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Abstract In the present paper, we have given the applications of Feket-Szego in-
equalities for generalized Sakaguchi type functions obtained recently by us. We have
investigated Feket-Szego inequalities of certain classes of functions defined through
fractional derivatives. The applications of Feket-Szegé inequalities for subclass of func-
tions defined by convolution with a normalized analytic functions are also given.
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1 Introduction

Let A be the class of analytic functions of the form
f(z):z—l—Zanz", (zeA:zeC:|z|<1) (1)
n=2

and S be the subclass of A consisting of univalent functions. For two functions f,g € A,
we say that the function f(z) is subordinate to ¢g(z) in A and write f < g, or f(z) <
g(z)(z € A) if there exists an analytic function w(z) with w(0) = 0 and |w(z)| < 1(z € A)
such that f(z) = g(w(z)), (z € A) . In particular, if the function ¢ is univalent in A, the
above subordination is equivalent to f(0) = ¢(0) and f(A) C g(A). Recently, Frasin [1]
introduced and studied a generalized Sakaguchi type class as S(«, s,t) and T(a, s,t). A
function f(z) € A is said to be in the class S(a, s, t) if it satisfies

(s=0:F()) .
fie { 707) — ftz) } > @

for some 0 < a < 1,s,t € C with s # ¢,]t| < 1 and for all z € A. We also denote by
the subclass T'(a, s,t) the subclass of A consisting of all functions f(z) such that zf'(z) €
S(a, s, t).

In this paper we define the following class S9(¢, s, t) and T9(¢, s,t) which are general-
izations of the classes S(a, s,t) and T'(«, s,t). For two analytic functions

o0 o0
fe)=z+ Z anz" and g(z) =z + Z gn2",
n=0 n=0
their convolution or Hadamard product is defined to be the function

(f*9)(z) =2+ Z angnz".
n=0
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For a fixed g(z) € A, let S9(¢, s,t) be the class of functions f(z) € A for which (f xg)(z) €
S*(¢, s,t). We also denote by the subclass T9(¢, s,t) the subclass of A consisting of all
functions g(z) € A such that z(f * g)'(2) € S9(¢, s,t) for f(z) € A.

Definition 1 Let ¢(z) = 1+ B1z + B22? + .... be univalent starlike function with respect
to ’1’ which maps the unit disk A onto a region in the right half plane which is symmetric
with respect to the real axis, and let B; > 0. The function g € A is in the class S9(¢, s, t)
for fe Aif

{ (s —t)z(f *9)'(2)
(f *9)(s2) = (f *x g)(t2)
Again T9(¢, s,t) denotes the subclass of A consisting functions g(z) € A such that z((f *
9)'(2)) € 59(¢,s,t) for f(z) € A.

Obviously S9(¢,1,t) = S9(¢,t), which are the classes introduced and studied by Goyal
and Goswami [2]. When

}<¢(z), s,teCs£t [t < 1. (3)

(1+ Az)

P(z) = REW5)

(-1<B<A<1)

in (3), we denote the subclasses S9(¢, s, t)and T9(¢, s,t) by SI[A, B, s,t] and TI[A, B, s, ],
respectively.

In the present paper, we obtain applications of Fekete-Szego inequality for the functions
in the subclass S9(q, s,t). To prove our main results, we need the following lemmas:

Lemma 1 [3] If p(z) = 1+ c12 + c22? + .... is a function with positive real part in A, then
for any complex number p

o2 — picd] < 2maz {1, 21— 1]}
and the result is sharp for the functions given by

71—1—2
T1-2z

71+z2
1= 22

p(z)

p(z)

Lemma 2 [4] If p(2) = 1+ ¢12 + c22% + .... is an analytic function with positive real part
in A, then for a real number v

—4dv+2, v<0,
lea — ved| < 2, 0<rv<il,
v -2 v>1.

When v < 0 or v > 1, the equality holds if and only if p(z) is (1 + z)/(1 — z) or one of its
rotations. If 0 < v < 1, then the equality holds if and only if p(z) is (1 + 2?)/(1 — 22) or
one of its rotations. If v = 0, the equality holds if and only if

1 1 \1+z (1 1\1-z
p(z) (2+2)\>1—z+(2 2)\>1+z’ O=As<b)
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or one of its rotations. If v = 1, the equality holds if and only if p(2) is the reciprocal of
one of its functions such that the equality holds in the case of v = 0. Also the above upper
bound is sharp, and it can be improved as follows when 0 < v <1 :

leo —vet| +v]ei]? <2 (0<v<1/2)

and
lea —vet| + (1 —v)|e]? <2 (1/2<v<1)

Lemma 3 [5] If the function f(z) given by (1) belongs to S(¢, s, t), then

1
B
|3 — 52 —st—t2|max{ b

provided s 4+t # 2, s # t, |t| < 1. The result is sharp.

(s+1)
(2—s—1)

(3 — 5% — st —t?)
(2—s—1)

|as — paj| < By + BY — uB}

}

Corollary 1 [5] If the function f(z) given by (1) belongs to S(¢, s, t), for real parameters
s and t such that s +¢ # 2 and s # ¢, |t| < 1, then

s+t 3— 5% —st—t2
B B(—— \—uB? (== <
’ 2 1(2—s—t> g ( @—s-1) )”“—‘”’

1
lag — pa3| < By, o1 < p < oo,

|3 — 52 — st — 12| 52 5
—s°—st—t s+t
gl f =) g ST ) g
: 1( (2—s—1t)? ) 1(2—s—t> 2

where

The result is sharp.

Definition 2 Let f(z) be analytic in a simply connected region of the z-plane containing
the origin. The fractional derivative of f(z) of order X is defined by

1 d

oD2 f(2) = A=

/0 O OdE (0<A<1), (4)

A

where the multiplicity of (2—&) ™" is removed by requiring that log(z—¢) is real for (2—&) > 0

Using definition 2, Owa and Srivastava(see[6], [7]; see also [8], [9]) introduced a fractional
derivative operator Q* : A — A defined by

QM) (2) =T (2= N2> 0D f(2), (A#2,3,4...).
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The class S*(¢, s,t) consists of the functions f(z) € A for which Q*f(z) € S(¢,s,t). The
class S*(¢, s,t) is a special case of the class S9(¢, s,t) when

o0

gz) =2+ F(?(Z fli(f ;)M (e A

n=

Now applying lemma 3 for the function (f*g)(2) = z+gea22%+g3azz3+..., we get following
theorem after an obvious change of the parameter p.

2 Main Results

Theorem 1 Let g(z) = z+ > gnz™ (gn > 0). If f(2) is given by (1) belongs to S9(, s, ),
n=2

then

1
B
933 —s2 — % — St|ma:r{ b

for real parameters s and t such that s+t #2 and s # t,[t] <1

|ag — pa3| <

B3(s+t) B g3 BE(3 — s? — 12 — st)
2—s—t 2 g3(2 — s —t)2

Proof Let fxg= L € S(¢,s,t). Then there exists a Schwarz function w(z) € A such

that
{ (s —t)zL/(2)

m} =¢(w(z)), (2€A,s#1). (5)

If p1(2) is analytic and has positive real part in A and p;(0) = 1, then

14+ w(z
pl(Z)_l—itt)E,Z’;_1+CIZ+C2Z2+.“' (ZGA) (6)
From (6) we obtain
c1 1 A\
w(z)*;z—i—i 25 )27+ (7)

Let
(s —t)zL/(2)

PE) =TTy = Ltk o (e D) (®)

(s —t)z [1 + 2g2a22 + 3g3azz® + ...
(s —t)z + goao(s? — t2)22 + gzas(s® — t3)z

5 =14+bz+byz®+---.
which gives

b1 =(2—s—1t)goaz and by = (s+t)(s+t—2)gsa3+ (3 —s* — st —t*)gsasz. (9)
Since ¢(z) is univalent and p < ¢, therefore using (7), we obtain:

Bicy
2

p(z) = d(w(2)) = 1+ +{1(02_ﬁ>31+ic§132}z2+m (zeA).  (10)

2 2
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Now from (8),(9) and (10), we have

Bic 1 c? 1
(2—s—t)goas = 12 L 3 <02 - 5) B1+401B2 (5+t)(s+t+2)g5 a5+ (3—s* —st—t*)gzas.

Therefore we have

B
2 1 2
a3_”a2_2gs(3—52_5t—t2){02_’/01}’ (s +1#2,s#1), (11)
where
1 By s+t pgsB1(3 — s — st —t2)
—Zd1-_=_(=""" B t#£2 t).
v 2{ B, (2—s—t> 1+( R2—s—1) , (s+t#2,5#1)

Our result now follows by an application of Lemma 1. O
The result is sharp for the function defined by

(s —t)zL'(z) | B .
{L(sz) - L(tz)} =o),  s#t (12)

and

(=L _ o

If we take parameters s and t to be real numbers then by using Lemma 2 we obtain following

result:

Corollary 2 If the function f(z) given by (1) belongs to S9(¢, s, t), for real parameters s
and t such that s +¢ # 2 and s # ¢, |t| < 1, then

|az — pas|
2 2
1 ’Bz + B? (72 i:it> — uB} (gg(jgz;_;itt)_j )> ’ <,
P e R MRS
ot (M) e () - e
where g% (25 t)2 B,
m‘%&@—ﬁ—ﬂ—m[l+ﬁf”*( tﬂ

2 2
95(2—s—1) By s+t
= 1 I—— B .
2 93B1(3 — s2 — st — 12) +B1+ \2-s—t
The result is sharp.

Example 1 Let —1 < B < A < 1. If f(2) given by (1) belongs to SY[A, B, s, t], for real
parameters s and ¢ such that s + ¢ # 2 and s # ¢, |[t| < 1, then
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lag — pa3]
_B+(A—B)(S+t)_;L(A—B)gg(3—52—st—t2) <y
2—s—1) RB2—s—_1t)2 ) H =01
(A—-DB)
< 1, o1 < p < oo,
20sf3 =t st =0 (A-B)(s41) (A B)ga(3— 2 — st — 1)
— s+t u(A—DB)gs(3—s"—st—t
— >
’B @-s—0 2@ —s— 07 1202

where

 p2-s—1t)? s+t \ (B+1
01_93(3—52—st—t2) 2—s—1 A-B/|’

B (o) (5]

If 01 < pu < 09, in view of Lemma 2, Corollary 2 can be improved.

Theorem 2 If the function f(z) given by (1) belongs to T9(¢p, s, t), then

1

B?(s+t) 3ugsB%(3—s? — st —1t?)
a2l < B 1 _ 1
|3 —puas| < 393|3_52_St_t2|ma1’ b

(2—s5—1) 4g3(2 — s — t)?

By +

}

provided s +t # 2 and s # t,|t| < 1. The result is sharp.

If we take parameter s and ¢ to be real numbers, then we have following result.

Corollary 3 If the function f(z) given by (1) belongs to T9(¢, s, t), for real parameters s
and t such that s +¢ # 2 and s # ¢, |t| < 1, then

|as — pa3|
B?(s+t) 3uBigs(3—s?—st—1t?)
B 1 _ 1 < *
| ’ NCErE 132 —s—02 | M=o
< B < <ol
= 393|3 — 2 — st — 12| b o1 =M=
B3(s+t)  3ugsB?(3—s? —st—t?) .
_BQ - 2 , W 025
(2—s—1) 495(2 — s —t)?

where

17 3¢3B; (3 — 5% — st — 12) "\2-s—t B )|’

4g3(2 — s — t)? s+t By
- 1+8 [ —2 ) - (22)].
23 BB-2—st—7) | ' \2-s—¢ B,

The result is sharp.

Example 2 Let —1 < B < A < 1. If f(z) given by (1) belongs to T9[A, B, s, t], for real
parameters s and tsuch that s +¢ # 2, s # ¢, |t| < 1, then
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|as — pa3|
B (A-DB)(s+1) 3ugs(A — B)(3 — 5% — st — t?) x
A_B ' SN CErE 132 — s — 1)? =
BCRERE R R
A—B)(s+t 3ugs(A—B)(3—s* —st—t o
B-"—s—y 122 —5—1)° SCEREE
where
o Ag3(2—s—1)? s+t B+1
71 _393(3—52—st—t2 2—s—1t A-BJ|’
e Ag3(2—s—1)? s+t B-1
72  393(3 — 52 — st — 2—s—1t A-BJ|’
Since
Fn+1)T(2-X) ,
+Z n—i—l—)\) o
we have PG - A) )
= —= = 14
and r4re—-a 6

BEZTTrE—N NGB
For g9, g3 given by (14) and (15) respectively, Theorem 1 reduces to the following.

Theorem 3 Let A < 2. If f(2) given by (1) belongs to S* (¢, s,t) for s+t # 2,s # t,|t| < 1,
then

|as — pa3|

(2 -3 -\ max{Bl,

~ 6|3 — % —t2 — st

2

B?(s+1t) 3u(2—NB3(3 —s* — 12— st)
SR N I VTP e ’}

Corollary 4 If the function f(z) given by (1) belongs to S*(#, s, t), for real parameters s
and t such that s +¢ # 2 and s # ¢, |t| < 1, then

|as — paj|
2 s+t 3 2 ((3=XN(3—s*—st—1t%) .
_2 <
‘BZJ“Bl <2—s—t) 2“Bl< 2-N2—s—1t)? R
2= N(B - . .
—= 7 7 X B <nu<
= 6]3 — 52 — st —t?| . ( " _)(H_ 7]227 2
3 o /(B=XNB—-s"—st—t 2< s+t ) .
5B (2 ) B, >
'2“ 1< 2-N(2-5—1t) ) "\2-s—t 2y K=

where

i S [ (5]

. 2 (B=XN)(2-s—1)2 By s+t
T3 NBGB-2—st—7) | B \2-s—i

The result is sharp.
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Remark 1 For s = 1 in aforementioned Theorems 1, 2, 3, Corollaries 2, 3, 4 and Examples
1, 2, we arrive at the results obtained by Goyal and Goswami [2] and for s = 1, = —1 in
aforementioned Theorems 1, 2, 3, Corollaries 2, 3, 4 and Examples 1, 2, we arrive at the
results obtained by Shanmugam et al. [4].

3 Conclusion

We have established Feket-Szego inequalities for generalized Sakaguchi type functions defined
through fractional derivatives. The applications of the above inequalities for subclass of
functions defined by convolution with a normalized analytic functions are also derived.
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