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Abstract The classical inventory models are formulated with the assumptions that

the items are produced with perfect quality. But in reality, product quality may

not always be perfect. Due to machinery fault, unskilled labour fault etc., imperfect

quality items may be produced. A proportion of the defective items are assumed to

rework at a constant rate. Some of the perfect quality items may deteriorate perish

or damage at the time of packaging or transportation and these defective items passes

from the manufacturer or supplier to the customers. Customers then return these

defective items to the suppliers. In this paper, we formulate a multi-objective imperfect

quality inventory model with rework of defective items under the limited storage space

restrictions in fuzzy environment. Cost parameters are assumed as fuzzy number with

different types of left and right branches of membership functions. Problem is solved

by modified geometric programming approach. A numerical example is provided to

illustrate the proposed model.
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1 Introduction

Generally the inventory models are formulated by considering that only the perfect quality
items are produced. But in reality, product quality is not always perfect and is usually a
function of the production process. The process may deteriorate and produce defective or
poor quality items. So, a proportion of the produced items can be found to be defective.
Porteus [1] incorporated the effect of defective items into the inventory problem. Rosenblatt
and Lee [2] studied the effect of substandard quality, due to deterioration process on lot
sizing decisions. Cheng [3] proposed a classical inventory model with demand dependent
unit production cost and imperfect production process. He formulated an inventory model
with this idea and solved by Geometric Programming method. Salameh and Jaber [4]
developed an inventory problem where all received items are not perfect quality and after
100% screening process imperfect quality items are withdrawn from the inventory and sold
at a discounted price. Hayek and Salameh [5] formulated a finite production inventory
model and studied the effect of imperfect quality items on it. Wee et al. [6] developed a
single item inventory model for items with imperfect quality and shortage backordering.
Krishnamoorthi and Panayappan [7] proposed an imperfect production inventory model
with defect sales return.

In real life, it is not always possible to obtain the precise information about inventory
parameters. This type of imprecise data is not always well represented by random variables
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selected from probability distribution. So decision making methods under uncertainty are
needed. To deal with this uncertainty and imprecise data, the concept of fuzziness can be
applied. The inventory cost parameters such as holding cost, set up cost, production cost,
reworking cost are assumed to be flexible i.e. fuzzy in nature. These parameters can be
represented by fuzzy numbers. An efficient method of ranking fuzzy numbers has a very
important role to handle the fuzzy numbers in a fuzzy decision-making problem. Again,
in real life situation, it is almost impossible to predict the total inventory cost precisely.
These are also imprecise in nature. Decision maker may change these quantities within some
limits as per demand of the situation. Hence, these quantities may be assumed uncertain
in non-stochastic sense but fuzzy in nature. In this situation, the inventory problem along
with constraints can be developed with the fuzzy set theory.

In 1965, Zadeh [8] first introduced the concept of fuzzy set theory. Later on, Bellman
and Zadeh [9] used the fuzzy set theory to the decision-making problem. Tanaka et al. [10]
introduced the objectives as fuzzy goals over the α-cut of a fuzzy constraint set and Zimmer-
mann [11] gave the concept to solve multi-objective linear-programming problem using fuzzy
programming technique. Fuzzy set theory now has made an entry into the inventory control
systems. Sommer [12] applied the fuzzy concept to an inventory and production-scheduling
problem. Park [13] examined the Economic Order Quantity (EOQ) formula in the fuzzy
set theoretic perspective associating the fuzziness with the cost data. Roy and Maiti [14]
solved a single objective fuzzy EOQ model using Geometric Programming (GP) technique.
De and Goswami [15] derived a replenishment policy for items with finite production rate
and fuzzy deterioration rate represented by a triangular fuzzy number using extension prin-
ciple. Jain [16] first proposed the method of ranking fuzzy numbers. Yager [17] proposed a
procedure for ordering fuzzy subsets of the unit interval. A subjective approach for ranking
fuzzy numbers was presented by Campos and Munoz [18]. In 1999, Dubois and Prade [19]
proposed a unified view of ranking technique of fuzzy numbers. Wen and Quan [20] used
best approximation interval to rank fuzzy numbers.

GP method, as introduced by Duffin et al. [21], is an effective method to solve a non-
linear programming problem. It has certain advantages over the other optimization meth-
ods. The advantage is that this method converts a problem with highly non-linear and
inequality constraints (primal problem) to an equivalent problem with linear and equality
constraints (dual problem). It is easier to deal with the dual problem consisting linear and
equality constraints than the primal problem with non-linear and inequality constraints.
Kotchenberger [22] was first used GP method to solve the basic inventory problem. Warral
and Hall [23] utilized this technique to solve a multi-item inventory problem with several
constraints. This method is now widely used to solve the optimization problem in invent-
ories. But to solve a non-linear programming problem by GP method, degree of difficulty
(DD) plays a significant role. DD is defined as total number of terms in objective function
and constraints – (total number of decision variables + 1). It will be difficult to solve the
problem for higher values of DD. So, one always tries to reduce the DD to avoid such com-
plexity. Ata et al. [24], Ata and Kotb [25]and Chen [26] developed some inventory problems
and solved by GP method. Hariri and Ata [27] gave a new idea on GP to solve multi-item
inventory problems. (Here, after, this new GP has called modified geometric programming
(MGP)). Mandal et al. [28] used MGP technique to solve multi-item inventory problem.
Liu [29] presented a profit maximization problem with interval coefficients and quantity
discounts and solved by GP method. Leung [30] proposed an inventory problem with flex-
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ible and imperfect production process and used GP technique to obtain closed form optimal
solution. Sadjadi et al. [31] proposed a new pricing and marketing planning problem where
demand was a function of price and marketing expenditure with fuzzy environments and
the resulted problem solved by GP method. Mandal [32] proposed an inventory model with
ranking fuzzy number cost parameters and solved by modified GP method.

In this paper, a multi-objective economic order quantity problem with imperfect produc-
tion without shortage is formulated along with total available storage space restriction. The
model formulated with the assumptions that some of the defective items are reworkable and
remaining scrap items are discarded. Some of the sold items are found to be defective by
the customers and they returned those items to the manufacturer. Due to volatile nature of
the market, the cost parameters are represented here by fuzzy numbers with different types
of left and right branches of membership function. These parameters are first expressed
as nearest weighted interval approximation and then expressed as ranking fuzzy numbers
with best approximation interval. The objective goal cannot be predicted precisely in real
life. The authority may allow the flexibility of these goals to some extent. In this context,
the objective functions are considered here in fuzzy environment by giving some tolerance
value. The problem has expressed in posynomial problem. MGP technique is used here
to solve the problem. As a particular case, we also investigate the case when only perfect
quality items are produced. The problems are illustrated by numerical examples.

2 Mathematical Formulation

A multi-objective inventory model is developed under the following notations. and assump-
tions

2.1 Notations

Parameters for i-th (i =1,2,. . . ,n) item are

Di demand per unit item
Qi lot size per unit item (decision variable) (Q ≡ (Q1, Q2, ..., Qn)

T )
C0i production cost per unit item
C1i holding cost per unit item
C2i cost per unit item
C3i set up cost
Ii rate of defective items from regular production
Ei rate of defective items from end customers
xi proportion of defective items from regular production
yi proportion of defective items from customers
θi proportion of defective items that cannot be reworked (scrap items)
t1i processing time
t2i rework time without scrap
t3i consumption time
Wi storage space
TCi(Qi) total average cost function
SS(Qi) function of total available storage area
TC0i goal of the objective function
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p0i tolerance value for the goal TC0i

W total available storage space

2.2 Assumptions

(i) Rate of imperfect quality items from regular production (Ii) is equal to the production
rate (Pi) times the percentage of defective items produced (xi) i.e. Ii = xiPi, 0 ≤
xi ≤ 1.

(ii) Rate of defective items from the end customers (Ei) is equal to the some fraction (yi)
of the demand (Di) of the items i.e. Ei = yiDi, 0 ≤ yi ≤ 1.

Figure 1: On-hand Inventory of i-th Item

The governing differential equation is

dqi
dt

= (1 − xi)Pi − (1 + yi)Di for 0 6 t 6 t1i,

= Pi − (1 + yi)Di for t1i 6 t 6 t1i + t2i,

= (1 + yi)Di for t1i + t2i 6 t 6 t1i + t2i + t3i(= Ti).

Imperfect quality items produced = xiQi, 0 6 t 6 t.
At t = t1i, scrap items = xiθiQi.
Reworkable items = xi(1 − θi)Qi.
Total items produced during the production cycle is

Qi = Pit1i i.e. t1i =
Qi
Pi
.

Maximum level of on hand imperfect quality items = Iit1i = Pixit1i = xiQi.
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The time needed to consume all units Qi at Di is Ti = Qi
Di
.

The inventory level of perfect quality items at time t = t1i is

Q1i =

∫ t1i

0

dqi(t) = (Pi −Di − Ii − Ei)
Qi
Pi
.

The inventory level of reworkable items is xi(1 − θi)Qi = Pit2i, i.e.

t2i =
xi(1 − θi)Qi

Pi
.

The inventory level of perfect quality items at time t1i + t2i is

Q2i =

∫ t1i+t2i

0

dqi(t) = (Pi −Di − Ii −Ei)
Qi
Pi

+ (Pi −Di −Ei)
xi(1 − θi)Qi

Pi
.

Again Q2i = (Di + Ei)t3i i.e. t3i = Q2i

Di+Ei
.

Cycle time

Ti = t1i + t2i + t3i

=
Qi
Pi

+
xi(1 − θi)Qi

Pi
+

(Pi −Di − Ii −Ei)Qi
(Di +Ei)

+
xi(1 − θi)Qi(Pi −Di − Ei)

Pi(Di + Ei)
,

=
(1 − θixi)Qi
Di + Ei

.

Holding cost = C1i

∫ Ti

0

dqi(t),

= C1i

∫ t1i

0

(Pi −Di − Ii −Ei)dt+C1i

∫ t1i+t2i

t1i

(Pi −Di − Ei)dt

+ C1i

∫ t1i+t2i+t3i

t1i+t2i

(Di + Ei)dt,

=
C1iQi

2Pi(1 − xiθi)

[

Pi(1 − xiθi)
2 −Di(1 + yi)(1 + xi − 2xiθi) + x2(1 −θ2)

]

.

Total average cost TCi (Qi) consists of Production cost, Set up cost, Holding cost,
Reworking cost:

TCi(Qi) =
1

Ti

[

C0iQi +C3i +C1i

∫ Ti

0

dqi(t) +C2ixi(1 − θi)Qi

]

=

[

Di + Ei
1− θixi

C0i +
Di + Ei

Qi(1 − θixi)
C3i

+
Qi

{

Pi(1 − xiθi)
2 −Di(1 + yi)(1 + xi − 2xiθi) + x2

i (1 − θ2i )
}

2Pi(1 − xiθi)
C1i

+
xi(1 − θi)(Di + ωi)

1 − θixi
C2i

]

for i = 1, 2, ..., n.
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The maximum inventory level allowed is

n
∑

i=1

WiQ2i =
n
∑

i=1

[(Pi −Di − Ei)(1 + xi(1 − θi)) − Ii]
WiQi
Pi

.

The problem is to minimize the total average cost function i.e.

Min TCi(Qi) =
Di(1 + yi)

1 − θixi
C0i +

Di(1 + yi)

Qi(1 − θixi)
C3i

+
Qi

{

Pi(1 − xiθi)
2 −Di(1 + yi)(1 + xi − 2xiθi) + x2

i (1 − θ2i )
}

2Pi(1 − xiθi)
C1i

+
xiDi(1 − θi)(1 + yi)

1 − θixi
C2i for i = 1, 2, 3, ..., n (1)

subject to
n
∑

i=1

[

(Pi −Di(1 + yi))(1 + xi(1 − θi)) − Pixi

]WiQi
Pi

≤W.

Fuzzy Model: Here we consider that the cost parameters are imprecise in nature i.e.
expressed as fuzzy numbers

Min TC̃i(Qi) =
Di(1 + yi)

1 − θixi
C̃0i +

Di(1 + yi)

Qi(1 − θixi)
C̃3i

+
Qi

{

Pi(1 − xiθi)
2 −Di(1 + yi)(1 + xi − 2xiθi) + x2

i (1 − θ2i )
}

2Pi(1 − xiθi)
C̃1i

+
xiDi(1 − θi)(1 + yi)

1 − θixi
C̃2i (2)

subject to

SS(Q) =

n
∑

i=1

[(Pi −Di(1 + yi))(1 + xi(1 − θi)) − Pixi]
WiQi
Pi

≤W.

Special case 1: When only perfect quality items are produced, then xi = 0.
Problem (1) is reduced to

Min TC(Q) = Di(1 + yi)C0i +
Di(1 + yi)

Qi
C3i +

Qi {Pi −Di(1 + yi)}
2Pi

C1i i = 1,2,...,n (3)

subject to
n
∑

i=1

[(Pi −Di(1 + yi))]
WiQi
Pi

6 W.

Special case 2: When only perfect quality items are produced, then xi = 0 and customers
are received perfect quality items, then yi = 0.
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Problem (1) reduced to

Min TCi(Qi) = DiC0i +
Di
Qi
C3i +

Qi
2

(

1 − Di
Pi

)

C1i i = 1,2,...,n (4)

subject to
n
∑

i=1

[

(1 − Di
Pi

)

]

WiQi 6 W.

3 Ranking Fuzzy Number of Cost Parameters with Best

Approximation Interval

Fuzzy number: A real number Ã described as a fuzzy subset on the real line < whose
membership function µÃ(x) has the following characteristics with −∞ < a1 ≤ a2 ≤ a3 <∞

µÃ(x) =















µL
Ã
(x) if a1 ≤ x ≤ a2 ,

1 if x = a2 ,
µR
Ã
(x) if a2 ≤ x ≤ a3 ,

0 otherwise .

where left branch membership function µL
Ã
(x) : [a1, a2] → [0, 1] is continuous and strictly

increasing; right branch membership function µR
Ã
(x) : [a2, a3] → [0, 1] is continuous and

strictly decreasing.

α−level Set: The α-level set of a fuzzy number Ã is defined as a crisp set A(α) which
is a non-empty bounded closed interval contained in X and can be denoted by A(α) =
[AL(α), AR(α)] = [inf{x ∈ < : µÃ(x) ≥ α}, sup{x ∈ < : µÃ(x) ≥ α}], where AL(α) and
AR(α) are the lower and upper bounds of the closed interval respectively, ∀α ∈ [0, 1].

Interval Number: An interval number A is defined by an ordered pair of real numbers as
follows A = [aL, aR] = {x : aL ≤ x ≤ aR, x ∈ R}, where aL and aR are the left and right
bounds of interval A respectively.

Here we want to approximate a fuzzy number by a crisp model. Suppose Ã and B̃ are
two fuzzy numbers with α-cuts are A(α) = [AL(α), AR(α)] and B(α) = [BL(α), BR(α)]
respectively. The distance d(A(α), B(α)) between A(α) and B(α) is given by Wen and
Quan [20],

d2(A(α), B(α)) =

∫ 1

2

−
1

2

[{

AL(α) +AR(α)

2
+ x (AR(α) −AL(α))

}

−
{

BL(α) + BR(α)

2
+ x (BR(α) −BL(α))

}]2

dx,

=

(

AL(α) + AR(α)

2
− BL(α) + BR(α)

2

)2

+
1

12
[(AR(α) − AL(α)) − (BR(α) −BL(α))]

2
.

The distance between fuzzy numbers Ã and B̃ are defined by D(Ã, B̃) where
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D2(Ã, B̃) =

∫ 1

0
d2 (A(α), B(α))f(α)dα

∫ 1

0
f(α)dα

.

The weight function f(α) > 0 is a continuous function defined on [0,1], ∀α ∈ (0, 1].

Nearest Interval Approximation:

A weighting function ψ = (ψL, ψR) : ([0, 1], [0, 1]) → (R,R) such that the functions ψL, ψR
are non-negative, monotone increasing and satisfies the normalization conditions

∫ 1

0

ψL(α)dα =

∫ 1

0

ψR(α)dα = 1.

Let Ã be a fuzzy number with A(α) = [AL(α), AR(α)] and ψ(α) = (ψL(α), ψR(α)) be a
weighted function. Then, the nearest interval approximation is

Aψ =

[
∫ 1

0

ψL(α)AL(α)dα,

∫ 1

0

ψR(α)AR(α)dβ

]

.

Best Approximation using Nearest Interval Approximation of Fuzzy Cost

Parameters:

The cost parameters C̃ji (j= 0,1,2,3 and i= 1,2,. . . ,n) are represented by fuzzy numbers.

The α-level interval of C̃ji is C̃ji(α) = [CjiL(α), CjiR(α)], ∀α ∈ (0, 1]. The nearest weighted

interval approximation to fuzzy cost parameters C̃ji is

C̃jiψ(α) = [ψL(α)CjiL(α), ψR(α)CjiR(α)].

Since each interval is also a fuzzy number with constant α-cuts, we can find a best
approximation interval CD(C̃ji) = [CjiL, CjiR] which is nearest to C̃ji with respect to

metric D. Now, we have to minimize gψ (CjiL, CjiR) = D2(C̃ji, CD(C̃ji)), i.e.

gψ (CjiL, CjiR) =

∫ 1

0

{

[

1

2
(ψL(α)CjiL(α) + ψR(α)CjiR(α)) − 1

2
(CjiL + CjiR)

]2

+
1

12
[(ψR(α)CjiR(α) − ψL(α)CjiL(α)) −(CjiR − CjiL)

2
]}

f(α)dα/

∫ 1

0

f(α)dα

with respect to CjiL and CjiR.
To solve the problem, we find partial derivatives for gψ (CjiL, CjiR) with respect to CjiL

and CjiR;

∂gψ (CjiL, CjiR)

∂CjiL
= −1

3

∫ 1

0

[2ψL(α)CjiL(α) + ψR(α)CjiR(α)] f(α)dα/

∫ 1

0

f(α)dα

+
1

3
(2CjiL+CjiR)
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and

∂gψ(CjiL, CjiR)

∂CjiR
= −1

3

∫ 1

0

[ψL(α)CjiL(α) + 2ψR(α)CjiR(α)] f(α)dα/

∫ 1

0

f(α)dα

+
1

3
(CjiL+2CjiR).

Solving
∂gψ (CjiL, CjiR)

∂CjiL
= 0, and

∂gψ (CjiL, CjiR)

∂CjiR
= 0.

We have

CjiL =

∫ 1

0

ψL(α)CjiL(α)f(α)dα/

∫ 1

0

f(α)dα

and

CjiR =

∫ 1

0

ψR(α)CjiR(α)f(α)dα/

∫ 1

0

f(α)dα.

Therefore, the best approximation interval fuzzy number C̃ji with respect to distance D is

CD(C̃ji) =

[
∫ 1

0

ψL(α)CjiL(α)f(α)dα/

∫ 1

0

f(α)dα,

∫ 1

0

ψR(α)CjiR(α)f(α)dα/

∫ 1

0

f(α)dα

]

.

Note: If f(α) = 1 and ψL(α) = 1 = ψR(α), ∀α ∈ (0, 1], the best approximation interval

CD(C̃ji) =

[
∫ 1

0

CjiL(α)dα,

∫ 1

0

CjiR(α)dα

]

which was defined by Campose and Munoz [18].

Ranking Fuzzy Numbers of Cost Parameters with Best Approximation Interval

The best approximation interval of C̃ji is [CjiL, CjiR]. The ranking fuzzy number of the
best approximation interval [CjiL, CjiR] is defined as a convex combination of lower and
upper boundary of the best approximation interval. Let λ ∈ [0, 1] is a pre-assigned para-
meter, called degree of optimism. Therefore, the ranking fuzzy number of C̃ji is defined by

Rλfψ(C̃ji) = λCjiR + (1 − λ)CjiL. A large value of λ ∈ [0, 1] specifies the higher degree of

optimism. When λ = 0, R0fψ(C̃ji) = CjiL expresses that the decision maker’s viewpoint is

completely pessimistic. When λ = 1, R1fψ(C̃ji) = CjiR expresses that the decision maker’s
attitude is completely optimistic. When λ = 1

2
,

R 1

2
fψ

(C̃ji) = 1

2
[CjiR + CjiL]

reflects moderately optimistic or neutral attitude of the decision maker. To find the rank-
ing fuzzy numbers of C̃ji, i=1,2,. . . ,n, j=0,1,2,3, firstly, transform these fuzzy numbers

into best approximation interval numbers, CD(C̃ji) = [CjiL, CjiR] by means of the best
approximation operator CD. Then, by using the convex combination of the boundaries of
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CD(C̃ji) = [CjiL, CjiR], we change these interval numbers into real values. Ranking fuzzy

numbers of C̃ji is as follows:

Rλfψ(C̃ji) =

∫ 1

0

[λψR(α)CjiR(α) + (1 − λ)ψL(α)CjiL(α)] f(α)dα/

∫ 1

0

f(α)dα. (5)

Taking f(α) = α, andψL(α) = 2α, ψR(α) = 3α2, ∀α ∈ (0, 1] , then

Rλfψ(C̃ji) = 4

∫ 1

0

α2 [λCjiR(α) + (1 − λ)CjiL(α)]dα.

If C̃ji = (Cji1, Cji2, Cji3) is a Linear Fuzzy Number (LFN), then

CjiL(α) = Cji1 + α(Cji2 −Cji1) and CjiR(α) = Cji3 − α(Cji3 − Cji2).

The lower limit of the interval is

CjiL =

∫ 1

0

ψL(α)CjiL(α)f(α)dα/

∫ 1

0

f(α)dα =
1

3
(Cji1 + 3Cji2)

and the upper limit of the interval is

CjiR =

∫ 1

0

ψR(α)CjiR(α)f(α)dα/

∫ 1

0

f(α)dα =
3

10
(4Cji2 +Cji3) .

Corresponding ranking fuzzy number is

Rλfψ(C̃ji) =
1

3
[(1 − λ)cji1 + 3cji2 + λcji3] .

If C̃ji = (Cji1, Cji2, Cji3) is a Parabolic Fuzzy Number (PFN), then

CjiL(α) = Cji2 − (Cji2 −Cji1)
√

1 − α and CjiR(α) = Cji2 + (Cji3 −Cji2)
√

1 − α.

The lower limit of the interval is

CjiL =

∫ 1

0

ψL(α)CjiL(α)f(α)dα/

∫ 1

0

f(α)dα =
4

105
(16Cji2 + 19Cji1)

and the upper limit of the interval is

CjiR =

∫ 1

0

ψR(α)CjiR(α)f(α)dα/

∫ 1

0

f(α)dα =
1

210
(187Cji2 + 128Cji3) .

Corresponding ranking fuzzy number is

Rλfψ(C̃ji) =
76(1− λ)

105
Cji1 +

128 + 59λ

210
Cji2 +

64λ

105
Cji3.

If C̃ji = (Cji1, Cji2, Cji3) is Exponential Fuzzy Number (EFN), then

CjiL(α) = Cji1 −
(Cji2 − Cji1)

δ1
log

(

1− α

ν1

)
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and

CjiR(α) = Cji3 +
(Cji3 − Cji2)

δ2
log

(

1 − α

ν2

)

.

The lower limit of the interval is

CjiL =

∫ 1

0

ψL(α)CjiL(α)f(α)dα/

∫ 1

0

f(α)dα,

=
4

3
Cji1 +

4ν3
1(Cji2 −Cji1)

18δ1

[

18

{

log

(

1 − 1

ν1

)

− 1

}(

1 − 1

ν1

)

− 9

{

2 log

(

1 − 1

ν1

)

− 1

}(

1 − 1

ν1

)2

+ 2

{

3 log

(

1 − 1

ν1

)

− 1

}(

1 − 1

ν1

)3

+ 11

]

.

Upper limit of the interval is

CjiR =

∫ 1

0

ψR(α)CjiR(α)f(α)dα/

∫ 1

0

f(α)dα,

=
3

2
Cji3 −

ν4
2(Cji3 − Cji2)

8δ2

[

48

{

log

(

1 − 1

ν2

)

− 1

}(

1 − 1

ν2

)

− 36

{

2 log

(

1 − 1

ν2

)

− 1

}(

1 − 1

ν2

)2

+ 16

{

3 log

(

1− 1

ν2

)

− 1

}(

1 − 1

ν2

)3

− 3

{

4 log

(

1 − 1

ν2

)

− 1

}(

1 − 1

ν2

)4

+ 31

]

.

Corresponding ranking fuzzy number is

Rλfψ(C̃ji) = λCjiR + (1 − λ)CjiL.

4 Geometric Programming Technique to Solve Fuzzy Inventory

Problem

The triangular shaped fuzzy numbers C̃ji are represented by C̃ji = (Cji1, Cji2, Cji3) for j =
0,1,2,3 and i= 1,2. . . .n. Then, the objective functions are represented by

TC̃i = (TCi1, TCi2, TCi3), i = 1, 2, ..., n

where

Rλfψ

(

TC̃i(Q)
)

=
Di(1 + yi)

1 − θixi
Rλfψ(C̃0i) +

Di(1 + yi)

Qi(1 − θixi)
Rλfψ(C̃3i)

+
Qi

{

Pi(1 − xiθi)
2 −Di(1 + yi)(1 + xi − 2xiθi) + x2

i (1 − θ2i )
}

2Pi(1 − xiθi)
Rλfψ(C̃1i)

+
xiDi(1 − θi)(1 + yi)

1 − θixi
Rλfψ(C̃2i)
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subject to

SS(Q) =

n
∑

i=1

[(Pi −Di(1 + yi))(1 + xi(1 − θi)) − Pixi]
WiQi
Pi

≤W.

According to Werners [33], the objective functions should be fuzzy in nature. So, for
given λ ∈ [0, 1], (2) is equivalent to the following fuzzy goal programming problem

FindQ

Rλfψ

(

TC̃i (Qi)
)

≤̃TC0i, for i = 1, 2, ..., n (6)

SS(Q) ≤W

In this formulation, it is assumed that the manufacturer has a target of expenditure
TC0i for i-th item. As before it may happen that in course of business, he or she may be
compelled to augment some more capital to spend more say, p0i for i-item to take some
business advantages, if such a situation occurs. Here, we assume that the objective goals
are imprecise having a minimum targets TC 01, ,TC0n with positive tolerances p01 . . . , , p0n

for λ ∈ [0, 1].
In fuzzy set theory, the imprecise objectives are defined by their membership functions,

which also may be linear and or non-linear. Membership functions for i-th objective is

µi

(

Rλfψ

(

TC̃i

))

=



















0, Rλfψ

(

TC̃i

)

> TC0i + p0i,

1 − Rλfψ(TC̃i)−TC0i

p0i
, TC0i ≤ Rλfψ

(

TC̃i

)

≤ TC0i + p0i,

1, Rλfψ

(

TC̃i

)

< TC0i.

for i = 1, 2, ..., n,
Following Bellman and Zadeh [9], max-min operator or convex combination operator

the fuzzy goal programming problem (6) may be reduced to a crisp Primal Geometric
Programming (PGP) problem. To reduce the DD, here convex combination operator is
used. So, the problem (6) can be formulated as

Max V =

n
∑

i=1

ωiµi

(

Rλfψ

(

TC̃i

))

(7)

subject to SS(Q) ≤W where

µi

(

Rλfψ

(

TC̃i

))

= 1 −
Rλfψ

(

TC̃i

)

− TC0i

p0i

, for i = 1, 2, . . . , n

and µi

(

Rλfψ

(

TC̃i

))

∈ [0, 1] .

Here ωi may be taken as positive normalized preference values (i.e. weights) of objective
functions i.e.

∑n
i=1

ωi = 1.
Problem (7) may be written as

Max V =

n
∑

i=1

(

ωi +
TC0i

p0i

)

−U(Q) (8)
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subject to the same constraint of (7), where

U(Q) =

n
∑

i=1

ωiRλfψ(TC̃i)

p0i

Problem (8) can be written as possynomial geometric programming problem as

Min U0(Q) =

n
∑

i=1

(

Ai
Qi

+ BiQi

)

(9)

subject to
∑n

i=1
WSiQi ≤W,Q > 0, where

U(Q) =
n
∑

i=1

[

ωi
p0i

{

Di(1 + yi)

1 − θixi
Rλfψ(C̃0i) +

xiDi(1 − θi)(1 + yi)

1 − θixi
Rλfψ(C̃2i)

}]

+ U0(Q),

Ai =
ωiDi(1 + yi)

p0i(1 − θixi)
Rλfψ(C̃3i),

Bi =
ωi

2p0iPi(1 − θixi)

{

Pi(1 − θixi)
2 −Di(1 + yi)(1 + xi − 2xiθi) + x2

i (1 − θ2i )
}

Rλfψ(C̃3i),

WSi = [(Pi −Di(1 + yi))(1 + xi(1 − θi)) − Pixi]
Wi

Pi
.

Problem (9) is an unconstrained possynomial geometric programming problem with
(2n − 1) degree of difficulty. For large value of n, it will be very cumbersome to solve the
problem by GP method.But in MGP method, the DD reduces to 1. The corresponding dual
problem of (9) is

Max dw =

n
∏

i=1

(

Ai
w1i

)w1i
(

Bi
w2i

)w2i
(

WSi

w3i

)w3i

(

n
∑

i=1

w3i

)

P

n
i=1

w3i

(10)

subject to the normality and orthogonality conditions

w1i +w2i = 1,
−w1i +w2i +w3i = 0,
0 < w1i, w2i < 1.

Solving the equality constraints, we get,w2i = 1 − w1i and w3i = 2w1i − 1. Putting these
values in the dual function (10) and then differentiating log(dw) with respect to w1i we get

AiW
2
Si(1 − w1i)

(

n
∑

i=1

(2w1i − 1)

)2

−Biw1i(2w1i − 1)2 = 0

for i = 1,2,...,n where the optimality criteria is 0.5 < w1i < 1. The relation gives the
optimal value w∗

1i and hence other optimal values are w∗

2i and w∗

3i. The optimal value of the
decision variable will be found from the relation

Ai
w∗

1iQ
∗

i

=
BiQ

∗

i

w∗

2i

,
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which gives

Q∗

i =

√

Aiw
∗

2i

Biw∗

1i

and hence the optimal values of the objective functions are TC∗

i (i = 1,2,...,n).

5 Numerical Example

A manufacturing company produces three types of machines A, B, C in lots. The company
has a warehouse whose total floor area is W = 100 m2. The production rates of three
machines are 570, 880 and 700 units per months respectively. From the past records, it is
found that the demand of the items are 160, 170 and 200 units per months respectively.
Rate of defective items from regular productions are 2%, 1% and 3% respectively. Rate of
defective items from the end customers are 1%, 2% and 1% respectively. Rate of defective
items that cannot be reworked are 3%, 2% and 1% respectively. The holding cost of the
machine A is near about $5.5 but never less than $5.2 and never above than $5.6 i.e. c̃11 ≡
$ (5.2, 5.5, 5.6). Similarly, holding cost of machine B is c̃12 ≡ $ (6.1, 6.4, 6.7)and for C
is c̃13 ≡ $ (5.5, 5.8, 6.6). The production costs, set up costs and reworking costs of three
machines are c̃01 ≡ $ (1.1, 1.2, 1.3) , c̃02 ≡ $ (1.1, 1.3, 1.4) , c̃03 ≡ $ (1.2, 1.4, 1.5)
and c̃31 ≡ $ (120, 130, 140) , c̃32 ≡ $ (100, 120, 130) , c̃33 ≡ $ (110, 140, 170) and
c̃21 ≡ $ (1.8, 2, 2.2) , c̃22 ≡ $ (2, 2.2, 2.4) , c̃23 ≡ $ (21, 2.4, 2.6) respectively. The
space required for three types of machines are 6.2 m2, 5.5 m2 and 5.8 m2 respectively. The
authority decides to spend $800 to produce machine A, $850 to produce machine B and
$1200 to produce machine C and allows a tolerance value of $250 for each machines.

From the past experiences, it is found that the membership functions of different cost
parameters are not same. They may be linear, parabolic or exponential type membership
functions for left and right branches of different cost parameters. Input values of different
types of membership functions are given in Table 1 below. Here, left branch of the cost
parameter C̃01 is taken as exponential type membership function whereas right branch
the same parameter is taken as linear type membership function. Similarly, membership
functions of other cost parameters are expressed in Table 1, where L, P, E stands for linear,
parabolic, exponential membership functions respectively and Lt and Rt stands for left and
right branches of fuzzy cost parameters.

Table 1: Left and Right Branches of Fuzzy Cost Parameters

Br C̃01 C̃02 C̃03 C̃11 C̃12 C13 C̃21 C̃22 C̃23 C̃31 C̃32 C̃33

Lt E L P E P E P L P E P E

Rt L P L E P P L L E P P L

The parameter (ν1, δ1) is chosen for the left branch of exponential type membership
function C̃01,C̃11,C̃13, C̃31 and C̃33 whereas the parameters (ν2, δ2) is chosen for the right
branch of exponential type membership function C̃11 and C̃23. Input values of the para-
meters (ν1, δ1) and (ν2, δ2) are given in Table 2.
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Table 2: Values of (ν1, δ1) and (ν2, δ2) for the Membership Functions of
C̃01,C̃11,C̃13, C̃23, C̃31 and C̃33

Br C̃01 C̃11 C̃13 C̃23 C̃31 C̃33

Left (ν1, δ1) (1.2, 2.4) (1.2, 4.5) (1.5,4.5) - (1.3,4.7) (1.7,4.3)

Right(ν2, δ2) - (1.3, 2.5) - (1.6,4.6) - -

Optimal values of the objective functions are given in Table 3 below for the degree
of optimism λ = 0.7 which reflects the higher degree of optimism. Here, optimal values
of objective functions and decision variables are found for different preference values to
objective functions. It is seen from the Table 3 that optimal value of the objective function
TC1 is minimum (bold numeral) when more preference is given to that objective function.
Similarly TC∗

2 and TC∗

3 is minimum (bold numeral) when more preference values are given
to the objective function TC2 and TC3 respectively. It is also found from the Table 3 that
maximum inventory can be achieved from that objective function which has more preference
value. When more preference value is given to 1st objective function then the optimal value
Q∗

1 reflects more inventory size than the others. Similarly when more preference values are
given to 2nd and 3rd objective functions than the others then optimal value Q∗

2 and Q∗

3

reflects more inventory size than the others respectively.

Table 3: The Optimal Values (for λ = 0.7)

Preference values
(σ1, σ2, σ3)

Q∗

1 Q∗

2 Q∗

3 TC∗

1 ($) TC∗

2 ($) TC∗

3 ($)

Equal Preference val-
ues (1/3,1/3,1/3)

95.03837 79.99869 140.0891 889.5551 934.4553 1375.394

More preference to the
1st objective function
(0.5,0.3,0.2)

99.43225 80.34273 135.2541 887.2317 934.1975 1379.312

More preference to the
2nd objective function
(0.2,0.7,0.1)

96.33066 86.02499 131.9133 888.7356 931.6344 1382.845

More preference to the
3rd objective function
(0.3,0.2,0.5)

94.55871 76.23727 144.8617 889.8896 938.1351 1372.787

Optimal values of the decision variables and objective functions for special case I (when
only perfect quality items are produced) and special case II (when perfect quality items are
produced and customers also received perfect quality items) are shown in Table 4 below.
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It is seen from Table 4 that optimal values of the objective functions for special case II are
minimum than the special case I.

Table 4: Optimal Solutions for Special Cases (for λ = 0.7 and Equal Preference Values)

Q∗

1 Q∗

2 Q∗

3 TC∗

1 ($) TC∗

2 ($) TC∗

3 ($)

Special Case – I 94.18679 79.62115 138.5716 883.5897 930.2416 1362.675

Special Case - II 93.94308 78.92917 138.2436 878.6096 919.3442 1355.603

6 Sensitivity analysis

Here, the nature of changes of optimal values of decision variables and objective functions
are investigated for the corresponding changes of degree of optimism λ. It is seen from
Table 5, when the degree of optimism λ increases, then the optimal values Q∗

1, Q
∗

2, TC
∗

1 ,
TC∗

2 are gradually decreases. But the optimal values Q∗

3 and TC∗

3 increases when the degree
of optimism λ increases.

Table 5: Effect of Change in λ When Preference Values are Equal

λ Q∗

1 Q∗

2 Q∗

3 TC∗

1($) TC∗

2 ($) TC∗

3 ($)

0 105.4398 90.84590 117.2074 923.0230 1065.615 1208.056

0.1 103.7456 89.06796 120.9470 917.8126 1046.556 1235.806

0.2 101.9708 87.38799 124.6566 912.8040 1027.649 1261.991

0.3 100.3301 85.84456 128.0749 907.9613 1008.843 1286.831

0.4 98.86998 84.29796 131.3142 903.2275 990.1509 1310.471

0.5 97.46184 82.88948 134.3435 898.6172 971.4912 1333.062

0.6 96.29420 81.36379 137.2633 894.0060 952.9869 1354.677

0.7 95.03837 79.99869 140.0891 889.5551 934.4553 1375.394

0.8 93.93331 78.60679 142.7931 885.1063 916.0060 1395.312

0.9 92.85580 77.28962 145.3840 880.7272 897.5442 1414.501

1 91.85971 76.02833 147.8289 876.3623 879.0636 1433.058

7 Conclusion

In this paper, a multi-objective imperfect production inventory problem with reworking
of defective items along-with space constraint is formulated. The cost components are
considered here as triangular shaped fuzzy numbers with linear, parabolic and exponential
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types of left and right branch membership functions. These fuzzy numbers are then defined
by ranking fuzzy numbers with respect to the best approximation interval number. The
objective goals are not precise. The authority allows some flexibility to attain his target.
The company can achieve its target varying the level of optimistic value λ from 0 and 1.
The model is illustrated with a practical example (manufacturing company). Hence, MGP
method is used here to solve the problem. The model can be easily extended to generic
inventory problems with other constraints. The method presented here is quite general and
can be applied to the real life inventory problems faced by the practitioners in industry or
in other areas. This method may be applied to several type of fuzzy model in engineering
optimization (like structural optimization).
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