
MATEMATIKA, 2015, Volume 31, Number 1, 37–45
c©UTM Centre for Industrial and Applied Mathematics

On the Structure of Nil Graph of a Commutative Ring

1Kuntala Patra and 2Shazida Begum
1,2Department of Mathematics, Gauhati University

Guwahati,781014,Assam, India

e-mail: 1kuntalapatra@gmail.com, 2shazida.begum17@gmail.com

Abstract Let R be a commutative ring and N(R) be the set of all nil elements of
index two. The nil graph of R denoted by ΓN (R), is an undirected graph with the
vertex set ZN(R)∗ = {x ∈ R∗|xy ∈ N(R) for some y in R∗ = R − {0}}, and any two
vertices x and y of ZN (R)∗ are adjacent if and only if xy ∈ N(R).In this paper we
determine the chromatic number of the nil graph ΓN (Zpαq) , where Zpαqis the cyclic
group of order pαq. Also we study the diameter and girth of ΓN (Zpαq).
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1 Introduction

A kind of graph structure on a commutative ring R was introduced by Chen [1] by
considering the nil elements of R. A graph was defined with vertex set equal to all elements
of R where any two distinct vertices x and y are adjacent if and only if xy ∈ N(R), N(R)
denotes the set of all nil elements of R. This concept was modified by Li and Li [2]. In this
modified definition the graph defined is an undirected graph ΓN(R) whose vertex set is the
set ZN(R)∗ = {x ∈ R∗|xy ∈ N(R) for some y in R∗ = R − {0}}. Two vertices x and y in
ΓN (R) are adjacent if and only if xy ∈ N(R) or yx ∈ N(R). Taking this concept, Nikmehr
and Khojasteh [3] determined some results on the diameter and girth of ΓN(R) of matrix
algebras.

Next we state some definitions and notations used throughout the paper.

A ring R is called non-reduced if there exists at least one non zero nil element in the ring.
Let R be a non-reduced commutative ring and N(R) be the set of all nil elements of R of in-
dex two. The Nil Graph of R, denoted by ΓN (R), is an undirected graph with the vertex set
ZN (R)∗ = {x ∈ R∗|xy ∈ N(R) for some y in R∗ = R−{0}} and any two vertices of ZN (R)∗

are adjacent if and only if xy ∈ N(R). We recall that a graph is connected if there exists a
path connecting any two distinct vertices. The distance between any two distinct vertices x
and y, denoted by d(x, y), is the length of the shortest path connecting them. The diameter
of a graph Γ denoted by diam(Γ ) is equal to sup{(x, y) : x and y are distinct vertices }.
The girth of a graph, denoted by gr(Γ), is the length of the shortest cycle in Γ. A clique of
a graph is a maximal complete subgraph.

A graph Γ is said to be r-partite if V (Γ) can be partitioned into r disjoint sets
V1, V2, . . . , Vrsuch that no two vertices within any Vi are adjacent, but for any v ∈ Vi,
u ∈ Vj , u and v are adjacent.

A proper coloring of a graph is an assignment of k-colors {1, 2, . . . , k} to the vertices
of Γ such that no two adjacent vertices have assigned with the same color. The chromatic
number χ(Γ) of a graph Γ is the minimum k for which Γ has k-coloring.
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A dominating set in a graph Γ is a subset D of the vertex set of Γ with the property
that every vertex not in D is adjacent to one or more vertices of Γ.The domination number
of Γ, denoted by Domn(Γ), is defined as the cardinality of a minimum dominating set of Γ.

In our paper we consider a non-reduced commutative ring where N(R) = {x ∈ R|x2 = 0}
and call the graph ΓN (R) as nil graph of R. Taking the modified concept of the nil graph
defined by Li and Li [2], we determine the chromatic number of the nil graph ΓN(Zpαq),
where Zpαq is the cyclic group of order pαq. Also we determine the diameter and girth of
ΓN (Zpαq).

2 The Nil Graph ΓN(Zpαq)

Theorem 1 Let ΓN (Zpαq) be the nil graph of the commutative ring Zpαq, where p and q
are two distinct primes and α is an odd positive integer greater than one. Then the graph

ΓN (Zpαq) is

(a) p3n + 1- partite, if α = 4n + 1, n = 1, 2, 3, . . .

(b) p3n+2- partite if α = 4n + 3, n = 0, 1, 2, 3, . . .

Proof

(a) If α = 4n + 1, then the vertex set of the graph ΓN (Zpαq) can be partitioned into

Vk = {x = mpkq : p - m, q - m, 1 ≤ m ≤ p4n+1−k − 1, }, 0 ≤ k ≤ 4n,

Vi = {x = mpi : p - m, q - m, 1 ≤ m ≤ p4n+1−iq − 1}, 0 ≤ i ≤ 4n + 1.

Any two elements x ∈ Vk1
and y ∈ Vk2

are adjacent if k1 + k2 ≥ 2n + 1. No two
vertices of Vi are adjacent but are adjacent to the vertices of Vk if i + k ≥ 2n + 1.

Now we can consider the following cases:

(i) Let x, y ∈ Vi, for 0 ≤ i ≤ 4n + 1, such that x = m1p
i1 and y = m2p

i2 , then
xy /∈ N(Zpαq) as q - x and y. Hence x and y are not adjacent. So the elements
of ∪4n+1

i=0 Vi are not adjacent to each other but are adjacent to the elements of Vk

for some k such that i + k ≥ 2n + 1.

(ii) Let x, y ∈ Vk, for 0 ≤ k ≤ n, such that x = m1p
k1q ∈ Vk1

and y = m2p
k2q ∈ Vk2

.
Then (xy)2 = x2y2 = m2

1m
2
2p

2(k1+k2)q4 6≡ 0(mod p4n+1q) as k1 + k2 < 2n + 1.
So xy /∈ N(Zpαq) and x and y are not adjacent. Therefore all the elements of
∪n

k=0Vk are not adjacent to each other. But they are adjacent to the elements of
Vk′ , for some k′ such that k + k′ ≥ 2n + 1.

(iii) Let x, y ∈ Vk, for n + 1 ≤ k ≤ 4n,such that x = m1p
k1 ∈ Vk1

and y = m2p
k2 ∈

Vk2
, then (xy)2 = x2y2 = m2

1m
2
2p

2(k1+k2)q4 ≡ 0(mod p4n+1q) as k1 +k2 ≥ 2n+1.
Thus xy ∈ N(Zpαq) and x and y are adjacent. Thus all the elements of the
set ∪4n

k=n+1Vk are adjacent to each other. Total number of elements in the set
∪4n

k=n+1Vk is
4n∑

k=n+1

(p4n+1−k − p4n−k) = p3n − 1.
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Now considering all the cases discussed above, we can arrange the vertices of the
graph into the following independent sets

I0 = ∪4n+1
i=0 Vi,

I1 = ∪n
k=0Vk,

At = {x : x = tpn+1q}, 1 ≤ t ≤ p3n − 1.

Thus the independent sets A1, A2, A3, . . . , Ap3n−1 together with I0 and I1 form a
p3n − 1 + 1 + 1 = p3n + 1 - partite graph.

(b) If α = 4n + 3, then the vertex set of the graph ΓN (Zpαq) can be partitioned into

Vk = {x = mpkq : p - m, q - m, 1 ≤ m ≤ p4n+3−k − 1, }, 0 ≤ k ≤ 4n + 2,

Vi = {x = mpi : p - m, q - m, 1 ≤ m ≤ p4n+3−iq − 1}, 0 ≤ i ≤ 4n + 3.

Any two elements x ∈ Vk1
and y ∈ Vk2

are adjacent if k1 + k2 ≥ 2n + 2. No two
vertices of Vi are adjacent but are adjacent to the vertices of Vk if i + k ≥ 2n + 2.

Now we can consider the following cases:

(i) Let x, y ∈ Vi, for 0 ≤ i ≤ 4n + 3, such that x = m1p
i1 and y = m2p

i2 , then
xy /∈ N(Zpαq) as q - x and y. Therefore x and y are the non adjacent vertices
in ΓN (Zpαq). So the elements of ∪4n+3

i=0 Vi are not adjacent to each other but are
adjacent to the elements of Vk for some k such that i + k ≥ 2n + 2.

(ii) Let x, y ∈ Vk, for 0 ≤ k ≤ n, such that x = m1p
k1q ∈ Vk1

and y = m2p
k2q ∈ Vk2

.
Then (xy)2 = x2y2 = m2

1m
2
2p

2(k1+k2)q4 6≡ 0(mod p4n+3q) as k1 + k2 < 2n + 2.
So xy /∈ N(Zpαq) and x and y are not adjacent. Therefore all the elements
of ∪n

k=0Vk are not adjacent to each other. These elements are adjacent to the
elements of Vk′ , for some k′ such that k + k′ ≥ 2n + 2.

(iii) Let x, y ∈ Vk, for n + 1 ≤ k ≤ 4n + 2,such that x = m1p
k1q ∈ Vk1

and y =
m2p

k2q ∈ Vk2
, then (xy)2 = x2y2 = m2

1m
2
2p

2(k1+k2)q4 ≡ 0(mod p4n+3q) as
k1 + k2 ≥ 2n + 2. Thus xy ∈ N(Zpαq) and x and y are adjacent. Thus all
the elements of the set ∪4n+2

k=n+1Vk are adjacent to each other. Total number of

elements in the set ∪4n+2
k=n+1Vk is

4n+2∑

k=n+1

(p4n+3−k − p4n+2−k) = p3n+2 − 1.

Now considering all the cases discussed above, we can arrange the vertices of the
graph into the following independent sets

I0 = ∪4n+3
i=0 Vi,

I1 = ∪n
k=0Vk ∪ {x = pn+1q},

At = {x : x = tpn+1q}, 2 ≤ t ≤ p3n+2 − 1.

Thus the independent sets A2, A3, . . . , Ap3n+2−1 together with I0 and I1 form a p3n+2−
2 + 1 + 1 = p3n+2 - partite graph. 2
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Corollary 1 Let ΓN (Zpαq) be the nil graph of the commutative ring Zpαq, where p and q

are two distinct primes and α is an odd positive integer greater than one. Then

(a) χ(ΓN(Zpαq) = p3n + 1, ifα = 4n + 1, n = 1, 2, 3, . . . .

(b) χ(ΓN(Zpαq) = p3n+2, ifα = 4n + 3, n = 0, 1, 2, 3, . . . .

Proof

(a) If α = 4n + 1, then by the proof of the previous Theorem 1(a) we see that the
all the vertices of the set ∪4n

k=n+1Vk are adjacent to each other and total number
of elements in this set is p3n − 1. The elements of the set Vk=n are not adjacent
among themselves but are adjacent to every member of the set ∪4n

k=n+1Vk. Again the

elements of the set ∪4n+1
i=n+1Vi are not adjacent among themselves but are adjacent to

every element of the set ∪4n
k=n+1Vk and Vk=n. Therefore all the elements of ∪4n

k=n+1Vk

along with any one element from Vk=n and one from ∪4n+1
i=n+1Vi will form a clique of

order p3n − 1 + 1 + 1 = p3n + 1. Therefore χ(ΓN (Zpαq)) ≥ p3n + 1.

By Theorem 1(a) the graph ΓN(Zpαq) is a p3n + 1- partite graph which implies that
χ(ΓN(Zpαq) ≤ p3n + 1.. Therefore χ(ΓN (Zpαq) = p3n + 1.

(b) If α = 4n + 3, then by the proof of the previous Theorem 1(b), the elements of the
set ∪4n+2

k=n+1Vk are adjacent with each other and total number of elements of this set is

p3n+2 − 1.Therefore the set ∪4n+2
k=n+1Vk ∪ {x}, where x ∈ ∪4n+3

i=n+1Vi will together form
a complete subgraph of order p3n+2 − 1 +1 = p3n+2 and hence χ(ΓN(Zpαq)) ≥ p3n+2.
Again by Theorem 2.1(b) we have the graph ΓN(Zpαq) is a p3n+2 partite graph and
χ(ΓN(Zpαq)) ≤ p3n+2. Hence χ(ΓN(Zpαq)) = p3n+2. 2

Example 1 Consider Z24 = Z234. Then ZN (Z24)
∗ = {1, 2, 3, . . . , 23}. Then we can divide

the vertex set into the following independent subsets
V1 = {12}, V2 = {18}, V3 = {3, 6, 9, 15, 21}, V4 = {1, 2, 4, 5, 7, 8, 10, 11, 13, 14, 16, 17, 19,

20, 22, 23}. The nil graph ΓN (Z24) is shown in Figure 1.

Theorem 2 Let ΓN (Zpαq) be the nil graph of the commutative ring Zpαq, where p and q
are two distinct primes and α is an even positive integer. Then the graph ΓN(Zpαq) is

(a) p3n- partite, if α = 4n, n = 1, 2, 3, . . .

(b) p3n+1 + 1- partite if α = 4n + 2, n = 0, 1, 2, 3, . . .

Proof

(a) If α = 4n, then the vertex set of the graph ΓN(Zpαq) can be partitioned into

Vk = {x = mpkq : p - m, q - m, 1 ≤ m ≤ p4n−k − 1}, 0 ≤ k ≤ 4n − 1,

Vi = {x = mpi : p - m, q - m, 1 ≤ m ≤ p4n−iq − 1}, 0 ≤ i ≤ 4n.

Any two elements x ∈ Vk1
and y ∈ Vk2

are adjacent if k1 + k2 ≥ 2n. No two vertices
of Vi are adjacent but are adjacent to the vertices of Vk if i + k ≥ 2n.

Now we can consider the following cases:
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Figure 1: The Nil Graph ΓN(Z24)

(i) Let x, y ∈ Vi, for 0 ≤ i ≤ 4n, such that x = m1p
i1 and y = m2p

i2 , then
xy /∈ N(Zpαq) as q - x and y. Therefore x and y are not adjacent in ΓN(Zpαq).
So the elements of ∪4n

i=0Vi are not adjacent to each other but are adjacent to the
elements of Vk for some k such that i + k ≥ 2n.

(ii) Let x, y ∈ Vk, for 0 ≤ k ≤ n − 1, such that x = m1p
k1q ∈ Vk1

and y = m2p
k2q ∈

Vk2
. Then (xy)2 = x2y2 = m2

1m
2
2p

2(k1+k2)q4 6≡ 0(mod p4nq) as k1 + k2 < 2n.
So xy /∈ N(Zpαq) and x and y are not adjacent. Therefore all the elements of
∪n−1

k=0Vk are not adjacent to each other but are adjacent to the elements of Vk′,
for some k′ such that k + k′ ≥ 2n.

(iii) Let x, y ∈ Vk, for n ≤ k ≤ 4n − 1,such that x = m1p
k1 ∈ Vk1

and y = m2p
k2 ∈

Vk2
, then (xy)2 = x2y2 = m2

1m
2
2p

2(k1+k2)q4 ≡ 0(mod p4nq) as k1 + k2 ≥ 2n.
Thus xy ∈ N(Zpαq) and x and y are adjacent. Thus all the elements of the set
∪4n−1

k=n Vk are adjacent to each other. Total number of elements in the set ∪4n−1
k=n Vk
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is
4n−1∑

k=n

(p4n−k − p4n−1−k) = p3n − 1.

Now considering all the cases discussed above, we can arrange the vertices of the
graph into the following independent sets

I0 = ∪4n
i=0Vi,

I1 = ∪n−1
k=0Vk ∪ {x = pnq},

At = {x : x = tpnq}, 2 ≤ t ≤ p3n − 1.

Thus the independent sets A2, A3 . . .Ap3n − 1 together with I0 and I1 form a p3n -
partite graph.

(b) If α = 4n + 2, then the vertex set of the graph ΓN (Zpαq) can be partitioned into

Vk = {x = mpkq : p - m, q - m, 1 ≤ m ≤ p4n+2−k − 1, }, 0 ≤ k ≤ 4n + 1.

Vi = {x = mpi : p - m, q - m, 1 ≤ m ≤ p4n+2−iq − 1}, 0 ≤ i ≤ 4n + 2.

Any two elements x ∈ Vk1
and y ∈ Vk2

are adjacent if k1 + k2 ≥ 2n + 1. No two
vertices of Vi are adjacent but are adjacent to the vertices of Vk if i + k ≥ 2n + 1.

Now we can consider the following cases:

(i) Let x, y ∈ Vi, for 0 ≤ i ≤ 4n + 2, such that x = m1p
i1 and y = m2p

i2 , then
xy /∈ N(Zpαq) as q - x and y. Therefore x and y are the non adjacent vertices in
ΓN (Zpαq). Thus all the elements of the set ∪4n+2

i=0 Vi are not adjacent to each other
but are adjacent to the elements of the set Vk for some k such that i+k ≥ 2n+1.

(ii) Let x, y ∈ Vk, for 0 ≤ k ≤ n, such that x = m1p
k1q ∈ Vk1

and y = m2p
k2q ∈ Vk2

.
Then (xy)2 = x2y2 = m2

1m
2
2p

2(k1+k2)q4 6≡ 0(mod p4n+2q) as k1 + k2 < 2n + 1.
So xy /∈ N(Zpαq) and x and y are not adjacent. Therefore all the elements of
∪n

k=0Vk are not adjacent to each other. But they are adjacent to the elements of
Vk′ , for some k′ such that k + k′ ≥ 2n + 1.

(iii) Let x, y ∈ Vk, for n + 1 ≤ k ≤ 4n + 1,such that x = m1p
k1q ∈ Vk1

and y =
m2p

k2q ∈ Vk2
, then (xy)2 = x2y2 = m2

1m
2
2p

2(k1+k2)q4 = m2
1m

2
2p

2(k1+k2)q4 ≡
0(mod p4n+2q) as k1 + k2 ≥ 2n + 1. Thus xy ∈ N(Zpαq) and x and y are
adjacent. Thus all the elements of the set ∪4n+1

k=n+1Vk are adjacent to each other.

Total number of elements in the set ∪4n+1
k=n+1Vk is

4n+1∑

k=n+1

(p4n+2−k − p4n+1−k) = p3n+1 − 1.

Now considering all the cases discussed above, we can arrange the vertices of the
graph into the following independent sets

I0 = ∪4n+2
i=0 Vi,

I1 = ∪n
k=0Vk,

At = {x : x = tpn+1q}, 1 ≤ t ≤ p3n+1 − 1.
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Thus the independent sets A1, A2, A3 . . . , Ap3n+1 − 1 together with I0 and I1 form a
p3n+1 − 1 + 1 + 1 = p3n+1 + 1 - partite graph. 2

Theorem 3 Let ΓN (Zpαq) be the nil graph of the commutative ring Zpαq, where p and q

are two distinct primes and α is an even positive integer. Then

(a) χ(ΓN(Zpαq) = p3n, ifα = 4n, n = 1, 2, 3, . . . .

(b) χ(ΓN(Zpαq) = p3n+1 + 1, ifα = 4n + 2, n = 0, 1, 2, 3, . . . .

Proof

(a) If α = 4n, the elements which are divisible by pnq are adjacent with each other.
Therefore the set ∪4n−1

k=n Vk ∪ {a}, where a ∈ ∪4n
i=nVi will together form a clique of

order p3n and hence χ(ΓN(Zpαq)) ≥ p3n. Again by Theorem 2.2(a) we have the graph
ΓN(Zpαq) is a p3n- partite which implies that χ(ΓN (Zpαq) ≤ p3n. Hence χ(ΓN (Zpαq) =
p3n.

(b) If α = 4n + 2, then by the proof of the previous Theorem 2.2(b), the elements of the
set ∪4n+1

k=n+1Vk are adjacent to each other and total number of elements in this set is

p3n+1−1.Therefore the set ∪4n+1
k=n+1Vk∪{x = pnq}∪{x = pnq}∪{y}, where y ∈ ∪4n+2

i=n Vi

will together form a clique of order p3n+1 + 1. Therefore χ(ΓN(Zpαq) ≥ p3n+1 + 1.
By Theorem 2.2(b) we have the graph ΓN(Zpαq) is a p3n+1 + 1 partite graph which
implies that χ(ΓN(Zpαq) ≤ p3n+1 + 1. Hence χ(ΓN (Zpαq) = p3n+1 + 1. 2

Example 2 Consider Z48 = Z243. Then ZN (Z48)
∗ = {1, 2, 3, . . . , 23}. Then we can divide

the vertex set into the following independent subsets

V1 = {12}, V2 = {24}, V3 = {36}, V4 = {18},V5 = {30},V6 = {42},V7 = {3, 6, 9, 15, 21,
27, 33, 39, 45}, V8 = {1, 2, 4, 5, 7, 8, 10, 11, 13, 14, 16, 17, 19, 20, 22, 23, 25, 26, 28, 29, 31, 32, 33,
34, 35, 37, 38, 40, 41, 43, 44, 46, 47}. The nil graph ΓN(Z48) is shown in Figure 2.

Theorem 4 If p and q are distinct primes and α is any positive integer greater than one,

then diam(ΓN (Zpαq)) = 2.

Proof Since Zpαq is non-reduced, there exists non-zero nil element in the ring. All the
non-zero nil elements are adjacent among themselves and are also adjacent to every other
vertices of the graph ΓN(Zpαq). Therefore the non non-zero nil elements are connected
through the non zero nil elements and hence the diam(ΓN (Zpαq)) = 2. 2

Theorem 5 If p and q are distinct primes and α is any positive integer greater than one,

then gr(ΓN (Zpαq)) = 3.

Proof Let v1,v2,v3 be the vertices of ΓN (Zpαq) such that v1 = pα−1q, v2 = q, v3 = pα.
Then v1 - v2 - v3 - v1 is a 3-cycle. Hence gr(ΓN (Zpαq)) = 3. 2
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Figure 2: The Nil Graph ΓN(Z48)

3 Conclusion

The results and findings of our discussions can be summerized as follows:

(a) The nil graph ΓN(Zpαq) is always a partite graph.

(i) If α ≡ 0(mod4n + 1), then the graph ΓN (Zpαq) is p3n + 1- partite.

(ii) If α ≡ 0(mod4n + 3), then the graph ΓN (Zpαq) is p3n+2- partite.

(iii) If α ≡ 0(mod4n), then the graph ΓN(Zpαq is p3n- partite.

(iv) If α ≡ 0(mod4n + 2), then the graph ΓN (Zpαq) is is p3n+1 + 1- partite.

(b) The chromatic number of the graph depends on the p-partite structure of the graph
and also the clique of the graph.

(c) Every nil-element of the graph individually constitutes an independent set.
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(d) Since every nil-element of the graph is adjacent to all other vertices of the graph.
Hence Domn(ΓN (Zpαq)) = 1.
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