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Abstract Prime graph is a graph associated to rings denoted by PG(R). PG(R)
is defined as the graph whose vertices are the elements of the ring R and any two
elements x and y of R are adjacent in PG(R) if and only if xRy = 0 or yRx = 0.
In this paper the chromatic number of prime graph of some rings namely Zn, where
n =

Qr

i=1
p

αi

i , are studied.
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1 Introduction

The study of rings with the help of graphs began when a graph of a commutative ring
was defined by Beck [1]. It has got more attention when it was modified by Anderson and
Livingston [2]. After them, many authors have introduced various kind of graphs associated
to both commutative and non-commutative rings. Another graph structure associated to a
ring called prime graph was introduced by Satyanarayana et al. [3]. Prime graph is defined
as a graph whose vertices are all elements of the ring and any two distinct vertices x, y ∈ R

are adjacent if and only if xRy = 0 or yRx = 0. This graph is denoted by PG(R).
Let PG(R) be the prime graph of a ring R, then PG(R) is a star graph if and only if

R is a prime ring in which all the vertices are adjacent to the zero element of R [3]. If R is
not a prime ring then there exists at least two non-zero elements of R which are adjacent
in PG(R). In this paper we investigate the chromatic number of prime graph χPG(Zn) of
ring Zn for different values of n.

2 Preliminaries

Definition 1 A graph G consists of a set V called vertex set together with a set E of
unordered pairs of distinct elements of V called edge set.

The cardinality of V and E are called order and size of the graph G respectively.

Definition 2 If in a simple graph every pair of vertices are adjacent then the graph is
called a complete graph and is denoted by Kp.

Definition 3 A Graph H is said to be a subgraph of a graph G if all the vertices and edges
of H are also the vertices and edges of G.

Definition 4 A star graph Sn is a graph with n vertices such that exactly one vertex has
degree n − 1 and the remaining n − 1 vertices have degree 1.
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Definition 5 A clique is a complete subgraph of a graph. A maximal clique is a clique
which cannot be enlarged by adding additional vertices to it. A maximum clique is a clique
of the largest possible size in a given graph. The order of the maximum clique in a graph
G is called clique number of the graph and is denoted by cl(G).

Definition 6 A coloring of a graph is an assignment of k-colors to the vertices of G such
that no two adjacent vertices are assigned the same color.

The chromatic number χ(G) of a graph G is the minimum value of k for which G has a
k-coloring.

Definition 7 A non-zero ring R is said to be a prime ring if for any two elements a, b ∈ R,
arb = 0 for all r ∈ R implies a = 0 or b = 0.

For example a matrix ring over an integral domain is a prime ring. Any domain is a
prime ring

Definition 8 Let R be a ring. The prime graph of the ring R denoted by PG(R) is defined
as the graph whose vertex set V = R and the edge set E = {(x, y) : xRy = 0 or yRx =
0, x 6= y}.

Some results that have been proved by Satyanarayana et al are mentioned below:

Theorem 1 [3] If R is a semiprime ring, then the following conditions are equivalent:

(i) R is a prime ring.

(ii) PG(R) is star graph.

(iii) PG(R) is tree.

Corollary 1 [3] If R is a ring with |R| ≥ 2. Then R is a prime ring if and only if
Diam(PG(R)) = 2 and rad(PG(R)) = 1.

Corollary 2 [3] The following conditions are equivalent:

(i) R is not a prime ring.

(ii) triangle is a subgraph of PG(R).

(iii) there exists a chain of length greater than 2 in PG(R).

(iv) PG(R) is not a tree.

(v) PG(R) is not a star graph.

3 Prime graph of Zn

In this section we first investigate the chromatic number of prime graph of Zn for some
particular values of n.

Theorem 2 For the ring Zp2 , χPG(Zp2) = p where p is a prime.
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Proof Let a and b be any two elements of Zp2 −{0}, then a and b are adjacent in PG(Zp2)
if and only if p|a and p|b. There are p − 1 elements which are divisible by p and all are
adjacent to each other. So these vertices induce a complete subgraph Kp−1.

Also the vertex 0 is adjacent to all the other vertices of PG(Zp2) and the remaining
vertices are adjacent only to 0. So Kp is a clique of PG(Zp2). Hence χPG(Zp2) ≥ p. All
vertices of the clique can be coloured with p colors. The elements which are not divisible
by p are not adjacent to each other. So these vertices can be colored with any one color
assigned to the vertices of the clique except 0. Thus the graph PG(Zp2) can be properly
colored with p colors. Hence χPG(Zp2) ≤ p. Therefore, χPG(Zp2) = p.

In case when p = 2, Z4 − {0} = {1, 2, 3}. Here 2 is the only element divisible by 2. As
the prime graph we are considering is a simple graph so the prime graph of Z4 is a star
graph and χPG(Z4) = 2. So in this case also the result holds.

Example 1 The prime graph of Z9 is given in Figure 1 and from figure it is it is clear that
χPG(Z9) = 3.
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Figure 1: The Prime Graph of Z9

Theorem 3 For the ring Zp3 , χPG(Zp3) = p + 1 where p is a prime.

Proof Let a and b be any two elements of Zp3 −{0}, then a and b are adjacent in PG(Zp3)
if and only if either one of a and b is divisible by p and other by p2 or both divisible by p2.
There are p − 1 elements divisible by p2 and all are adjacent to each other. These vertices
induce complete subgraph Kp−1.

Also there are p(p − 1) elements divisible by p but not by p2. These elements are not
adjacent to each other but adjacent to all elements divisible by p2. 0 is adjacent to all the
other vertices of PG(Zp3). So any one element of those divisible by p together with all the
elements divisible by p2 and the vertex 0 induce a clique in PG(Zp3) of order p + 1. So
χPG(Zp3) ≥ p + 1.

The elements of the clique can be colored with p + 1 colors. The vertices divisible by p

are not adjacent to each other so these vertices can be assigned with the same color that
assigned to the vertex of this set considered in the clique. The vertices not divisible by p

are not adjacent to each other and are adjacent to only 0. So these vertices can be assigned
any one of the p + 1 colors which is not assigned to 0. Thus χPG(Zp3) ≤ p + 1.

Therefore, χPG(Zp3) = p + 1.
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Example 2 Let us take the ring Z125, the non-zero elements which are adjacent in PG(Z125)
are {5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100, 105, 110, 115, 120}.
Out of these vertices {25, 50, 75, 100} are adjacent to each other and form a complete graph
of order 4. These vertices can be assigned 4 distinct colors. The vertices {5, 10, 15, 20, 30, 35,
40, 45, 55, 60, 65, 70, 80, 85, 90, 95, 105, 110, 115, 120} are adjacent to all of the vertices {25, 50,

75, 100} but these vertices are not adjacent to each other. So a single color can be assigned
to these vertices which is different from the 4 colors assigned. Also one more color required
to assign vertex 0. Rest of the vertices can be colored with any one of these 6 colors.
Therefore, χPG(Z125) = 6. The graph PG(Z125) is given in Figure 2.
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Figure 2: The Graph PG(Z125)

Theorem 4 For the ring Zp4 , χPG(Zp4) = p2 where p is a prime.

Proof Any two non-zero elements of Zp4 that are divisible by p2 are always adjacent in
PG(Zp4). There are p2 − 1 elements in Zp4 divisible by p2. So these elements induce a
complete subgraph of oder p2 − 1. Any elements divisible by p but not by p2 is adjacent to
only to the elements divisible by p3. These elements are also not adjacent to each other.
Since 0 is adjacent to all elements of the ring, so we have a clique of order p2. Hence

χPG(Zp4) ≥ p2.

The clique can be properly colored with p2 colors. Now the vertices of PG(Zp4) that are
divisible by only p can be colored with any color that is not assigned to the vertices divisible
by p3. Rest of all elements can be colored with any one of the p2 colors not assigned to 0.
Thus all vertices of PG(Zp4) is properly colored with p2 colors i.e. PG(Zp4) has a proper
coloring of p2 colors. Hence χPG(Zp4) ≤ p2.

Therefore, χPG(Zp4) = p2.

Theorem 5 For the ring Zp5 , χPG(Zp5) = p2 + 1 where p is a prime.
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Proof For k > 2, all elements mpk ∈ Zp5 , 1 ≤ m ≤ p5−k − 1, p - m are adjacent to each
other in PG(Zp5). There are p2 − 1 elements divisible by pk, k > 2. These vertices induce
the subgraph Kp2−1.

For k = 2, the elements mpk ∈ Zp5 , p - m are not adjacent to each other but adjacent
to all elements mpk, k > 2.

The elements which are divisible by p are adjacent only to elements mp4, 1 ≤ m ≤ p−1.
Therefore all elements mpk, k > 2, any one of the elements mp2 and 0 together induce a
clique of order p2 + 1. Hence χPG(Zp5) ≥ p2 + 1.

The vertices of the induce subgraph Kp2−1 can be colored with p2 − 1 colors. Since
the vertices of PG(Zp5) that are only divisible by p2, are adjacent to all vertices of the
subgraph Kp2−1 but not adjacent to each other these can be colored with a single color
distinct from the p2−1 colors. The zero vertex can not be assigned any of these colors as it
is adjacent to all the vertices of PG(Zp5) so one more color is required to color this vertex.
The vertices that are divisible by p are neither adjacent to each other nor to the vertices
divisible only by p2. So these vertices can be colored with any one of the colors assigned
the vertices divisible by p2. Rest of all vertices are adjacent only to vertex 0 so these can
be colored with any of these colors not assigned to 0. Thus PG(Zp5) has a proper coloring
with (p2 − 1) + 1 + 1 = p2 + 1 colors. Hence χPG(Zp5) ≤ p2 + 1.

Therefore, χPG(Zp5) = p2 + 1
In above results we have seen that chromatic number of PG(Zpm) for m = 2n and

m = 2n +1 differ by 1. Now we find the chromatic number of the prime graph of Zn where
n is a power of some prime.

Theorem 6 Let the ring be Zp2n, then χPG(Zp2n) = pn where p is a prime and n is a

positive integer.

Proof For 1 ≤ k ≤ 2n − 1, let us define sets

Vk = {mpk | 1 ≤ m ≤ p2n−k − 1, (m, p) = 1}.

For k1, k2 ≥ n, let a1 = m1p
k1 and a2 = m2p

k2 are two elements of Zp2n . Then
a1ra2 = (m1p

k1)r(m2p
k2) = m1rm2p

k1+k2 = 0 for all r ∈ Zp2n (∵ k1 + k2 ≥ 2n), therefore
a1(Zp2n)a2 = 0.

Therefore for k ≥ n the elements of each set Vk are adjacent to each other as well as
adjacent to all elements of every sets Vj , j ≥ n, j 6= k. Now o(

⋃

k≥n Vk) = pn − 1. So
elements of these sets induce a subgraph Kpn−1.

For j1, j2 < n, let b1 = m1p
j1 ∈ Vj1 and b2 = m2p

j2 ∈ Vj2 are two elements of Zp2n .
Then b1rb2 = (m1p

j1)r(m2p
j2) = m1rm2p

j1+j2 6= 0 for some r ∈ Zp2n , so b1(Zp2n)b2 6= 0.
Therefore no two elements of each Vk(k < n) are adjacent to each other. Also these elements
are adjacent only to the element of the sets Vi (i ≥ 2n − k).

Thus all vertices of
⋃

k≥n Vk and the vertex 0 together induces the maximal clique of
PG(Zp2n) of order pn. Hence χPG(Zp2n) ≥ pn.

The vertices of the clique can be colored with pn colors. Now the vertices of the sets Vk

for k < n can be colored with the colors assigned to the vertices of the sets Vi, n ≤ i < 2n−k.
The vertices which are not divisible by pk, 1 ≤ k ≤ 2n − 1 can be assigned any of the pn

colors not assigned to 0. So PG(Zp2n) has a pn -proper coloring. Hence χPG(Zp2n) ≤ pn.
Therefore, χPG(Zp2n) = pn.
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Theorem 7 For the ring Zp2n+1 , χPG(Zp2n+1) = pn +1 where p is a prime n is a positive

integer.

Proof For 1 ≤ k ≤ 2n let us define the set

Vk = {mpk | 1 ≤ m ≤ p(2n+1)−k − 1, (m, p) = 1}.

For k1, k2 > n, let a1 = m1p
k1 and a2 = m2p

k2 are two elements of Zp2n+1 . Then
a1ra2 = m1p

k1rm2p
k2 = m1rm2p

k1+k2 = 0 for all r ∈ Zp2n+1 , (∵ k1 + k2 > 2n + 1) and so
a1(Zp2n+1 )a2 = 0. Therefore for k > n the elements of each set Vk are adjacent to each other
and also adjacent to all elements of the sets Vj, j > n, j 6= k. Now o(

⋃

k>n Vk) = pn − 1.
So these sets induce a subgraph Kpn−1.

For j1, j2 ≤ n, let b1 = m1p
j1 ∈ Vj1 and b2 = m2p

j2 ∈ Vj2 are two elements of Zp2n+1 .
Then b1rb2 = (m1p

k)r(m2p
k) = m1rm2p

2k 6= 0 for some r ∈ Zp2n+1 , so b1(Zp2n+1 )b2 6= 0.
Therefore any two elements of each Vk(k ≤ n) are not adjacent to each other. But they

are adjacent to every element of all sets Vj with j ≥ 2n + 1− k. All elements of the set Vn

are adjacent to every elements of Vj with j ≥ n + 1 i.e. all elements of
⋃

k≥n+1 Vk .
Therefore all vertices of

⋃

k≥n+1 Vk, any one vertex of Vn and the vertex 0 together
induces a complete graph Kpn+1 which is also the maximal clique in PG(Zp2n+1).

Hence χPG(Zp2n+1) ≥ pn + 1.
The vertices of the induced subgraph Kpn−1 and the vertex 0 can be colored with pn

colors. Now the vertices of the sets Vn can be colored with one color but different from
those pn colors. The vertices of the sets Vk for k < n can be colored with the colors assigned
to the vertices of the sets Vi, n ≤ i < 2n + 1 − k. The vertices which are not divisible by
pk, 1 ≤ k ≤ 2n − 1 can be assigned any of the pn colors not assigned to 0. So PG(Zp2n+1)
has a pn + 1 -proper coloring. Hence χPG(Zp2n+1) ≤ pn + 1.

Therefore, χPG(Zp2n+1) = pn + 1.
In the following theorems we find the chromatic number of prime graph of Zn, where n

has more than one prime factor.

Theorem 8 If R = Zpαq, then χPG(R) = p
α
2 + 1 where p and q are distinct primes and

α is an even positive integer.

Proof Let us define for 1 ≤ s ≤ α−1 the set Vs = {mpsq | 1 ≤ m ≤ pα−s−1, (m, p) = 1}
and for 1 ≤ t ≤ α, V ′

t = {m′pt | 1 ≤ m′ ≤ pα−t − 1, (m′, p) = 1}.
For s ≥ α

2 , all elements of each Vs are adjacent to each other and also adjacent to the
elements of the sets Vr, r ≥ α

2 , r 6= s and o(
⋃

s≥α
2

Vs) = p
α
2 − 1.

For s < α
2 , elements of each Vs are not adjacent to each other. But they are adjacent to

the elements of the sets Vr , for all r ≥ α − s.
For 1 ≤ t ≤ α the elements of each V ′

t are non-adjacent in PG(R) and also elements of
any two sets V ′

t1
and V ′

t2
, 1 ≤ t1, t2 ≤ α are non adjacent.

Now elements of V ′
t , t ≥ α

2
are adjacent to all elements of Vs, s ≥ α

2
. So they are adjacent

to all elements of
⋃

s≥α
2

Vs. Since all elements are adjacent to 0, we obtain a maximal clique

of order (p
α
2 − 1) + 1 + 1 = p

α
2 + 1. Therefore, χPG(R) ≥ p

α
2 + 1.

All the vertices of the set
⋃

s≥α
2

Vs and the vertex 0 can be colored with p
α
2 colors.

The vertices of the set
⋃

t≥α
2

V ′
t are not adjacent to each other but adjacent to all vertices
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belongs to the set
⋃

s≥α
2

Vs. So these vertices can be colored with one color distinct from

the p
α
2 colors. The vertices belongs to the sets

⋃

s<α
2

Vs and
⋃

t< α
2

V ′
t are not adjacent to

the vertices of the set Vα
2
, so the vertices of these two sets can be colored with the colors

assigned to the vertices of the set Vα
2
. The vertices divisible by q are neither adjacent to

each other nor to the vertices belongs to the set
⋃

s≥1 Vs so these vertices can be assigned

any colors from the p
α
2 colors. Thus PG(R) has a proper coloring with p

α
2 +1 colors. Hence

χPG(R) ≤ p
α
2 + 1.

Therefore, χPG(R) = p
α
2 + 1.

Theorem 9 If R = Zpαq, then χPG(R) = p
(α−1)

2 + 2 where p and q are distinct primes

and α is an odd positive integer.

Proof Let us define for 1 ≤ s ≤ α−1 the set Vs = {mpsq | 1 ≤ m ≤ pα−s−1, (m, p) = 1}
and for 1 ≤ t ≤ α, V ′

t = {m′pt | 1 ≤ m′ ≤ pα−t − 1, (m′, p) = 1}.
For s ≥ α+1

2 , all elements of each Vs are adjacent to each other and also adjacent to the

elements of the sets Vr, r ≥ α+1
2

, r 6= s and o(
⋃

s≥α+1
2

Vs) = p
α−1

2 − 1.

For s ≤ α−1
2 , elements of each Vs are not adjacent to each other. But they are adjacent

to the elements of the sets Vr, for all r ≥ α − s. In particular the elements of Vα−1
2

are

adjacent to all elements of the sets Vr , r ≥ α+1
2

.
For 1 ≤ t ≤ α the elements of each V ′

t are non-adjacent in PG(R) and also elements of
any two sets V ′

t1
and V ′

t2
, 1 ≤ t1, t2 ≤ α are non adjacent.

Now elements of V ′
t , t ≥ α+1

2 are adjacent to all elements of Vs, s ≥ α−1
2 . In particular

the elements of the set Vα−1
2

and V ′
t , t ≥ α+1

2 induce a complete bipartite subgraph. They

are also adjacent to all elements of
⋃

s≥α+1
2

Vs. Since all elements are adjacent to 0, we

obtain a maximal clique of order (p
α−1

2 − 1) + 2 + 1 = p
α−1

2 + 2. The remaining elements

cannot be adjacent to all of these elements, so χPG(R) = p
α−1

2 + 2.

All the vertices of the set
⋃

s≥α+1
2

Vs and the vertex 0 can be colored with p
α−1

2 colors.

The vertices of the sets Vα−1
2

and
⋃

t≥α−1
2

V ′
t induced a bipartite subgraph and are adjacent

to all vertices belongs to the set
⋃

s≥α+1
2

Vs. So color these vertices two more colors are

required. The vertices belongs to the sets
⋃

s<α−1
2

Vs and
⋃

t< α−1
2

V ′
t not adjacent to the

vertices of the set Vα−1
2

, so the vertices of these two sets can be colored with the colors

assigned to the vertices of the set Vα−1
2

. The vertices divisible by q are neither adjacent to

each other nor to the vertices belongs to the set
⋃

s≥1 Vs so these vertices can be assigned

any colors from the p
α−1

2 colors. Thus PG(R) has a proper coloring with p
α−1

2 + 2 colors.

Hence χPG(R) ≤ p
α−1

2 + 2.

Therefore, χPG(R) = p
α−1

2 + 2.

Theorem 10 Let R = Zn where n =
∏r

i=1 pαi

i . Let for 1 ≤ i ≤ m each αi is an odd positive

integer. Then χPG(Zn) =
∏r

i=1 p[αi
2 ] + m, where [x] is the greatest integer function.

Proof Let v, v′ ∈ Zn such that v = a
∏r

i=1 pki

i and v′ = a′
∏r

i=1 p
k′

i

i , (ki, k
′
i ≤ αi) for all i.

Then vxv′ = axa′
∏r

i=1 p
ki+k′

i

i for all x ∈ Zn. So vxv′ = 0, for all x ∈ Zn i.e. v and v′ are
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adjacent if and only if ki + k′
i ≥ αi, for all i, 1 ≤ i ≤ r.

Case I. Let for 1 ≤ i ≤ m, ki, k
′
i >

[

αi

2

]

and for m + 1 ≤ i ≤ r, ki, k
′
i ≥

[

αi

2

]

then for all

1 ≤ i ≤ r, ki+k′
i ≥ αi. This implies that v and v′ are adjacent. Therefore all v = a

∏r

i=1 p
ki

i

where for 1 ≤ i ≤ m, ki, ki′ >
[

αi

2

]

and for m+1 ≤ i ≤ r, ki, k
′
i ≥

[

αi

2

]

are adjacent to each

other. Total number of such elements is
∏r

i=1 p[αi
2 ] − 1 and they induce a complete graph.

Case II. Let for fixed j, 1 ≤ j ≤ m, vj = aj

∏r

i=1 pki

i where kj =
[αj

2

]

, for 1 ≤ i ≤ m, i 6= j,

ki >
[

αi

2

]

and for m + 1 ≤ i ≤ r, ki =
[

αi

2

]

then vjxv′j 6= 0, for some x ∈ Zn. Therefore the
vertices with above conditions are not adjacent to each other. But for 1 ≤ j1, j2 ≤ m, j1 6=
j2, vj1xvj2 = 0, for all x ∈ Zn as kj1 + k′

j1
≥ αj1 and kj2 + k′

j2
≥ αj2. Therefore these

elements induce an m − partite graph. Also all these elements are adjacent to all those
elements we have considered in Case I.
Case III. Let for 1 ≤ i ≤ r, ki, k

′
i =

[

αi

2

]

then vxv′ 6= 0, for some x ∈ Zn(∵ ki + k′
i < αi).

So these elements are not adjacent to each other. These elements are adjacent to all those
elements considered in Case I but not adjacent to all elements considered in Case II.
Case IV. For 1 ≤ i ≤ m, ki, k

′
i >

[

αi

2

]

and for m+1 ≤ i ≤ r, ki, k
′
i <

[

αi

2

]

then the elements
are not adjacent to each other as for m + 1 ≤ i ≤ r, ki + k′

i < αi. But these elements are
adjacent with only those elements with k′

i > αi − ki, m + 1 ≤ i ≤ r. Rest of the elements
cannot be adjacent to all those elements considered in Case I and Case II. Therefore total
number of non-zero elements that induce a complete graph is

(

r
∏

i=1

p[ αi
2 ] − 1

)

+ m.

Since all elements of the ring are adjacent to 0, we obtain a maximal clique of order
∏r

i=1 p[αi
2 ] + m. Hence χPG(Zn) ≥

∏r

i=1 p[αi
2 ] + m.

All the vertices that satisfy the condition of Case I induce a complete subgraph of

order
∏r

i=1 p[αi
2 ] − 1, so these vertices can be properly colored with

∏r

i=1 p[αi
2 ] − 1 colors.

The vertices satisfying condition of Case II induce a complete m-partite subgraph,so these
vertices can be colored with m colors. But all the vertices of this m-partite subgraph are

adjacent to all the vertices of the complete graph of order
∏r

i=1 p[αi
2 ] − 1 so that these m

colors are distinct from those p[αi
2 ]−1 colors. The vertices that satisfy the condition of Case

III and Case IV are neither adjacent to each other nor to any vertices of the m-partite
subgraph. So these vertices can be colored with the m colors. The vertex 0 required one
more color to color it. Thus the graph PG(Zn) can be properly colored with

(

r
∏

i=1

p[αi
2 ] − 1) + m + 1 =

r
∏

i=1

p[αi
2 ] + m

Hence χPG(Zn) ≤
∏r

i=1 p[ αi
2 ] + m. Therefore, χPG(Zn) =

∏r

i=1 p[ αi
2 ] + m.

4 Conclusion

From the above results it is observed that the chromatic number of the prime graph of the
ring depends on the prime factorization of n. If n is prime then the prime graph of Zn is a
star graph, but the converse is not true.



Prime Graph of the Commutative Ring Zn 67

Acknowledgments

The authors would like to express their thanks to UGC for their financial support. The au-
thors also express their thanks for the valuable successions made by the referee in improving
the paper.

References

[1] Beck, I. Coloring of commutative rings, J. Algebra. 1988. 116(1): 208-226.

[2] Anderson, D. F. and Livingston P. S., The zero-divisor graph of a commutative ring.
J. Algebra. 1999. 217(2): 434–447.

[3] Satyanarayana, B., Shyam Prasad, K. and Nagaraju, D.. Prime Graph of a Ring, J. of

Combinatorics, Information and System Sources. 2010. 35(1): 27–42.


