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Abstract It is known that homotopy continuation methods (HCM) used in con-
junction with a classical numerical method to compute roots of nonlinear algebraic
equations can improve the performance of the classical numerical method. In this pa-
per, we develop an Ostrowski-HCM method and apply it to solve several polynomial
equations. The results obtained indicate that Ostrowski-HCM performs better than
Ostrowski’s method.
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1 Introduction

The problem of solving or finding the roots of a polynomial equation, represented by
f(x) = 0, is an important problem in the field of numerical analysis which requires efficient
and accurate solution procedures. The computation of roots of polynomial equations has
many real world applications in physics, chemistry, economics and so on. There are also
problems which necessitate the solution of a system of polynomial equations

F(x)= 0, (1)

where F(x)=
(

f1(x) f2(x) · · · fn(x)
)T

and x = {x1, x2, ..., xn} and this also requires
efficient and accurate solution procedures.

When searching for the roots of f(x) = 0 or F(x) = 0, it is not uncommon to run into
difficulties such as overflow and divergence usually caused by using a bad initial guess or bad
structure of equations. A recent study by Wu [1] explored using the homotopy continuation
method (HCM) to overcome these difficulties.

According to Gritton et al. [2], there are four classifications of numerical methods to
find the roots of f(x) = 0 or F(x) = 0 : local methods, global methods, interval methods
and graphical methods. We focus on the first two methods. The authors in [2] stated
that local methods require an initial guess of a root which is close to the intended root for
the particular application while global methods can use an arbitrary initial guess. As an
example, the Newton method is a local method while HCM itself, on its own, is a global
method. In this paper, we combine a local method called Ostrowski’s method (OM) with
HCM to obtain the Ostrowski-HCM (OHCM).

Section 2 discusses Ostrowski’s method and its variants. Section 3 discusses Ostrowski’s
method and its problems with divergence. Section 4 contains the details and inner workings
of OHCM. Section 5 contains the numerical experiments and results, while Section 6 gives
the conclusion.
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2 Ostrowski’s Method and Its Variants

Ostrowski’s method was introduced by Alexander Markowich Ostrowski in 1960 [3] to find
the roots of a single-variable nonlinear function. The method employs two-step iterations
using the following equations

yi = xi −
f(xi)

f ′(xi)
, i = 0, 1, 2, ..., k− 1, (2a)

xi+1 = yi −
xi − yi

f(xi) − 2f(yi)
f(yi), i = 0, 1, 2, ..., k− 1, (2b)

where (2a) is the classical Newton’s method while (2b) is the Ostrowski’s formula. Ostrowski
[4] then expanded (2b) and reformulated as follows

yi = xi −
f(xi)

f ′(xi)
,

xi+1 = yi −
f(xi)

f(xi) − 2f(yi)

f(yi)

f ′(xi)
, i = 0, 1, 2, ..., k− 1. (3)

Ostrowski’s method which has fourth order convergence is an extension of Newton’s method
which has second order convergence. More recent studies by Grau and Diaz-Barrero [5],
Sharma and Guha [6] , Chun and Ham [7] and Kou et al. [8] use Osrowski’s method as a
basis for the methods they developed.

Studies [5-7] extended Ostrowski’s method to one that has sixth order convergence. The
method put forward in [5] is

yi = xi −
f(xi)

f ′(xi)
,

zi = yi −
f(xi)

f(xi) − 2f(yi)

f(yi)

f ′(xi)
, i = 0, 1, 2, ..., k− 1. (4)

xi+1 = zi −
f(xi)

f(xi) − 2f(yi)

f(zi)

f ′(xi)
,

The study in [6] also explores a modification of Ostrowski’s method with accelerated sixth
order convergence. The method put forward is

yi = xi −
f(xi)

f ′(xi)
,

zi = yi −
f(xi)

f(xi) − 2f(yi)

f(yi)

f ′(xi)
, i = 0, 1, 2, ..., k− 1, (5)

xi+1 = zi −
f(xi) + (β + 2)f(yi)

f(xi) + βf(yi)

f(zi)

f ′(xi)
,

where β ∈ R. When β = −2 scheme (5) reduces to scheme (4). The study in [6] compared
equation (5) with two other methods i.e. equation (3) and equation (4) as introduced in
studies [4] and [5] respectively. The numerical results overwhelmingly support the new
method introduced by Sharma and Guha [6] rather than the schemes introduced in [4]
and [6].
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Chun and Ham [7] put forward the following scheme

yi = xi −
f(xi)

f ′(xi)
,

zi = yi −
f(xi)

f(xi) − 2f(yi)

f(yi)

f ′(xi)
, i = 0, 1, 2, ..., k− 1, (6)

xi+1 = zi − R(ui)
f(zi)

f ′(xi)
,

where R(λ) is a real-valued function and ui = f(yi)
f(xi)

. The authors observed that if R(λ) =
1

1−2λ
and R(λ) = 1+(β+2)λ

1+βλ
, then Eq. (6) can be reduced to (4) and (5) respectively. In

[7], three methods were developed by using three different real-valued functions R(λ) and
a comparison was made with the existing schemes such as (2a), (3), (4) and (5). The
numerical results showed that the schemes derived from (6) improve the computational
efficiencies.

The work in [8] presented some variants of Ostrowski’s method with seventh order
convergence. Their method is given by

yi = xi −
f(xi)

f ′(xi)
,

zi = yi −
f(yi)

f(xi) − 2f(yi)
(xi − yi) , i = 0, 1, 2, ..., k− 1. (7)

xi+1 = zi −

[

(

1 +
f(yi)

f(xi) − 2f(yi)

)2

+
f(zi)

f(yi)

]

f(zi)

f ′(xi)
,

The authors in [8] claim that (7) has a higher efficiency index than (3) and (4). The
efficiency index can be calculated as follows [9]

lim
k→∞

[

ηk+1

ηk

] 1

m

= q
1

m , (8)

where q is the convergence order of the method and m refer to the number of function
evaluations per iteration required by the method. Hence the scheme (8) is very efficient and
performs better than the schemes of (3) and (4).

The solution methods presented in [5-8] all tackle the problem of finding roots of single
variable of polynomial equations. For systems of equations, one of the most commonly used
solution methods is Newton’s method, given by

xi+1 = xi − [F′(xi)]
−1

F(xi), i = 0, 1, 2, ..., k− 1. (9)

Burden and Faires [10] defined (9) in two ways. Firstly as

(

xi+1

yi+1

)

=

(

xi

yi

)

−









∂f1

∂x1

∂f1

∂x2

∂f2

∂x1

∂f2

∂x2









−1

(

f1(x0, y0)
f2(x0, y0)

)

, (10)
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and secondly as

(

x′(t)
y′(t)

)

= −









∂f1

∂x1

∂f1

∂x2

∂f2

∂x1

∂f2

∂x2









−1

(

f1(x0, y0)
f2(x0, y0)

)

, (11)

where t = [0, 1]. Standard numerical methods can then be used to solve the differential
equations in (11).

Letting the number of independent variables n = 2, we can write the Taylor series
expansion of F(x) as

ui+1 = ui + (xi+1 − xi)
∂ui

∂x
+ (yi+1 − yi)

∂ui

∂y
, (12)

and

vi+1 = vi + (xi+1 − xi)
∂vi

∂x
+ (yi+1 − yi)

∂vi

∂y
, (13)

where u(x, y) = f1(x, y)and v(x, y) = f2(x, y). Chapra and Canale [11] simplified (12) and
(13) by using Cramer’s rule to get

xi+1 = xi −

ui

∂vi

∂y
− vi

∂ui

∂y

∂ui

∂x

∂vi

∂y
−

∂ui

∂y

∂vi

∂x

, (14)

and

yi+1 = yi −
vi

∂ui

∂x
− ui

∂vi

∂x

∂ui

∂x
∂vi

∂y
− ∂ui

∂y

∂vi

∂x

. (15)

Studies [5-11] have a similarity in the sense that they all present methods to solve polynomial
equations and systems of polynomial equations with a good initial guess. However, there are
fewer studies of solving an equation with a bad initial guess. A collection of studies by Wu
[1,12-15] deals with this problem with the use of HCM. In addition, there are also not many
studies on Ostrowski’s method for solving a system of polynomial equations F(x) = 0. For
example, Ostrowski [3] and Grau-Sanchez et al. [16] focused on this problem. Motivated
by this, we develop a new hybrid method for solving F(x)= 0 by combining Ostrowski’s
method with HCM to obtain Ostrowski-HCM (OHCM).

3 Divergence and Ostrowski’s Method

Burden and Faires [10] stated that Newton’s method requires an accurate initial approx-
imation to the solution of f(x) = 0 to ensure convergence. Further, Chapra and Canale
[11] stated that the convergence of Newton’s method depends on the nature of the function
and on the accuracy of the initial guess. In other words, divergence occurs when we choose
inappropriate initial values or there exists a bad structure of equations to track the approx-
imate solutions of single polynomial equation as well as a system of polynomial equations.
We consider the following two examples.
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Example 1 Consider the following polynomial equation as in Matinfar and Aminzadeh
[17]

f(x) = x5 + x4 + 4x2 − 15 = 0, (16)

where x = 1.347428098968305 is an exact solution. Table 1 shows the performance of
Ostrowski’s method for solving single polynomial equations (16).

Table 1: Divergence and Ostrowski’s Method for Equation (16)

Initial Value Ostrowski’s
Method

x0 = 0 Indeterminate at

first iteration

x0 = −1 Converge after

13 iterations

x0 = 0.5 Converge after

4 iterations

Example 2 Consider the following polynomial equation as in Chapra and Canale [11]

f(x) = x10 − 1 = 0, (17)

where x = 1 is an exact solution. Table 2 shows the performance of Ostrowski’s method for
solving single polynomial equations (17).

Table 2: Divergence and Ostrowski’s Method for Equation (17)

Initial Value Ostrowski’s
Method

x0 = 0 Indeterminate at

first iteration

x0 = 0.1 Converge after

76 iterations

x0 = 0.5 Converge after

16 iterations

The stopping criterion used is η = 10−5. There are some points for which that Os-
trowski’s method do not work at initial iterations, i.e. x0 = 0 in Table 1 and Table 2,
because it causes division by zero in the Ostrowski’s formula as f ′(x0) = 0. There are also
some situations that causes Ostrowski’s method to diverge when we use an initial value x0

that is not sufficiently close to the true roots. For example, the initial value considered in
Table 1, x0 = −1, is not close to the exact solution x = 1.347428098968305. Apart from
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divergence due to an inappropriate initial guess, another type of divergence comes from the
use of bad structure of equations. In Table 2, it is observed that there are still divergence
problems even when we use the good initial guess of x0 = 0.5, which is close to the true
root x = 1.

In [10] it was stated that the HCM can be used as a stand-alone method and does not
require a particularly good choice of initial guess. In this case, one can choose any arbitrary
initial guess (even bad initial values) when using HCM. This fulfills the definition of a
global method as discussed in Gritton et al. [2] and is the motivation for the development
of Ostrowski-HCM so as to overcome the deficiencies of Ostrowski’s method.

4 Ostrowski Homotopy Continuation Method

Recently, there have been several studies that combine local methods with HCM such as
Newton-HCM, Adomian-HCM and Secant-HCM. All of the aforementioned hybrid methods
use functional transformation to combine their chosen local method with HCM.

For example, Wu [1,13] combined Newton’s method with HCM to obtain Newton-HCM:

xi+1 = xi −
H(xi, t)

DxH(xi, t)
, i = 0, 1, 2, ..., k− 1, (18)

where H(x, t) refer to the homotopy function and DxH(x, t) refer to the Jacobian matrix.
Note that equation (18) is only suitable for solving polynomial equations. To solve a system
of polynomial equations, Wu [1] altered the above method to obtain

xi+1 = xi − [DxH(xi, t)]
−1

H(xi, t), i = 0, 1, 2, ..., k− 1, (19)

where xi+1, xi, H(xi, t) are supposed to be vectors with dimensions n × 1. The homotopy
function is defined as

H(x, t) = (1 − t)G(x) + tF(x), i = 0, 1, 2, ..., k− 1. (20)

The Jacobian matrix for the homotopy function is defined as

DxH(x, t) =





















∂H1

∂x1

∂H1

∂x2
· · ·

∂H1

∂xn

∂H2

∂x1

∂H2

∂x2
· · ·

∂H2

∂xn
...

...
. . .

...
∂Hn

∂x1

∂Hn

∂x2
· · ·

∂Hn

∂xn





















. (21)

Notice that in creating Newton-HCM, f(x) or F(x) is converted to the homotopy function
H(x, t). We will now use the same technique to construct our new method to be known as
Ostrowski-HCM:

yi = xi −
H(xi, t)

H ′(xi, t)
,

xi+1 = yi −
H(xi, t)

H(xi, t)− 2H(yi, t)

H(yi, t)

H ′(xi, t)
, i = 0, 1, 2, ..., k− 1, (22)
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where i = 0, 1, 2, ..., k−1 and t ∈ [0, 1]. To solve a system of polynomial equations, we need
to modify (22) to

yi = xi − [DxH(x, t)]
−1

H(x, t),

xi+1 = yi − [DxH(x, t)]
−1 H(xi, t)H(yi, t)

H(xi, t) − 2H(yi, t)
, i = 0, 1, 2, ..., k− 1, (23)

where yi =
(

y1 y2 · · · yn

)T
, xi =

(

x1 x2 · · · xn

)T
, and DxH(x, t) is the

Jacobian matrix of size n × n.

5 Numerical Experiments and Discussion

To show the effectiveness and efficiency of our proposed method, we compare Ostrowski-
HCM with the classical Ostrowski’s method to solve two examples of scalar polynomial
equations and two examples of systems of polynomial equations.

5.1 Solving polynomial equations

We reconsider Example 3.1 and 3.2 and illustrate that Ostrowski-HCM can solve the
divergence problem as well as accelerate convergence. The stopping criterion used was
|f(x)| < 10−5.

Table 3: Comparison between Ostrowski’s Method and Ostrowski-HCM for Equation (16)

Initial Value Ostrowski’s Method Ostrowski-HCM

x0 = 0 Indeterminate at

first iteration

Converge after

4 iterations

x0 = −1 Converge after

13 iterations

Converge after

9 iterations

x0 = 0.5 Converge after

4 iterations

Converge after

3 iterations

Table 4: Comparison between Ostrowski’s Method and Ostrowski-HCM for Equation (17)

Initial Value Ostrowski’s Method Ostrowski-HCM
x0 = 0 Indeterminate at

first iteration

Converge after

10 iterations

x0 = 0.1 Converge after

76 iterations

Converge after

4 iterations

x0 = 0.5 Converge after

16 iterations

Converge after

2 iterations
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Table 3 and Table 4 show the behavior of Ostrowski’s method and how Ostrowski-HCM
is able to converge faster and solve the divergence problems. Note that divergence problems
that arise when using x0 = 0 (which causes f ′(x0) = 0) in both tables have been resolved
in Ostrowski-HCM. The number of iterations it takes to converge when using Ostrowski-
HCM with the other initial values in both tables have been vastly reduced, when compared
to using Ostrowski-HCM with the same initial values. We next compare the behavior of
Ostrowski’s method with Ostrowski-HCM at the same number of iterations. This is shown
in Figure 1 and Figure 2 for equations (16) and (17).

Figure 1: Comparison of Performance Ostrowski’s Method and Ostrowski-HCM for Equa-
tion (17) with x0 = 0.5.

Figure 2: Comparison of Performance Ostrowski’s Method and Ostrowski-HCM for Equa-
tion (18) with x0 = 0.5.
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The graphs show that Ostrowski-HCM converges more quickly to the approximate solu-
tions while Ostrowski’s method becomes inconsistent and only slowly converges.

5.2 Solving System of Polynomial Equations

We choose two systems of polynomial equations that has two and three independent vari-
ables. We test both equations by comparing the proposed method with the classical Os-
trowski’s method and with the stopping criterion ‖F(x)‖

∞
< 10−3.

Example 3 Consider the following system of polynomial equations in [18] :

f1(x, y) = x2 − 2x− y + 0.5 = 0,

f2(x, y) = x2 + 4y2 − 4 = 0, (24)

where the exact solutions are (x1, y1) = (1.900676726367066,0.3112185654192943) and
(x2, y2) = (-0.2222145550597218,0.993808418599834). The auxiliary homotopy functions
g1(x) = x− x0 and g2(y) = y − y0 are used for the Ostrowski-HCM. The results are shown
in Table 5.

Table 5: Comparison between Ostrowski’s Method and Ostrowski-HCM for Equation (24)

Initial values Ostrowski’s method Ostrowski-HCM
(x0, y0) = (0.001, 0.001) Converge after

7 iterations

Converge after

5 iterations

(x0, y0) = (0, 0) Indeterminate

at first iteration

Converge after

5 iterations

(x0, y0) = (−0.001,−0.001) Converge after

19 iterations

Converge after

5 iterations

Example 4 Consider the following example in [19]:

f1(x, y, z) = x2 + y2 + z2 − 1 = 0,

f2(x, y, z) = 2x2 + y2 − 4z = 0, (25)

f3(x, y, z) = 3x2 − 4y2 + z2 = 0,

where(x, y, z) = (0.69828860997151, -0.62852429796021, 0.342564189689569) is an exact solu-
tion of Eq. (25). The auxiliary homotopy functions g1(x) = x − x0, g2(y) = y − y0 and
g3(z) = z − z0 are used. The results are shown in Table 6.

The results obtained clearly show Ostrowski-HCM has more advantages over Ostrowski’s
method in that Ostrowski-HCM converges more quickly than Ostrowski’s method and has
ability to converge even at a bad initial guess which resulted in the failure of Ostrowski’s
method.
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Table 6: Comparison between Newton-HCM and Ostrowski-HCM for Equation (25)

Initial values Ostrowski’s method Ostrowski-HCM
(x0, y0, z0) = (0, 0, 0) Indeterminate

at first iteration

Converge after

6 iterations

(x0, y0, z0) = (0.001, 0.001, 0.001) Converge after

7 iterations

Converge after

6 iterations

(x0, y0, z0) = (0.0001, 0.0001, 0.0001) Converge after

8 iterations

Converge after

6iterations

6 Conclusion

The results show the improved performance of Ostrowski homotopy continuation method
when compared with the Ostrowski’s method. This improved performance has been demon-
strated by applications to solve two scalar polynomial equations as well as two systems of
polynomial equations. We have tested on several other examples and obtained the same
conclusions. However to generalize the results will require an analytical investigation which
we propose to do in the near future.
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