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Abstract Extrapolation involves taking a certain linear combination of the numerical

solutions of a base method applied with different stepsizes to obtain greater accuracy.

This linear combination is done so as to eliminate the leading error term. The technique

of extrapolation in accelerating convergence has been successfully in numerical solu-

tion of ordinary differential equations. In this study, symmetric Runge-Kutta methods

for solving linear and nonlinear stiff problem are considered. Symmetric methods ad-

mit asymptotic error expansion in even powers of the stepsize and are therefore of

special interest because successive extrapolations can increase the order by two at

time. Although extrapolation can give greater accuracy, due to the stepsize chosen,

the numerical approximations are often destroy due to the accumulated round off er-

rors. Therefore, it is important to control the rounding errors especially when applying

extrapolation. One way to minimize round off errors is by applying compensated sum-

mation. In this paper, the numerical results are given for the symmetric Runge-Kutta

methods which are the implicit midpoint rule and the implicit trapezoidal rule applied

with and without compensated summation. The result shows that symmetric methods

with higher level extrapolation using compensated summation give much smaller er-

rors. On the other hand, symmetric methods without compensated summation when

applied with extrapolation, the errors are affected badly by rounding errors.
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1 Introduction

Consider a system of an ordinary differential equation with the initial value,

y′ = f(x, y), y(x0) = y0, (1)

Any Runge-Kutta (RK) methods can be used to solve problem (1). Runge-Kutta method
is defined by formulas (2a) and (2b)

Yi = yn−1 + h

s
∑

j=1

aijf (xn−1 + cjh, Yj) , i = 1, 2, . . . , s (2a)

yn = yn−1 + h

s
∑

j=1

bjf(xn−1 + cjh, Yj), j = 1, 2, . . . , s, (2b)

where Yi represent the internal stage values and yn represent the update of y at the nth

step. Examples of order-2 RK methods are the implicit midpoint rule (IMR) and implicit
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trapezoidal rule (ITR) as given in Table 1.

Table 1: Order-2 of IMR and ITR

IMR: ITR:

Y = yn−1 +
h

2
f

(

xn−1 + h
2
, Y

)

, Y1 = yn−1,

yn = yn−1 + hf(xn−1 + h
2
, Y ). Y2 = yn−1 +

h

2
hf

(

xn−1, Y1

)

+
h

2
f
(

xn−1 + h, Y2

)

,

yn = Y2.

Both IMR and ITR are also symmetric, [1]. The symmetric methods are special type
of RK methods because when they are applied with extrapolation technique this makes the
order of the method increase by two at a time, [2–4].

2 Extrapolation Technique

Extrapolation which is founded by L. F. Richardson, [5] is a technique to increase the sta-
bility and efficiency of a method. This technique is also known as Richardson extrapolation.
Extrapolation can be applied in two ways. Active extrapolation occurs when the value of
extrapolation is used to propagate the next computation. If the extrapolated values are
not used in any subsequent computations then it is called passive extrapolation. Since
extrapolation can increase accuracy and efficiency, many researchers are still finding the
best ways to apply extrapolation. Gorgey [6] showed that passive extrapolation of the 2-
stage Gauss method is more efficient than the active extrapolation for linear problems. In
terms of efficiencies, Faragó and Zlatev, [7] found out that computing time spent with the
Richardson extrapolation for both active and passive is more than ten times smaller than
the corresponding computing time for the backward Euler formula. Hence they concluded
that extrapolation is a powerful tool for increasing the accuracy and efficient with regard
to the computational cost especially when the accuracy requirement is not extremely low.
Besides that, Faragó and Zlatev, [7] also studied the convergence of diagonally implicit RK
methods combined with Richardson extrapolation.The extrapolation results in a convergent
numerical method if the initial value problem satisfied the Lipschitz condition. In addition
to that, Zlatev and Dimov, [8] studied on the absolute stability properties of the Richardson
extrapolation by the explicit RK methods of order-1 to order-4. They concluded that the
passive extrapolation may fail when the method is not stable for large stepsizes in solv-
ing certain problems but active extrapolation works fine for larger stepsizes although the
method is not stable.

The extrapolation formula is defined as

Tij = Ti,j−1 +
Ti,j−1 − Ti−1,j−1

( mi

mi−j+1
) − 1

, (3)

where i = j = 2, . . . , n. For this paper, stepsize sequence is chosen to be m = 1, 2, 4, 8.
Higher level extrapolation is also possible. The higher the levels of extrapolations, the
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more accurate the method will be since on every level of extrapolations, the order p of the
symmetric method will increase by 2 at a time. This can be summarize in Table 2.

Table 2: Extrapolation Table
H
m1

T1,1

H
m2

T2,1 T2,2

H
m3

T3,1 T3,2 T3,3

H
m4

T4,1 T4,2 T4,3 T4,4

...
...

...
...

...
. . .

H
mn

Tn,1 Tn,2 Tn,3 Tn,4 . . . Tn,n

order p p + 2 p + 4 p + 6 . . . p + 2(n + 1)

level 1st 2nd 3rd . . . nth

where in Table 2 the meaning of the symbols are as follows:

p = order of the methods,

n = positive integer,

H = the stepsize at length n where hi = H
mi

, i = 1, 2, . . . , n,

mi = increasing sequence, i = 1, 2, . . . , n,

Ti,1 = approximations using stepsize hi = H
mi

.

In this paper, up to third level extrapolation is considered.

3 Compensated Summation

Iterated methods or usually called numerical methods such as RK methods, general linear
methods and multistep methods are always applied in solving linear and nonlinear problems.
Higher order methods such as Radau IIA of order-5 or 3-stage Gauss method of order-6
are always preferable since these methods are higher order and therefore will give greater
accuracy than lower order methods. However, instead of using higher order methods, one
way to get greater accuracy is by applying extrapolation. Lower order methods require
smaller stepsize than higher order methods. If the stepsize is chosen to be very small then
this can lead to round-off error where eventually will destroy the solutions. Round-off error
is an error created due to approximate representation of number, [1]. One way to solve
this problem is by not using a small stepsize. However this cannot be applied to certain
problems when relatively smaller stepsize is required. Therefore the other way to solve this
rounding error is by applying a technique known as compensated summation. Compensated
summation is a technique used to minimize the round-off error. Compensated summation
when applied with any numerical methods can improve the figure of accuracy up to certain
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smaller stepsizes. Higham [9], gave a good study of compensated summation. He continued
the work by Stetter, [10] who found sufficient conditions for the global error to be linear in
the tolerance. He also studied on standard error control method of explicit RK methods.
He showed that by ignoring higher-order terms, the global error in the numerical solution
behaves like a known rational power of the error tolerance.

Compensated summation is important to get better result especially when extrapolation
is applied. This is because of the reduction of the stepsizes for chosen stepsize sequences.
Most often, instability is not caused by the accumulation of millions of rounding errors, but
by the insidious growth of just a few rounding errors, [9]. Hence, compensated summation
is a way to minimize the accumulation of error. The compensated summation captures the
round-off error at each step and the quantity is where round-off error is stored for y-values.
Compensated summation works when the quantity to be summed is small compared with
the total being added to estimates the value of which is the small quantity that is added in
any particular step. These values then add to the value. In each step, this small value is
captured and stored.

The two Matlab codes given below show the implementation of the compensated summation
by the IMR for the PR problem (Problem 1) where x0 = x and y0 = y. Table 3 show the
algorithm for a simple version of IMR without compensated summation while Table 4 show
the algorithm for the modified version of IMR with compensated summation.

The implementation of the IMR as given in Table 1 is given as suggested by Hairer and
Wanner in, [11]. Since IMR is an implicit method, full Newton method (DY, see Table 3)
has been considered to solve the nonlinear terms involving Y and y. It is advisable not to
evaluate the function f many times. In order to avoid re-evaluating f many times, consider
rewriting the update yn for the IMR given in Table 1 as follows:

Y = yn−1 +
h

2
f

(

xn−1 + h
2
, Y

)

,

2Y = 2yn−1 + hf
(

xn−1 + h
2
, Y

)

,

hf
(

xn−1 + h
2
, Y

)

= 2Y − 2yn−1.

Therefore, yn as defined in Table 3 is given by

yn = yn−1 + 2Y − 2yn−1,

yn = 2Y − yn−1.

Full Newton requires evaluating the Jacobian at each iteration whereas simplified Newton,
requires evaluating Jacobian only on the first approximation and may be re-evaluated later.
Evaluating the Jacobian at each iteration is wasteful and expensive because of the need to
update and LU-factorize of the Jacobian matrix. However, this research is not focusing on
the cheaper implementation cost. The purpose of this research is to show that the IMR using
compensated summation gives improve result than without compensated summation. To
study more about the implementation using simplified Newton, one can refer to Gorgey, [6].

Algorithm on the implementation of the IMR written in Matlab2014 is given in Table 3.

Algorithm for a simple version of IMR

In Table 4, the only modification done is by introducing the terms s, sx and z where
z = Y − y. It is suggested in, [11] as well as in, [1] that the influence of round-off errors can
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Table 3: Algorithm for a Simple Version of IMR without Compensated Summation

n = 10;

tol = 1.e-10;

m = length(y);

I = eye(m);

Y = y;

for i = 1:n

term1 = 0.5*h*f(x+0.5*h,Y);

term2 = 0.5*h*J(x+0.5*h,Y);

G = Y - y - term1;

DY = (I -term2 )\(-G);

if norm(DY,inf) < tol*max(1,norm(Y,inf))

break;

end

Y = Y + DY;

end

if i >= n

disp(’nonconverging’)

end

xn = x + h;

yn = 2*Y - y;

be reduced by using smaller quantities z. The aim of compensated summation is to capture
the round-off error in each individual step. The s quantity is where the round-off error is
stored for the y-values and sx is the round-off error stored for the x-values. Instead of solv-
ing for Y = y+ h

2
f(xn−1+ h

2
, Y ) as for the IMR given in Table 1, use z = h

2
f(xn−1+ h

2
, y+z)

and solve by Newton. To apply the compensated summation, let s = 0, sx = 0.

Algorithm modified version of IMR

For example, consider applying IMR and ITR to the PR problem (Problem 1) with
q = −102 and h = 0.001 .

Figure 1 shows the effect of round-off error by the IMR and ITR in solving Problem 1.
Both IMR and ITR give better results with compensated summation than without compen-
sated summation. When h = 0.00025, IMR without compensated summation cannot give
a straight line because of the accumulation of the round-off error (see Figure 1). However,
it is shown that when IMR is applied with compensated summation the graph gives much
improved result. A similar result is shown for ITR.

This paper is mainly about compensated summation applied to extrapolation of the
second order implicit RK methods which are the IMR and ITR methods. The objective of
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Table 4: Algorithm for Modified Version of IMR with Compensated Summation

z = 0*y;

for i = 1:n

term1 = 0.5*h*f(x+0.5*h,z+y)

term2 = 0.5*h*J(x+0.5*h,z+y)

G = z - term1;

DG = Im - term2;

DY = DG\(-G);

if norm(DY,inf) < tol*max(1,norm(z,inf))

break;

end

z = z + DY;

end

if i >= n

disp(’nonconverging’)

end

increment = 2*z + s;

yn = y + increment;

sn = increment - (yn - y);

incx = h + sx;

xn = x + incx;

sxn = incx - (xn - x);
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Figure 1: The Effect of Round-off Errors by the IMR and ITR, Respectively With and
Without Compensated Summation in Solving Problem 1
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this research is to show that although extrapolation requires reduction of stepsizes according
to the levels, the accuracy of the errors can still be improved with compensated summation.

4 Numerical Results

Numerical results are given for linear problem (Problem 1) and nonlinear problem (Problem 2).
These problems are chosen as the test problems since the exact solutions are known. On
each problem, the results are tested in terms of accuracy (order). The order of a method is
given by the gradient of the graph of error versus stepsize. The accuracy graph shows the
comparison of extrapolated IMR and ITR with and without compensated summation.

Problem 1: Prothero Robinson Problem

The Prothero Robinson problem is given by

y′(x) = q(y(x) − g(x)) + g′(x), y(x0) = 1,

where g(x) = sin(x) and q = −103 and the y(x) = sin(x).
The numerical results for Problem 1 are given in Figure 2 to Figure 4. Figure 2 shows

the accuracy of the first level extrapolated IMR and ITR respectively while Figure 3 shows
the accuracy of the second level extrapolated IMR and ITR respectively and lastly Figure 4
shows the accuracy of the third level extrapolated IMR and ITR respectively. Result shows
that first level extrapolation of IMR and ITR (order 4) with compensated summation is
more accurate. Second level extrapolated IMR and ITR (order 6) also gives better accuracy
with compensated summation. Although the results with compensated summation is much
better than the results without compensated summation as seen in all figures, there are
up to certain extend where the round-off errors cannot be fixed even with compensated
summation. This is due to the accumulation of the round-off errors.

Problem 2: Kaps Problem

The Kaps problem is given by

y′
1

= (q − 2)y1 − qy2

2
, y1(x) = e−2x,

y′2 = y1 − y2 − y2

2 , y2(x) = e−x,

with y1(0) = 1 and y2(0) = 1 and q = −103.

The numerical results for Problem 2 are given in Figure 5 to Figure 7. Figure 5 shows
the accuracy of the first level extrapolated IMR and ITR respectively in solving Kaps
problem (Problem 2) also with q = −103. Figure 6 shows the accuracy of the second level
extrapolated IMR and ITR respectively while Figure 7 shows the accuracy of the third
level extrapolated IMR and ITR respectively in solving Kaps problem (Problem 2) also
with q = −103. In all these figures, it is showed that extrapolation with compensated
summation is indeed more accurate than extrapolation without compensated summation.

Therefore based on these numerical results, it is proven that compensated summation
works for linear and nonlinear problems up to third level extrapolations. Fourth level
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Figure 2: The Accuracy of the First Level Extrapolated IMR and ITR
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Figure 3: The Accuracy of the Second Level Extrapolated IMR and ITR

−2.6 −2.4 −2.2 −2 −1.8 −1.6 −1.4 −1.2 −1
−16

−15

−14

−13

−12

−11

−10

−9

−8

log
10

(Stepsize)

lo
g

1
0
||E

rr
o
r|

| 2

Problem 1 by the IMR with q=−10
3
 and h=0.1

 

 

Without compensated summation

With compensated summation

−2.6 −2.4 −2.2 −2 −1.8 −1.6 −1.4 −1.2 −1
−16

−15

−14

−13

−12

−11

−10

−9

−8

log
10

(Stepsize)

lo
g

1
0
||E

rr
o
r|

| 2

Problem 1 by the ITR with q=−10
3
 and h=0.1

 

 

Without compensated summation

With compensated summation

Figure 4: The Accuracy of the Third Level Extrapolated IMR and ITR
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Figure 5: The Accuracy of the First Level Extrapolated IMR and ITR
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Figure 6: The Accuracy of the Second Level Extrapolated IMR and ITR
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Figure 7: The Accuracy of the Third Level Extrapolated IMR and ITR
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extrapolation is not done in this research because although the third level extrapolation by
the IMR and ITR are improved using compensated summation as shown in Figure 7, in
order to carry out fourth level extrapolation a very small stepsize need to be used and this
will end up with the accumulations of the round of errors.

5 Conclusion

Based on the numerical results for both problems, extrapolations of IMR and ITR with
compensated summation give better accuracy than without compensated summation. The
results also showed that if compensated summation is not applied to any levels of extrapo-
lation then the results obtained is worse. Therefore, whenever small stepsize is chosen then
compensated summation technique is the best way to minimize the round-off errors.
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