicit and semi explicit method in capsizing mode
are:

Explicit Merson method = 0.5583 sec.
SC stable explicit method = 0.7417 sec.
Linear implicit method = 4.3667 sec.
Kaps Rentrop method = 4.9717 sec.

7 Conclusion

Based on the results of the research presently undertaken, the following conclusion can be
drawn:

1. Numerical stiffness is detected randomly which directly increases the computation
time.

2. Numerical stiffness is also detected before the capsizing of ship.

3. Implicit Gauss Legendre method is not suitable especially in capsize mode.

4. For the development of real time ship simulation system, the explicit Runge-Kutta
method especially 5-stage Merson and 7-stage SC stable Runge-Kutta method are
suitable, despite some discrepancy in recessive motion components.
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Rajah 1: Implicit Methods versus Time Con-

sumption (Gauss Legendre method)

Rajah 2: Implicit Methods versus Time Con-

sumption

Rajah 3: Explicit Methods versus Time Con-

sumption

Rajah 4: Convergence Rate versus Time Con-

sumption

Rajah 5: Simulation result of RadauIIA Runge-

Kutta method

Rajah 6: Simulation result of RadauIIA Runge-

Kutta method (surge & yaw)
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Rajah 7: Simulation result of Explicit Merson

Runge-Kutta method

Rajah 8: Simulation result of Explicit Merson

Runge-Kutta method (surge & yaw)

Rajah 9: Numerical Method versus Time Con-

sumption (capsize mode)

Jadual 1: Average of absolute different percentages

compared with 3-stage RadauIIA method
Force/ mo-
ment compo-
nents

5-stage Mer-
son Runge-
Kutta

7-stage SC
stable Runge-
Kutta

Roll (domi-
nant)

0.096 0.128

Yaw velocity
(recessive)

1.5 1.88

Jadual 2: Capsizing time and stiffness detection
Runge-Kutta
Method

Capsize time
(sec.)

Stiffness de-
tection

3-stage DIRK 6.5069 no
Gauss Legendre 5.9 no
3-stage
RadauIIA

6.4645 yes

5-stage SDIRK 6.475 yes
Merson 6.45 yes
SC-stable 6.45 yes
Linear Implicit 6.6 no
Kaps Rentrop 6.4462 no


