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1 Introduction

Let d be a positive integer that is not a perfect square. It is well known that the Pell
equation x2 − dy2 = 1 has always positive integer solutions. But, whether or not there
exists a positive integer solution to the equation x2 − dy2 = −1 depends on the period
length of the continued fraction expansion of

√
d. In this paper, if a solution exists, we

will use continued fraction expansion of
√

d in order to get all positive integer solutions
of the equations x2 − dy2 = ±1 when d ∈

{

k2 ± 2, k2 ± k
}

for any natural number k.
Moreover, we will find all positive integer solutions of the equations x2−dy2 = ±4 in terms
of generalized Fibonacci and Lucas sequences.

Now we briefly mention the generalized Fibonacci and Lucas sequences (Un (k, s)) and
(Vn (k, s)). Let k be a natural number and s be nonzero integer with k2+4s > 0. Generalized
Fibonacci sequence is defined by

U0 (k, s) = 0, U1 (k, s) = 1 and Un+1 (k, s) = kUn (k, s) + sUn−1 (k, s)

for n > 1 and generalized Lucas sequence is defined by

V0 (k, s) = 2, V1 (k, s) = k and Vn+1 (k, s) = kVn (k, s) + sVn−1 (k, s)

for n > 1, respectively. It is well known that

Un (k, s) =
αn − βn

α − β
and Vn (k, s) = αn + βn (1)

where α =
(

k +
√

k2 + 4s
)

/2 and β =
(

k −
√

k2 + 4s
)

/2. The above identities are known

as Binet’s formulae. Clearly, α + β = k, α − β =
√

k2 + 4s, and αβ = −s.
Especially, if α = 1 +

√
2 and β = 1 −

√
2 , then we get

Pn =
αn − βn

α − β
and Qn = αn + βn . (2)

Pn and Qn are called Pell and Pell-Lucas sequences, respectively. For more information
about generalized Fibonacci and Lucas sequences, one can consult [1–7].
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2 Preliminaries

Let d be a positive integer which is not a perfect square and N be any nonzero fixed integer.
Then the equation x2 − dy2 = N is known as Pell equation. For N = ±1, the equations
x2 − dy2 = 1 and x2 − dy2 = −1 are known as classical Pell equation. If a2 − db2 = N , we
say that (a, b) is a solution to the Pell equation x2 − dy2 = N . We use the notations (a, b)
and a+b

√
d interchangeably to denote solutions of the equation x2−dy2 = N. Also, if a and

b are both positive, we say that a + b
√

d is positive solution to the equation x2 − dy2 = N.
Let x1 + y1

√
d be a positive solution to the equation x2 − dy2 = N . We say that

x1 + y1

√
d is the fundamental solution to the equation x2 − dy2 = N, if x2 + y2

√
d

is a different solution to the equation x2 − dy2 = N , then x1 + y1

√
d < x2 + y2

√
d.

Recall that if a + b
√

d and r + s
√

d are two solutions to the equation x2 − dy2 = N ,
then a = r if and only if b = s, and a + b

√
d < r + s

√
d if and only if a < r and b < s .

Continued fraction plays a significant role in solutions of the Pell equations x2−dy2 = 1
and x2 − dy2 = −1. Let d be a positive integer that is not a perfect square. Then, there
is a continued fraction expansion of

√
d such that

√
d =

[

a0, a1, a2, ..., al−1, 2a0

]

where l is
the period length and the aj’s are given by the recussion formulas;

α0 =
√

d, ak = bαkc and αk+1 =
1

αk − ak

, k = 0, 1, 2, 3, ...

Recall that al = 2a0 and al+k = ak for k ≥ 1. The nth convergent of
√

d for n ≥ 0 is given
by

pn

qn

= [a0, a1, ..., an] = a0 +
1

a1 + 1

... 1

a
n−1+ 1

an

.

By means of the kth convergent of
√

d, we can give the fundamental solution to the equations
x2 − dy2 = 1 and x2 − dy2 = −1.

Now we give the fundamental solution to the equations x2 − dy2 = ±1 by means of the
period length of the continued fraction expansion of

√
d (See [8]).

Lemma 1 Let l be the period length of continued fraction expansion of
√

d. If l is even,
then the fundamental solution to the equation x2 − dy2 = 1 is given by

x1 + y1

√
d = pl−1 + ql−1

√
d

and the equation x2 − dy2 = −1 has no integer solutions. If l is odd, then the fundamental
solution to the equation x2 − dy2 = 1 is given by

x1 + y1

√
d = p2l−1 + q2l−1

√
d

and the fundamental solution to the equation x2 − dy2 = −1 is given by

x1 + y1

√
d = pl−1 + ql−1

√
d.

Now we give the following three theorems from [9]. See also [10].
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Theorem 1 Let d ≡ 1, 2, 3(mod4). Then the equation x2 − dy2 = −4 has a positive integer

solution if and only if the equation x2 − dy2 = −1 has a positive integer solution.

Theorem 2 Let d ≡ 2(mod4) or d ≡ 3(mod4). If fundamental solution to the equations

x2 − dy2 = ±1 is (x1, y1), then fundamental solution to the equation x2 − dy2 = ±4 is

(2x1, 2y1).

Theorem 3 Let d ≡ 0 (mod4). If fundamental solution to the equation x2 − (d/4)y2 = 1
is x1 + y1

√

d/4, then fundamental solution to the equation x2 − dy2 = 4 is (2x1, y1).

If we know fundamental solution to the equations x2 − dy2 = ±1 and x2 − dy2 = ±4,
then we can give all positive integer solutions to these equations. For more information
about Pell equation, one can consult [11–17].

Theorem 4 Let x1+y1

√
d be the fundamental solution to the equation x2 − dy2 = 1. Then

all positive integer solutions to the equation x2 − dy2 = 1 are given by

xn + yn

√
d = (x1 + y1

√
d)n

with n ≥ 1.

Theorem 5 Let x1+y1

√
d be the fundamental solution to the equation x2 − dy2 = −1.

Then all positive integer solutions to the equation x2 − dy2 = −1 are given by

xn + yn

√
d = (x1 + y1

√
d)2n−1

with n ≥ 1.

Theorem 6 Let x1+y1

√
d be the fundamental solution to the equation x2 − dy2 = 4. Then

all positive integer solutions to the equation x2 − dy2 = 4 are given by

xn + yn

√
d =

(x1 + y1

√
d)n

2n−1

with n ≥ 1.

Theorem 7 Let x1+y1

√
d be the fundamental solution to the equation x2 − dy2 = −4.

Then all positive integer solutions to the equation x2 − dy2 = −4 are given by

xn + yn

√
d =

(x1 + y1

√
d)2n−1

4n−1

with n ≥ 1.
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From now on, we will assume that k is a natural number. We give continued fraction
expansion of

√
d for d = k2 ± 2 and d = k2 ± k. The proofs of the following four theorems

are easy and they can be found many text books on number theory as an exercise (see, for
example [8]).

Theorem 8 Let k > 0. Then

√

k2 + 2 =
[

k, k, 2k
]

.

Theorem 9 Let k > 2 Then

√

k2 − 2 =
[

k − 1, 1, k− 2, 1, 2(k− 1)
]

.

Theorem 10 Let k > 1. Then

√

k2 + k =
[

k, 2, 2k
]

.

Theorem 11 Let k > 2. Then

√

k2 − k =
[

k − 1, 2, 2(k− 1)
]

.

Corollary 1 Let k > 0 and d = k2 + 2. Then the fundamental solution to the equation
x2 − dy2 = 1 is

x1 + y1

√
d = k2 + 1 + k

√
d

and the equation x2 − dy2 = −1 has no positive integer solutions.

Proof The period length of the continued fraction expansion of
√

k2 + 2 is 2 by Theorem
8. Therefore the fundamental solution to the equation x2−dy2 = 1 is p1+q1

√
d by Lemma 1.

Since

p1

q1

= k +
1

k
=

k2 + 1

k
,

the proof follows. Since the period of length of the continued fraction expansion of
√

k2 + 2
is even, the equation x2 − dy2 = −1 has no positive integer solutions by Lemma 1.

Corollary 2 Let k > 2 and d = k2 − 2. Then the fundamental solution to the equation
x2 − dy2 = 1 is

x1 + y1

√
d = k2 − 1 + k

√
d

and the equation x2 − dy2 = −1 has no positive integer solutions.
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Proof The period length of the continued fraction expansion of
√

k2 − 2 is 4 by Theorem
9. Therefore the fundamental solution to the equation x2 −dy2 = 1 is p3 + q3

√
d by Lemma

1. Since
p3

q3

= k − 1 +
1

1 + 1

k−2+1
1

=
k2 − 1

k
,

the proof follows. Since the period of length of the continued fraction expansion of
√

k2 − 2
is even, the equation x2 − dy2 = −1 has no positive integer solutions by Lemma 1.

Corollary 3 Let k > 1 and d = k2 + k. Then the fundamental solution to the equation
x2 − dy2 = 1 is

x1 + y1

√
d = 2k + 1 + 2

√
d

and the equation x2 − dy2 = −1 has no positive integer solutions.

Proof The period length of the continued fraction expansion of
√

k2 + k is 2 by Theorem
10. Therefore the fundamental solution to the equation x2−dy2 = 1 is p1+q1

√
d by Lemma

1. Since
p1

q1

= k +
1

2
=

2k + 1

2
,

the proof follows. Since the period of length of the continued fraction expansion of
√

k2 + k
is even, the equation x2 − dy2 = −1 has no positive integer solutions by Lemma 1.

Corollary 4 Let k > 2 and d = k2 − k. Then the fundamental solution to the equation
x2 − dy2 = 1 is

x1 + y1

√
d = 2k − 1 + 2

√
d

and the equation x2 − dy2 = −1 has no positive integer solutions.

Proof The period length of the continued fraction expansion of
√

k2 − k is 2 by Theorem
11. Therefore the fundamental solution to the equation x2 − dy2 = 1 is p1 + q1

√
d by

Lemma 1. Since
p1

q1

= k − 1 +
1

2
=

2k − 1

2
,

the proof follows. Since the period of length of the continued fraction expansion of
√

k2 − k
is even, the equation x2 − dy2 = −1 has no positive integer solutions by Lemma 1.

3 Main Theorems

In this section, we give all positive integer solutions to some Pell equations.

Theorem 12 Let k > 0 and d = k2 + 2. Then all positive integer solutions of the equation

x2 − dy2 = 1 are given by

(x, y) =

(

Vn(2k2 + 2,−1)

2
, kUn(2k2 + 2,−1)

)

with n ≥ 1.
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Proof By Corollary 1 and Theorem 4, all positive integer solutions of the equation x2 −
dy2 = 1 are given by

xn + yn

√
d =

(

k2 + 1 + k
√

d
)n

with n ≥ 1. Let α = k2+1+k
√

d and β = k2+1−k
√

d. Then α+β = 2k2+2, α−β = 2k
√

d
and αβ = 1. Thus,

xn + yn

√
d = αn and xn − yn

√
d = βn.

Then it follows that

xn =
αn + βn

2
=

Vn(2k2 + 2,−1)

2
and

yn =
αn − βn

2
√

d
= k

αn − βn

2k
√

d
= k

αn − βn

α − β
= kUn(2k2 + 2,−1)

by (1).
Since the proof of the following theorem is similar, we omit it.

Theorem 13 Let k > 2 and d = k2 − 2. Then all positive integer solutions of the equation

x2 − dy2 = 1 are given by

(x, y) =

(

Vn(2k2 − 2,−1)

2
, kUn(2k2 − 2,−1)

)

with n ≥ 1.

Theorem 14 Let k > 1 and d = k2 + k. Then all positive integer solutions of the equation

x2 − dy2 = 1 are given by

(x, y) =

(

Vn(4k + 2,−1)

2
, 2Un(4k + 2,−1)

)

with n ≥ 1.

Proof By Corollary 3 and Theorem 4, all positive integer solutions of the equation x2 −
dy2 = 1 are given by

xn + yn

√
d =

(

2k + 1 + 2
√

d
)n

with n ≥ 1. Let α = 2k +1+2
√

d and β = 2k +1−2
√

d. Then α+β = 4k +2, α−β = 4
√

d
and αβ = 1. Thus, we have

xn + yn

√
d = αn and xn − yn

√
d = βn.

Then it follows that

xn =
αn + βn

2
=

Vn(4k + 2,−1)

2
and

yn =
αn − βn

2
√

d
= 2

αn − βn

4
√

d
= 2

αn − βn

α − β
= 2Un(4k + 2,−1)

by (1).
Since the proof of the following theorem is similar, we omit it.
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Theorem 15 Let k > 2 and d = k2 − k. Then all positive integer solutions of the equation

x2 − dy2 = 1 are given by

(x, y) =

(

Vn(4k − 2,−1)

2
, 2Un(4k − 2,−1)

)

with n ≥ 1.

Now we give all positive integer solutions of the equations x2 − (k2 ± 2)y2 = ±4 and
x2 − (k2 ± k)y2 = ±4.

Theorem 16 Let k > 0. Then all positive integer solutions of the equation x2−(k2+2)y2 =
4 are given by

(x, y) = (Vn(2k2 + 2,−1), 2kUn(2k2 + 2,−1))

with n ≥ 1.

Proof If k is odd, then d = k2 +2 ≡ 3(mod4) and if k is even, then d = k2 +2 ≡ 2(mod4).
Thus, by Corollary 1 and Theorem 2, it follows that 2k2 +2+2k

√
k2 + 2 is the fundamental

solution to the equation x2 − (k2 + 2)y2 = 4. Therefore, by Theorem 6, all positive integer
solutions of the equation x2 − dy2 = 4 are given by

xn + yn

√
d =

(2k2 + 2 + 2k
√

k2 + 2)n

2n−1
= 2

(

2k2 + 2 + 2k
√

k2 + 2

2

)n

.

Let α = 2k2
+2+2k

√

k2+2

2
and β = 2k2

+2−2k
√

k2+2

2
. Then α + β = 2k2 + 2, α− β = 2k

√
d and

αβ = 1. Thus it is seen that

xn + yn

√
d = 2αn and xn − yn

√
d = 2βn.

Therefore we get

xn = αn + βn = Vn(2k2 + 2,−1)

and

yn =
αn − βn

√
d

= 2k
αn − βn

2k
√

d
= 2k

α2n − β2n

α − β
= 2kUn(2k2 + 2,−1)

by (1). Then the proof follows.

Theorem 17 Let k > 2. Then all positive integer solutions of the equation x2−(k2−2)y2 =
4 are given by

(x, y) = (Vn(2k2 − 2,−1), 2kUn(2k2 − 2,−1))

with n ≥ 1.
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Proof If k is odd, then d = k2−2 ≡ 3(mod4) and if k is even, then d = k2−2 ≡ 2(mod4).
Thus, by Corollary 2 and Theorem 2, it follows that 2k2−2+2k

√
k2 − 2 is the fundamental

solution to the equation x2 − (k2 − 2)y2 = 4. Therefore, by Theorem 6, all positive integer
solutions of the equation x2 − dy2 = 4 are given by

xn + yn

√
d =

(2k2 − 2 + 2k
√

k2 − 2)n

2n−1
= 2

(

2k2 − 2 + 2k
√

k2 − 2

2

)n

.

Let α = 2k2
−2+2k

√

k2
−2

2
and β = 2k2

−2−2k
√

k2
−2

2
. Then α + β = 2k2 − 2, α− β = 2k

√
d and

αβ = 1. Thus it is seen that

xn + yn

√
d = 2αn and xn − yn

√
d = 2βn.

Therefore we get
xn = αn + βn = Vn(2k2 − 2,−1)

and

yn =
αn − βn

√
d

= 2k
αn − βn

2k
√

d
= 2k

α2n − β2n

α − β
= 2kUn(2k2 − 2,−1)

by (1). Then the proof follows.

Theorem 18 Let k > 1 and k 6= 4. Then all positive integer solutions of the equation

x2 − (k2 − k)y2 = 4 are given by

(x, y) = (Vn(4k − 2,−1), 4Un(4k − 2,−1))

with n ≥ 1.

Proof When k 6= 4, b = 1, 2, 3 and a2 − (k2 − k)b2 = 4, it can be seen that k = −3, 0 or 1.
Since (4k − 2)2 − (k2 − k)42 = 4, it follows that the fundamental solution to the equation
x2 − (k2 − k)y2 = 4 is 4k− 2 +4

√
k2 − k. Thus by Theorem 6, all positive integer solutions

of the equation x2 − dy2 = 4 are given by

xn + yn

√
d =

(4k − 2 + 4
√

k2 − k)n

2n−1
= 2

(

4k − 2 + 4
√

k2 − k

2

)n

.

Let α = 4k−2+4
√

k2
−k

2
and β = 4k−2−4

√

k2
−k

2
. Then α + β = 4k − 2, α − β = 4

√
d and

αβ = 1. Thus it follows that xn + yn

√
d = 2αn and xn − yn

√
d = 2βn. Then, we get

xn = αn + βn = Vn(4k − 2,−1)

and

yn =
αn − βn

√
d

= 4
αn − βn

4
√

d
= 4

αn − βn

α − β
= 4Un(4k − 2,−1)

by (1).

Theorem 19 Let k > 1 and k 6= 3. Then all positive integer solutions of the equation

x2 − (k2 + k)y2 = 4 are given by

(x, y) = (Vn(4k + 2,−1), 4Un(4k + 2,−1))

with n ≥ 1.
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Proof When k 6= 3, b = 1, 2, 3 and a2 − (k2 + k)b2 = 4, it can be seen that k = −1 or 0.
Since (4k + 2)2 − (k2 + k)42 = 4, it follows that the fundamental solution to the equation
x2 − (k2 +k)y2 = 4 is 4k +2+4

√
k2 + k. Thus, by Theorem 6, all positive integer solutions

of the equation x2 − dy2 = 4 are given by

xn + yn

√
d =

(4k + 2 + 4
√

k2 + k)n

2n−1
= 2

(

4k + 2 + 4
√

k2 + k

2

)n

.

Let α = 4k+2+4
√

k2+k
2

and β = 4k+2−4
√

k2+k
2

. Then α + β = 4k + 2, α − β = 4
√

d and

αβ = 1. Thus it follows that xn + yn

√
d = 2αn and xn − yn

√
d = 2βn. Therefore we get

xn = αn + βn = Vn(4k + 2,−1)

and

yn =
αn − βn

√
d

= 4
αn − βn

4
√

d
= 4

αn − βn

α − β
= 4Un(4k + 2,−1)

by (1).

Theorem 20 All positive integer solutions of the equation x2 − 12y2 = 4 are given by

(x, y) = (Vn(4,−1), Un(4,−1))

with n ≥ 1.

Proof The fundamental solution to the equation x2−12y2 = 4 is 4+
√

12 since 42−12.12 =
4. Thus, by Theorem 6, all positive integer solutions of the equation x2−12y2 = 4 are given
by

xn + yn

√
12 =

(4 +
√

12)n

2n−1
= 2

(

4 + 2
√

3

2

)n

= 2(2 +
√

3)n.

Let α = 2 +
√

3 and β = 2−
√

3. Then α+β = 4, α−β = 2
√

3 and αβ = 1. Thus it follows
that xn + yn

√
12 = 2αn and xn − yn

√
12 = 2βn. Therefore we get

xn = αn + βn = Vn(4,−1)

and

yn =
αn − βn

√
12

=
αn − βn

2
√

3
=

αn − βn

α − β
= Un(4,−1)

by (1).

Theorem 21 Let k > 0. Then the equation x2 − (k2 + 2)y2 = −4 has no positive integer

solutions.
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Proof If k is odd, then k2 + 2 ≡ 3(mod4) and if k is even, then k2 + 2 ≡ 2 (mod4). Thus
by Corollary 1 and Theorem 1, the proof follows.

Since the proof of the following theorem is similar, we omit it.

Theorem 22 Let k > 2. Then the equation x2 − (k2 − 2)y2 = −4 has no positive integer

solutions.

Theorem 23 Let k > 1. Then the equation x2 − (k2 + k)y2 = −4 has no positive integer

solutions.

Proof Let d = k2+ k and a2 − db2 = −4 for some positive integers a and b. Assume
that k = 4t + 1 or k = 4t + 2. Then d ≡ 2(mod4). Thus, by Theorem 1 and Corollary 3,
the equation x2 − dy2 = −4 has no positive integer solutions. Assume that k = 4t. Then
d = 16t2 + 4t and d ≡ 0(mod4). Thus a is even and a2 − (16t2 + 4t)b2 = −4. This implies
that

(a/2)2 − (4t2 + t)b2 = −1. (3)

It can be easily seen that
√

4t2 + t = [2t, 4, 4t]. Since the period of length of the continued
fraction expansion of

√
4t2 + t is even, the equation x2 − (4t2 + t)y2 = −1 has no positive

integer solutions by Lemma 1. This contradicts with (3). Therefore the equation x2−dy2 =
−4 has no positive integer solutions. Assume that k = 4t + 3. Then d = 16t2 + 28t + 12
and d ≡ 0(mod 4). Thus a is even and a2 − (16t2 + 28t + 12)b2 = −4. This implies that

(a/2)2 − (4t2 + 7t + 3)b2 = −1. (4)

It can be easily seen that
√

4t2 + 7t + 3 = [2t + 1, 1, 2, 1, 2(2t + 1)]. Since the period of
length of the continued fraction expansion of

√
4t2 + 7t + 3 is even, the equation x2−(4t2 +

7t + 3)y2 = −1 has no positive integer solutions by Lemma 1. This contradicts with (4).
Therefore the equation x2 − dy2 = −4 has no positive integer solutions.

Since the proofs of the following theorem is similar, we omit it.

Theorem 24 Let k > 2. Then the equation x2 − (k2 − k)y2 = −4 has no positive integer

solutions.

Continued fraction expansion of
√

2 is
[

1, 2
]

. Thus the period length of the continued

fraction of
√

2 is 1. Moreover, the fundamental solution to the equation x2 − 2y2 = 1 is
3+2

√
2 and the fundamental solution to the equation x2−2y2 = −1 is 1+

√
2 by Lemma 1.

Therefore, by using (2), we can give the following corollaries easily.

Corollary 5 All positive integer solutions of the equation x2 − 2y2 = 1 are given by

(x, y) =

(

Q2n

2
, P2n

)

with n ≥ 1.
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Corollary 6 All positive integer solutions of the equation x2 − 2y2 = −1 are given by

(x, y) =

(

Q2n−1

2
, P2n−1

)

with n ≥ 1.

It can be seen that fundamental solutions to the equations x2−2y2 = 4 and x2−2y2 = −4
are 6 + 4

√
2 and 2 + 2

√
2, respectively. Thus by Theorem 2 and identity (2), we can give

following corollaries easily.

Corollary 7 All positive integer solutions of the equation x2 − 2y2 = 4 are given by

(x, y) = (Q2n, 2P2n)

with n ≥ 1.

Corollary 8 All positive integer solutions of the equation x2 − 2y2 = −4 are given by

(x, y) = (Q2n−1, 2P2n−1)

with n ≥ 1.

4 Conclusion

In this paper, by using continued fraction expansion of
√

d, we find fundamental solution
of the x2 − dy2 = ±1, where k is a natural number and d = k2 ± 2, or k2 ± k. Moreover,
we investigate Pell equations of the form x2 − dy2 = N when N = ±1,±4 and we are
looking for positive integer solutions in x and y. We get all positive integer solutions of the
Pell equations x2 − dy2 = N in terms of generalized Fibonacci and Lucas sequences when
N = ±1,±4 and d = k2 ± 2, k2 ± k. Finally, all positive integer solutions of the equations
x2 − 2y2 = ±1 and x2 − 2y2 = ±4 are given in terms of Pell and Pell-Lucas sequences.
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