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Abstract Let S (o, 0, A, B) be the class of functions which are analytic and univalent
in an open unit disc,E = {z:|z| < 1} of the form f(2) = z 4 a22> + azz® +--- +

an2" 4+ -+ = 2+ Y an2z" and normalized with f(0) = Oand f'(0) — 1 = 0 and
n=2
satisfy (ei“%—d—isma) ﬁ < }L’gz, -1 < B < A<1, z € FE where

g(z) = @, tas = cosa —d,cosa— 6 > 0,0 <6 < 1and |af < §. In this

paper, we determine the sharp upper bound of the functional !ag as — a%! for this class
of functions. The results generalize some known existing results in the literature.
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1 Introduction

Let H be the class of functions w which are analytic and univalent in the unit disc, E =
{z : |z| < 1} given by
o0
w(z) = Z tp2"
n=1

and satisfies the conditions w (0) =0, jw(z)| < 1,z € E.
Let S be the class of functions f which are analytic and univalent in F and of the form

FE) =2+ an” (1)

and normalized with f(0) =0 and f'(0) —1=0.
Also, let S¥ be the subclass of S consisting of functions given by (1) satisfying the

condition ,
Rg(sz(z)) >0, z€k.
f(z) = f(=2)
These functions are called starlike functions with respect to symmetric points and were
introduced by Sakaguchi [1] in 1959.
As cited in [2], in 1987, El-Ashwah and Thomas defined the class of starlike functions
with respect to conjugate points and the class of starlike functions with respect to symmetric
conjugate points respectively as follows:

Sj—{feS:Re<L(2)_>>O,zeE},
f()+f(Z)
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S:C—{fES:Re<Lg> >O,26E}.
()= f(=2)

Moreover, we introduce S («, d) as the class of functions f which are analytic and univalent
in E and of the form (1) and normalized with f (0) =0 and f’ (0) — 1 = 0 and satisfy

Re (em Z; (i?) > 2)

where g (2) = w, cosa—9 >0,0<0 < 1and |of < Z. The functions of the class
S¥ (o, 9) are called tilted starlike functions with respect to conjugate points of order 6.

Further, let two functions F' (z) and G (z) be analytic in E. If there exists a functions
w € H which is analytic in E with w(0) = 0 and |w (2)| < 1 such that F (z) = G (w (%))
for every z € E, then we say that F'(z) is subordinate to G (z) and it can be written
as F'(z) < G(z). We also note that if G (z) is univalent in F, then the subordination is
equivalent to F'(0) = G (0) and F (E) C G(E).

In term of subordination, Abdul Wahid et al. [3] introduced a subclass of S (o, d)
denoted by S (a, d, A, B) as in the following definition.

Definition 1 f € S¥(«, 6, A, B) if and only if

w5 Y 1t4s
(e 7 —5—zs1na> tm;{l—l-Bz’Ze

By definition of subordination, it follows that f € S¥ («,d, A, B) if and only if
/
(emzf (2) _ 5—isina> 1 _1+4w(®)

9(2)
wherep(z) =14 Y ppz™.
n=1

In 1976, Noonan and Thomas [4] defined the ¢! Hankel determinant of f for ¢ > 1 and
n > 1 given by

e Ml o2 A H
tas 1+ Bw(2) p(z),we

(27 Ap4+1 - OGpigq—1
. An+1
Hg(n) = .
a]n+q71 DR DR a]n+2(q71)

This determinant has been investigated by several researchers. For instance, as stated in
[5], Noor determined the rate of growth of H,(n) as n — oo for functions in (1) with
bounded boundary and Ehrenborg [6] studied the Hankel determinant of order (n + 1) of
the exponential polynomials. Also, as cited in [5], in 2006, Janteng et al. studied the Hankel
determinant for the class Sy .

Recently, Singh [5] obtained the Second Hankel determinant for the classes S} and S%..
For our discussion in this paper, we consider the Hankel determinant in the case ¢ = 2 and
n =2,
az as

Hy(2) =

az a4
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In this paper, we established the sharp upper bound of the functional |asas — a3| for func-
tions in the class S¥ («, 6, A, B).

2 Preliminary Results

Let P be the class of all functions p of the form
o0
pP(2) =1+pr1z+pe2+ - +ppz”+- =1+ pp2"
n=1

that is analytic in Fand satisfying the condition Re (p(z)) > 0 for z € E.
We need the following lemmas for proving our result.

Lemma 1 [7]
Ifp € Pithen |p,| <2(k=1,2,3,...).

Lemma 2 [8,9]
If p € P,then
2ps = p? + (4 —p?) z,
dps=pi+2pm (4—pl)z—p1 (4 —pi)2® +2 (4 — p) (1 - |33|2) z,

for some values of x and z satisfying |x| < 1,|z| <1 and p; € [0,2].

3 Main Result

Theorem 1 If f € S¥ (a0, A, B), then
2
’a2a4 — a%’ < e

where T = (A — B) tas and tas = cosa — 0.
The result obtained is sharp.

Proof: From Definition 1, we have

!/
(eiazf—(z)_g_isma>i_w,weﬂ (3)
9(2) tas 14+ Bw(z)
where g(z):%m and tq5 = cos o — 0.
Now, let
1+w(z) 2 n
S B A ceim > 1.
h(z) T~ () 1+ kiz4+kez® 4+ + k2" +-;n>1 (4)
From (4) we get
h(z)—1
w(z) = 1) )
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By using (5), thus (3) can also be written as

(eiazf/ (2) —5—isina> 1 1—A+h(z) (l—i—A)'
g(2) tas 1—B+h(z)(1+B)
Rearranging (6), we get
ga2f (2) _[1-A+h(z)(A+A)]t
g(2) 1-B+h(z)(1+B)
M—A4h(z)(1+A)]tas+[1 —B+h(z)(1+ B)](isina+9)
1-B+h(z) (14 B)
tas — Atas + h (2) tas + Ah (2) tas + (isina + §) — B (isina + J)
N 1-B+h(z)(1+ B)
h(z)(isina+d)+ Bh(z) (isina+ 6)
1-B+h(z)(1+4B)
€4 e h(z) — Atas — B (isina + 6) + Btas — Btas + Ah(2) tas

ad +isina+ 0

+

N 1-B+h(z)(1+B)
Bh(z) (isina 4+ 0) + Bh(z)tas — Bh(z) tm;'

+ 1-B+h(z)(1+B)

Thus, we get
emzf’ (2) {em (l—B)—T}—l-h(z) {em (1+B)+T}

9(z) 1-B+h(z)(1+B)
Using the series expansion then we have
e’ (1 - B) (z+ 2a92% + 3az2® + - )
e (14 B) {(z+2a22% +3a32> + ) (L+kiz+ ko2 + k32 + )}
= {em(l—B)—T} (z+a2z2+a333+...)

+{em(l—i-B)—i-T}{(z+a222+a323+---) (1+k12+k222+k323+)}

Equating the coefficients of 22, 23 and 2z* in (7) gives us

2&26“1 = le,

leeiia

ag = ———.
2 2

dase’™ = koT + [T — e (14 B)] asky,

and _ _ _

6ase’™ = ksT + [T — '™ (1 + B)] acks + [T — 2¢'* (1 + B)] ask.
Using (8) into (9) gives us
[T — e (1+ B)| kiTe '

2 3
_ 2koT + K3T?e™™ — (1+ B) k3T
N 2

4&36“1 = kQT +
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and thus
2koT —i k2T2 -2t 1 B kQT —i
az = 22 ¢ + 1 © ( + ) 1 © . (11)
8
Substituting (8) and (11) into (10) we obtain
. kikoTe " [T — ¢l (1 + B
Gaset® — ko7 + P2 | — (1+5)
N (T —2¢™ (1 + B)) [2k1koTe "™ + k§T?e~ % — (1 + B) kiTe ']
8 3
. 8ksT + 4]€1]€2T267ia —4 (1 + B) kikoT + 2]€1]€2T267ia + k:ngeima
B 8
(14 B)k3T2e~i —4(1 4 B) kikoT — 2(1 + B) k3T%e~i 4+ 2(1+ B)* k3T
8
and thus
 8kaTe ™ 4 6k1koT%e 2 — 8 (1 + B) kikoTe " + k§T3e 3
4= 48
3(1+ B)k3T?e %> 4 2(1 + B)* k3Te "™
— 5 ) (12)
Then, by squaring (11) we have
o [ 2koTe @ 4+ k2T%e~% — (1 4 B) k2Te~i\ >
Aq =
3 8
| AR3T?em % 4 AkTko T3em 3 — 4 (1 + B) kkoT2e 21 kT4
B 64
2 (14 B) KiT3e=3i 4 (1 + B)? kT2 2o
- (13)
64
and using (8) and (12) gives us
leeiia 8]€3T€7ia + 6]€1]€2T2672ia -8 (1 + B) kleTeiia + k:ngeigia
aoa4 =
2 48
3(1+4 B)k3T2e 21 42 (1 + B)* k3Te ™
48
 8kikaT2e™ % 4 6k kT3¢ % — 8 (1 4 B) k2koT?e~ 2 4 k{T4e 4
B 96
3(14 B) kiT3e 31 42 (1 + B)® kiT2e 2o a4

96
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Equations (13) and (14) together yield
asay — a;
| 8BkyksT2e2 4 6k2ky T35 — 8 (1 + B) k2koT2e 21 4 JdT4e—4ic
96
301+ B KT ¥ 1 2(1 4 B)’ KiT?e % {4k§T262m + 4k T3 %0
96 64
4(1+ B) k2kaT?e= 20 4 3T4e% — 2 (1 + B) k¥T3e 31 + (1 + B)? kiT?e 2 }
64

_ kaksTe e (14 B)kikoT?e 2 R{Tle b (1+ B)? k{T?e2
- 12 48 192 192
3 kgT2€72ia
16
__1Q62u¥{khk3 (L+B)kiky  (1+B)°ki k%} _ kTl e

2 48 192 16 192

Taking modulus for both sides then we have

72,2 ) Fiks (1+B)k%k2+(1+3)2k;1 o
‘ 12 48 192 16 192 '

|asas — a2 =

Using Lemma 2, we obtain
|azas — a3
B [ 2 (4= k) ko — by (4= kD) 22 + 2 (4= K3) (1= o) 2]
48

— T2€72ia

(4B (-K)] 0Bk [Bra(d-k)]"| kTt
96 192 64 192

[zucil + 8k2x (4 — k2) — 4k2a? (4 — k2) + 8k (4 — K2) (1 - |x|2) z]

— T2 —2i
€ 192

2(1+ B) [ki + K3z (4 — k)] + (L + B)* ki — 3k{ — 6k3x (4 — k)
192

322 (4— k3)*|  kiTtetia
B 192 192

KE[1-200+B)+ (14 B + Kz (4- k) B-2(1+ B) - §
192

— T2€72ia

2 (4= 1) [ +3 (4= k)] + 8k (4= k) (1= o) 2] pagae—sia
192 192
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192

T%2M{kﬁﬁ—23ﬁxﬂ—k@—xﬂ4—%)M%+m]

8]€1 (4 — k%) (1 — |$|2) z kilT4ef4ia

+ 192 192

By Lemma 1, |k, | < 2. Then, let k1 = k, we may assume without restriction thatk € [0, 2]
which gives

|azas — o] =

192

T2QM{kﬁﬁ—zBMx@—kﬂ—xN4—H)m%+m]
€

8k (4 — k?) (1 - |x|2) 2 AT~ dia
192 192 '

+

Since ’672“3" =1, ’674“3" = 1 and application of a triangle inequality with |z| <1 gives

|asas — a2
) { K B2 + 2k |z| |B| (4 — k2) + |2|? (4 — k2) [k + 12 — 8k] + 8k (4 — &?) } kAT
=T +
192 192
Replacing |x| by p gives
|azay — al|
) { kB2 + 2k2p | B| (4 — k) + p® (4 — k?) [K> + 12 — 8k] + 8k (4 — k?) } kAT
<T +
192 192
= F(kp)- (15)

Next we assume that the upper bound for (15) occurs at an interior point of rectangle
kxp=1[0,2] x[0,1].
First, differentiating (15) with respect to p we obtain

2k2|B|(4——k2)4—2p(4——k2)[k24—12——8k]} 16)

/ 2

For 0 < p < 1 and for any fixed k with 0 < k < 2, from (16) we observe that F’ (k, p) > 0.
Therefore, F' (k, p) is an increasing function of p implying max (F (k,p)) = F (k,1) = G (k) .
Morever, for fixed k € [0, 2], let

k* (B%2+2|B| —1) +8k*(|B| — 1) + 48 kAT
Gy 2 { FB 218 -1 ¢ 82 (B 1) £ 48]
192 192
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then we have

k(B2 +2(B| —1) + 4k (|B| — 1 874
G’(k)_TQ{ (B2+2| |48)+ (5 )}+k4§

and

3k (B?+2|B| - 1) +4(|B| - 1) 3k2T4
G”(k)_TQ{ ( 48) g

By setting G’ (k) = 0, the solutions for k are

1 - |B|
k=0k=+2 .
’ \/B2+2|B|—1+T2

Since k € [0,2] by our assumption, we find that the maximum of G (k) occurs at k = 0.
Thus, from (15) the upper bound of F (k, p) corresponds to p =1 and k = 0 we obtain

’a2a4 — a%’ < T
Remark 1: Setting A = 1 and B = —1 in Theorem 1, we obtain |asas —a3| < 35
This is the upper bound for the Second Hankel determinant for the class S¥ («, §) which is
introduced earlier as in (2).

Remark 2: From Theorem 1, we observe that the result obtained is the same as the result
for functions in the class S..

4 Conclusion

In conclusion, we have obtained the sharp upper bound for the Second Hankel determinant
for the class S¥ (a,d) and S} (a, 0, A, B). By considering some specific values for the pa-
rameters «, [, A and B involved in S (o, d, A, B), we can reduce our result to some
subclasses studied by previous researchers such as El-Ashwah and Thomas (as cited in [2]),
Abdul Halim [2] and Mad Dahhar and Janteng [10].
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