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Abstract The interaction of free convection with thermal radiation of viscous in-

compressible MHD unsteady chemical reacting fluid flow past an impulsively started

vertical plate is analyzed. The Rosseland approximation is used to describe the ra-

diative heat transfer in the limit of the optically thin fluid. The non-linear, coupled

equations are solved using an implicit finite difference scheme of Crank-Nicolson type.

Velocity, temperature and concentration of the flow have been presented for various

parameters such as thermal Grashof number, mass Grashof number, Prandtl number,

Schmidt number, radiation parameter and magnetic parameter. The local and average

skin friction, Nusslet number and Sherwood number are also presented graphically. It

is observed that, when the radiation parameter increases the velocity and temperature

decrease in the boundary layer. Also, it is found that the presence of chemical reac-

tion parameter leads to decrease in the velocity field and concentration and rise in the

thermal boundary thickness.
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1 Introduction

Magnetohydrodynamics (MHD) is the study of the interaction of conducting fluids with
electromagnetic phenomena. The flow of an electrically conducting fluid in the presence
of a magnetic field is of importance in various areas of technology and engineering such
as MHD power generation, MHD flow meters, MHD pumps, etc. studied the heat and
mass transfer along a vertical plate under the combined buoyancy Soundalgekar et al. [1]
analyzed the problem of free convection effects on Stokes problem for a vertical plate un-
der the action of transversely applied magnetic field. Elbashbeshy [2] effects of thermal
and species diffusion, in the presence of magnetic field. Helmy [3] presented an unsteady
two-dimensional laminar free convection flow of an incompressible, electrically conducting
(Newtonian or polar) fluid through a porous medium bounded by an infinite vertical plane
surface of constant temperature.

Many transport process exist in nature and in industrial applications in which the sim-
ultaneous heat and mass transfer occur as a result of combined buoyancy effects of diffusion
of chemical species. A few representative fields of interest in which combined heat and mass
transfer plays an important role are designing of chemical processing equipment, formation
and dispersion of fog, distribution of temperature and moisture over agricultural fields and
groves of fruit trees, crop damage due to freezing, and environmental pollution. In this
context the first systematic study of mass transfer effects on free convection flow past a
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semi-infinite vertical plate was presented by Gebhart and Pera [4], who presented a simil-
arity solution to this problem and introduced a parameter N which is a measure of relative
importance of chemical and thermal diffusion in causing the density difference that drives
the flow. The parameter N is positive when both effects combined to drive the flow and it is
negative when these effects are opposed. Callahan and Marner [5] first studied the transient
free convection flow past a semi-infinite plate by explicit finite difference method. They also
considered the presence of species concentration. However this analysis is not applicable for
fluids whose Prandtl numbers are different from unity. Soundalgekar and Ganesan [6] solved
the problem of transient free convective flow past a semi-infinite vertical flat plate, taking
into account mass transfer by an implicit finite difference method of Crank-Nicolson type.
In their analysis they observed that an increase in N leads to an increase in the velocity
but a decrease in the temperature and concentration. Muthucumarswamy and Ganesan [7]
solved the problem of unsteady flow past an impulsively started semi-infinite vertical plate
with heat and mass transfer.

The role of thermal radiation is of major importance in some industrial applications
such as glass production and furnace design and in space technology applications, such as
cosmical flight aerodynamics rocket, propulsion systems, plasma physics and space craft
reentry aerothermodynamics which operate at high temperatures. When radiation is taken
into account, the governing equations become quite complicated and hence many difficulties
arise while solving such equations. Greif et al. [8] shown that in the optically thin limit the
physical situation can be simplified, and then they derived exact solution to fully developed
vertical channel for a radiative fluid. Hossain and Takhar [9] studied the radiation effects on
mixed convection along a vertical plate with uniform surface temperature using Keller Box
finite difference method. Abd El-Naby et al. [10] studied the effects of radiation on unsteady
free convective flow past a semi-infinite vertical plate with variable surface temperature
using Crank-Nicolson finite difference method. They observed that, both the velocity and
temperature are found to decrease with an increase in the temperature exponent. Chamkha
et al. [11] analyzed the effects of radiation on free convection flow past a semi-infinite vertical
plate with mass transfer, by taking into account the buoyancy ratio parameter N . In their
analysis they found that, as the distance from the leading edge increases, both the velocity
and temperature decrease, whereas the concentration increases.

The radiation and mass transfer effects on unsteady MHD free convection flow past a
moving vertical cylinder was studied by Gnaneswara Reddy and Bhaskar Redddy [12]. Very
recently, Gnaneswara Reddy [13] presented the chemically reactive species and radiation
effects on MHD convective flow past a moving vertical cylinder.

The aim of the present paper is to study the unsteady heat and mass transfer MHD flow
of a chemically reacting fluid past an impulsively started vertical plate with radiation. The
equations of continuity, linear momentum, energy and species concentration, which govern
the flow field are solved by using an implicit finite difference scheme of Crank-Nicolson type.
The behaviour of the velocity, temperature, concentration, skin-friction, Nusselt number and
Sherwood number have been discussed for variations in the governing parameters.

2 Mathematical Analysis

An unsteady two-dimensional laminar natural convection flow of a viscous, incompressible,
radiating and chemically reacting and hydromagnetic fluid past an impulsively started ver-
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tical plate is considered. The x-axis is taken along the plate in the upward direction and
the y-axis is taken normal to it. Initially, it is assumed that the plate and the fluid are at
the same temperature T ′

∞
and concentration level C ′

∞
everywhere in the fluid. At time

t′>0, the plate starts moving impulsively in the vertical direction with constant velocity u0

against the gravitational field. Also, the temperature of the plate and the concentration
level near the plate are raised to T ′

w and C ′

w respectively and are maintained constantly
thereafter. It is assumed that the concentration C ′ of the diffusing species in the binary
mixture is very less in comparison to the other chemical species, which are present, and
hence the Soret and Dufour effects are negligible. Then, under the above assumptions, the
governing boundary layer equations with Boussinesq’s approximation are

∂ u

∂ x
+

∂ v

∂ y
= 0, (1)
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∂ u
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The initial and boundary conditions are
t′ ≤ 0 : u = 0, v = 0, T ′ = T ′

∞
, C ′ = C ′

∞
,

t′ > 0 :u = u0, v = 0, T ′ = T ′

w, C ′ = C ′

w at y = 0,

u = 0, T ′ = T ′

∞
, C ′ = C ′

∞
at x = 0, (5)

u → 0, T ′
→ T ′

∞
, C ′

→ C ′

∞
as y → ∞.

By using the Rosseland approximation (Brewster [14]), the radiative heat flux qr is given
by

qr = −
4σs

3ke

∂ T ′4

∂ y
(6)

where σs is the Stefan-Boltzmann constant and ke - the mean absorption coefficient. It
should be noted that by using the Rosseland approximation the present analysis is limited
to optically thick fluids. If temperature differences within the flow are sufficiently small,
then Equation (6) can be linearized by expanding T ′4 into the Taylor series about T ′

∞
,

which after neglecting higher order terms takes the form

T ′4 ∼= 4T ′

∞

3
T ′

− 3T ′

∞

4
. (7)

In view of Equations (6) and (7), Equation (3) reduces to
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Local and average skin-friction are given respectively by
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, (9)
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τL =
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Local and average Nusselt number are given respectively by
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Local and average Sherwood number are given respectively by
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On introducing the following non-dimensional quantities
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Equations (1), (2), (8) and (4) are reduced to the following non-dimensional form
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1
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∂ Y 2
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The corresponding initial and boundary conditions are

t ≤ 0 :U = 0, V = 0, T = 0, C = 0,

t > 0 :U = 1, V = 0, T = 1, C = 1 at Y = 0,

U = 0, T = 0, C = 0 at X = 0, (20)

U → 0, T → 0, C → 0 as Y → ∞.
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where Gr is the thermal Grashof number, Gc - the solutal Grashof number, M - the magnetic
field parameter, Pr - the fluid Prandtl number, Sc - the Schmidt number and N - the
radiation parameter, K- the chemical reaction parameter.

Local and average skin-friction in non-dimensional form are
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ρu2
0

= −

(
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)
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, (21)
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Local and average Nusselt number in non-dimensional form are
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Local and average Sherwood number in non-dimensional form are
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3 Numerical Technique

In order to solve the unsteady, non-linear coupled Equations (16) - (19) under the conditions
(20), an implicit finite difference scheme of Crank-Nicolson type has been employed. The
region of integration is considered as a rectangle with sides Xmax(=1) and Ymax(=14),
where Ymax corresponds to Y = ∞, which lies very well outside the momentum, energy
and concentration boundary layers. The maximum of Y was chosen as 14 after some
preliminary investigations, so that the last two of the boundary conditions (20) are satisfied
within the tolerance limit 10−5.

The finite difference equations corresponding to Equations (16) - (19) are as follows

[
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]

4∆X
+

[

V n+1
i,j − V n+1

i,j−1
+ V n

i,j − V n
i,j−1

]

2∆Y
= 0, (27)
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Here, the subscript i - designates the grid point along the X - direction, j - along the Y-
direction and the superscript n along the t - direction. An appropriate mesh size considered
for the calculation is ∆X = 0.05, ∆Y = 0.25, and time step ∆t = 0.01. During any one-
time step, the coefficients Un

i,j and V n
i,j appearing in the difference equations are treated as

constants. The values of U, V, T and C are known at all grid points at t = 0 from the initial
conditions. The computations of U, V, T and C at time level (n+1) using the known values
at previous time level (n) are calculated as follows.

The finite difference Equation (30) at every internal nodal point on a particular i- level
constitute a tri-diagonal system of equations. Such a system of equations is solved by
Thomas algorithm as described in Carnahan et al. [15]. Thus, the values of C are found
at every nodal point on a particular i at (n+1 )th time level . Similarly, the values of T are
calculated from the Equation (29). Using the values of C and T at (n+1 )th time level in the
Equation (28), the values of U at (n+1 )th time level are found in a similar manner. Thus
the values of C, T and U are known on a particular i - level. The values of V are calculated
explicitly using the Equation (27) at every nodal point on a particular i- level at (n+1 )th

time level. This process is repeated for various i- levels. Thus, the values of C, T, U and V

are known at all grid points in the rectangular region at (n+1 )th time level.

Computations are carried out till the steady state is reached. The steady state solution
is assumed to have been reached, when the absolute difference between the values of U

as well as temperature T and concentration C at two consecutive time steps are less than
10−5 at all grid points. The derivatives involved in the Equations (21) - (26) are evaluated
using five-point approximation formula and the integrals are evaluated using Newton-Cotes
closed integration formula.
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4 Results and Discussion

A representative set of numerical results is shown graphically in Figures.1-10, to illustrate
the influence of physical parameters viz., radiation parameter N , Grashof number Gr, mass
Grashof number Gc, Magnetic field parameter M , Schmidt number Sc and chemical reaction
parameter K on the velocity, temperature and concentration, skin-friction, Nusselt number
and Sherwood number. The value of the Prandtl number Pr is chosen to be 0.71(i.e., for
air) and the other parameters are arbitrarily chosen.

The transient velocity profiles for different values of Gr, Gc, M , N , Sc and K at a
particular time t = 1.0 has been shown in Figure 1. It is observed that the transient
velocity increases with the increase in Gr or Gc. There is a fall in transient velocity with
the increase in M , N , Sc or K. In Figure 2, the transient and steady state velocity profiles
are presented for different values M, N , Sc, K and the buoyancy force parameters Gr or
Gc. The steady state velocity increases with the increase in Gr or Gc. The time required
to reach the steady state and the velocity decreases with the increase in M, N , Sc and
K. Figure 3 shows the temperature decreases with the increasing values of Gr or Gc. It
can also be seen that the time required to reach the steady state temperature is more at
higher values of N(=10), as compared to lower values of N(=5). From Figures 1 to 3, it
is observed that, owing to an increase in the value of radiation parameter N , the velocity
and temperature decrease accompanied by simultaneous reductions in both momentum and
thermal boundary layers. However the time taken to reach the steady state increases as N

increases. The transient concentration profiles for Pr = 0.71, Gr = Gc(=2), N = 5, 10 and
Sc = 0.6 and 2.0 are shown in Figure 4. It is observed that for small values of Sc = 0.6,
K = 0.5 and N = 5, the time required to reach the steady state is 8.10, where as when
N = 10, under similar conditions, the time required to reach the steady state is 8.31 from
which it is concluded that for higher values of N , the time taken to reach the steady state
is more when Sc is small. It is also observed that increasing values of N corresponds to a
thicker concentration boundary layer relative to the momentum boundary layer. Hence, it
can be noted that at larger Sc, the time required to reach the steady state is less as compared
to that at low values of Sc. Also, an increase in Sc or K leads to a fall in concentration.

Steady state local skin-friction τX profiles are shown in Figure 5. The local shear stress
τX increases with the increase in Sc or K, where as it deceases with the increase in Gr or
Gm. It is also observed that the local skin-friction τX increases as the radiation parameter
N increases. The average values of skin-friction τ are plotted in Figure 6. It is observed that
decreases with the increase in Gr or Gm throughout the transient period and at the steady
state level. It is also observed that the average skin-friction τ increases as the radiation
parameter N increases. The average skin-friction increases with increasing Sc or K. The
local Nusslet number NuX for different Gr, Gm, N , Sc and K are shown in Fig.7. The local
heat transfer rate NuX decreases with the increase in Sc or K, whereas it increases with
the increase in Gr or Gm. Also it is found that as the radiation parameter N increases the
local Nusselt number NuX increases. The average values of Nusselt number Nu are shown
in Figure 8. It is noticed that the average Nusselt number Nu increases with the increase
in Gr or Gm or N, whereas it increases with the decrease in Sc or K. The local Sherwood
number ShX is plotted in Figure 9. It is observed that ShX increases with the increase in
Sc or K, where as it decreases with the increase in Gr, Gm or N . The average values of
Sherwood number Sh are plotted in Figure 10. It is seen that average Sherwood number
Sh increases with the increase in Gr or Gm or N.
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Figure 1: Transient Velocity Profiles at X = 1.0 for Different Gr, Gc, M, N, Sc,

Figure 2: Velocity Profiles at X = 1.0 for Different Gr, Gc, N, Sc and K
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Figure 3: Temperature Profiles at X = 1.0 for Different Gr, Gc, N

Figure 4: Concentration Profiles at X = 1.0 for Different Sc and K
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Figure 5: Local Skin-friction

Figure 6: Average Skin-friction
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Figure 7: Local Nusselt Number

Figure 8: Average Nusselt Number



12 M. Gnaneswara Reddy

Figure 9: Local Sherwood Number

Figure 10: Average Sherwood Number
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5 Conclusions

A detailed numerical study has been carried out for the radiative MHD chemically reacting
fluid flow past an impulsively started vertical plate. The dimensionless governing equations
are solved by an implicit finite-difference method of Crank-Nicolson type. Conclusions of
the study are as follows.

(i) The magnetic field parameter has retarding effect on the velocity.

(ii) At small values of the radiation parameter N, the velocity and temperature of the
fluid increases sharply near the plate as the time t increase.

(iii) The velocity and concentration field is decrease as the chemical reaction parameter
increases.

(iv) The skin-friction decreases with an increase Mand increases with the increasing value
of radiation parameter Nand chemical reaction parameter K or Schmidt number Sc.
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List of Symbols

B0 the magnetic induction
C ′ concentration
C dimensionless concentration

Gr thermal Grashof number
Gc modified Grashof number

g acceleration due to gravity
K chemical reaction parameter
M magnetic parameter
N radiation parameter

Nu average Nusselt number
Nux local Nusselt number

Pr Prandtl number
qr radiative heat flux
Sc Schmidt number

Sh average Sherwood number
ShX local Sherwood number

T ′ temperature
T dimensionless temperature
t′ time
t dimensionless time

u0 velocity of the plate
U, V dimensionless velocity components in X, R directions respectively

x spatial coordinate along the plate
X dimensionless spatial coordinate along the plate
y spatial coordinate normal to the plate
Y dimensionless spatial coordinate normal to the plate
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Greek Symbols

α thermal diffusivity
β volumetric coefficient of thermal expansion

β∗ volumetric coefficient of expansion with concentration
ke mean absorption coefficient
ν kinematic viscosity
ρ density
σ electrical conductivity

σs Stefan-Boltzmann constant
τx local skin-friction
τ̄ average skin-friction

Subscripts

w condition on the wall
∞ free stream condition


