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Abstract Homotopy continuation methods (HCMs) can be used to find the solutions
of polynomial equations. The advantages of HCMs over classical methods such as the
Newton and bisection methods are that HCMs are able to resolve divergence and start-
ing value problems. In this paper, we develop Super Ostrowski-HCM as a technique to
overcome the starting value problem. We compare the performance of this proposed
method with Ostrowski-HCM. The results provide evidence of the superiority of Super
Ostrowski-HCM.
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1 Introduction

One difficulty associated with solving systems of scalar nonlinear equations numerically is
the choice of starting value. Lee and Chiang [1] stated that a good starting point is hard
to find. The user should have a sufficient knowledge of the location of roots to determine
an appropriate starting value. An inappropriate starting value will cause the numerical
method used to diverge or converge slowly. Consider the solution of a system of polynomial
equations

F(x) = 0, (1)

where F(x) = (f1(x), f2(x), ..., fn(x))t and x = (x1, x2, ..., xn).f1(x), f2(x), ..., fn(x) are
called coordinate functions of F(x)[2]. Several classical methods can be employed to solve a
system of polynomial equations. They include Newton’s method, Steepest Descent method
[2], Broyden’s method [3,4,5] and Brent’s method [6,7]. However, the aforementioned meth-
ods require starting values that must be close to the intended root for a particular applica-
tion.

Homotopy continuation methods are classified as global methods. Gritton et al. [8]
defined global methods as those that use an arbitrary starting value to find a solution. By
choosing an arbitrary starting value, one need not worry about the location of actual roots
before performing the computations. The question arises, is that we can choose all numbers
to be the starting value without having any problem. In this paper, we investigate the issue
of starting value with regard to homotopy continuation method (HCM).
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2 Starting value problem of Ostrowski-HCM

Burden and Faires [2] defined starting value problem for nth-order system of first-order
differential equations

dx1

dt
= f1(t, x1, x2, x3, ..., xn),

dx2

dt
= f2(t, x1, x2, x3, ..., xn),

dx3

dt
= f3(t, x1, x2, x3, ..., xn),

...

dxn

dt
= fn(t, x1, x2, x3, ..., xn),

(2)

for a ≤ t ≤ b can be defined as the solution to the differential equations that satisfies a set
of given initial condition x(a) = τ . Chapra and Canale [9] stated n conditions are required
when dealing with nth-order differential equations to obtain a unique solution x. When
the differential equations (2) are reduced to zeroth-order, we are dealing with the solution
of a system of polynomial equations (1). Therefore, starting value problem of polynomial
equations can be defined as a unique solution x to a system of polynomial equations that
satisfies a given starting value x0.

Noor and Waseem [10], Nikkhah-Bahrami and Oftadeh [11], Faires and Burden [12],
Kotsireas [13] and Nor et al. [14] focused on starting value which is reasonably close to
a root. However, there is still not yet investigation of large of starting value which are
somewhat far away from a root.

Ostrowski-HCM was developed by using Ostrowski’s method as a basis. Ostrowski’s
method was introduced by Alexander Markowich Ostrowski [15,16] by extending Newton’s
method. The variants of Ostrowski’s method were widely developed such as in Kou et al.

[17], Grau et al. [18], Sharma and Guha [19] and Chun and Ham [20] for solving scalar
nonlinear equations. Ostrowski [15] and Grau-Sanchez et al. [21] focused on systems of
nonlinear equations. The formula for Ostrowski’s method is:

yi = xi − A−1
i F(xi),

xi+1 = yi − A−1
i Oj(xi),

i = 0, 1, 2, ..., k− 1, j = 1, 2, ..., n. (3)

where Ai is the Jacobian matrix of
∂fj

∂xk
evaluated at point x and Oj(x) =

fj(xi)fj(yi)
fj(xi)−2fj(yi)

.

The additional Ostrowski’s function can also be written as

Oj(xi) =























f1(xi)f1(yi)

f1(xi) − 2f1(yi)

f2(xi)f2(yi)

f2(xi) − 2f2(yi)
...

fn(xi)fn(yi)

fn(xi) − 2fn(yi)























, i = 0, 1, 2, ..., k− 1, j = 1, 2, ..., n. (4)
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Equation (3) is also known as double-Newton’s method [22, 23]. We now consider the
starting value problem of Ostrowski-HCM. The stopping criterion used is ‖F(xk)‖

∞
< ε,

where ε = 10−3.

Example 2.1 Consider the following system of polynomial equations in Kotsireas [13]:

f1(x, y) = x2 + y2 − 25 = 0,

f2(x, y) = x2 − y − 5 = 0,
(5)

where the exact solutions are (x1, y1) = (3,4), (x2, y2) = (-3,4) and (x3, y3) = (0,−5). Kot-
sireas [13] used the parametric plot to illustrate the location of exact solutions. Graphically,
it can be shown in Figure 1.

Figure 1: Location of exact solutions for equation (5) using parametric plot [13]

The intersection points between two curves are the location of exact solutions. Palancz
et al. [24] used homotopy path to illustrate the location of roots. Graphically, it can be
shown in Figure 2. We now observe the performance of Ostrowski-HCM and the results are
shown in Tables 1 to 3 by varying the value of the starting values.

Homotopy path moves from the starting points (blue) to the real solutions (red). The
solutions can be tracked by using only one initial value which is located in the complex
domain.

Tables 1 to 3 show the performance of Ostrowski-HCM when starting from three different
starting values: (1) the starting value is close to exact solutions, (2) the starting value which
is far from exact solutions, and (3) the starting value is very far from exact solutions.

Table 1 indicates that Ostrowski-HCM performs well if the starting value is close to
the exact solutions. However, Table 2 and Table 3 indicate that Ostrowski-HCM needs 35
iterations and 331 iterations to converge to the exact solutions when it starts from (x0, y0) =
(−100,−100) and (x0, y0) = (1000, 1000) respectively. The performance of Ostrowski-HCM
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Table 1: Performance of Ostrowski-HCM for equation (5) with starting value (x0, y0) =
(2.5, 3.5)

Iterations t Approximate solution (x̃, ỹ) F(x̃, ỹ)

0 0 (2.5, 3.5) (−6.5,−2.25)

1 0.5 (2.91568,4.01067) (−0.413327,−0.509495)

2 1 (3,4.00001) (0.0000506821,−3.07095× 10−6)

Table 2: Performance of Ostrowski-HCM for equation (5) with starting value (x0, y0) =
(−100,−100)

Iterations t Approximate solution (x̃, ỹ) F(x̃, ỹ)

0 0 (−100,−100) (19975, 10095)

1 1/35 (18.8485,−21.4375) (789.831,371.703)

2 2/35 (19.4408,−42.8368) (2187.94,415.783)

3 3/35 (−17.2683, 106.036) (11516.9,187.159)

4 4/35 (−46.2786,−32.1872) (3152.73,2168.9)

...
...

...
...

34 34/35 (0.0556136,−4.97184) (−0.277745,−0.0250702)

35 1 (0.0209382,−5) (0.000397552,0.000434321)
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Figure 2: Location of exact solutions for equation (5) using homotopy path [24]
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Table 3: Performance of Ostrowski-HCM for equation (5) with starting value (x0, y0) =
(1000, 1000)

Iterations t Approximate solution (x̃, ỹ) F(x̃, ỹ)

0 0 (1000, 1000) (1999975, 998995)

1 1/331 (503.381,186.942) (288315,253201)

2 2/331 (82.2808,2026.83) (4.11477× 106, 4738.31)

3 3/331 (317.552,551.667) (405150,100282)

4 4/331 (262.071,138.983) (87972.7,68537.3)

5 5/331 (300.932,-372.486) (229281,90927.9)

...
...

...
...

329 329/331 (3.88009,4.00008) (6.05571,6.05498)

330 330/331 (3.46682,4.00018) (3.02028,3.01866)

331 1 (3.00016,4) (0.000992422,0.000975747)

converges slowly when the starting value is very far from the any of isolated exact solutions.
Besides that, the behavior of approximate solutions (x, y) and the value of function F(x̃, ỹ)
become inconsistent when the parameter t decreases and the number of iterations increase.
Motivated by this, we develop a new scheme which is expected to be able to solve the
starting value problem.

3 Solution of starting value problem

The super Ostrowski-HCM that we propose is a combination of Ostrowski-HCM, quadratic
Bezier homotopy function, linear fixed point function and a technique from Palancz et al.

[24], which were defined by Nor et al. [14,25,26]. The details are explained in the following
subsections.

3.1 Ostrowski-HCM

The formula for Ostrowski-HCM as in Nor et al. [14] is as follows

yi = xi − [DxH(xi, t)]
−1

H(xi, t),

xi+1 = yi − [DxH(xi, t)]
−1

Oj(xi, t),
i = 0, 1, 2, ..., k− 1. (6)

where

Oj(xi, t) =
Hj(xi, t)Hj(yi, t)

Hj(xi, t) − 2Hj(yi, t)
, j = 1, 2, ..., n.

H(xi, t) = (1 − t)G(x) + tF(x), t ∈ [0, 1]. (7)
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The function H(x, t) is referred to as the homotopy function, DxH(x, t) is the derivative of
the homotopy function with respect to variable x and Oj(xi, t) is referred to the Ostrowski’s
homotopy function.

3.2 Quadratic Bezier homotopy function

Quadratic Bezier homotopy function was discussed in detail in Nor et al. [25]. This new
homotopy function is an extension of standard homotopy function. The standard homotopy
function is as follows:

H(x, t) = (1 − t)G(x) + tF(x). (8)

To improve the accuracy of solutions, the authors in [25] modified the standard homotopy
function to

H2(x, t) = (1 − t)2G(x) + 2t(1− t)H(x, t) + t2F(x), (9)

by using recursive construction technique. An in-depth study of this construction (9) was
discussed in [25]. Nor et al. [27] developed QBHF but the construction of a new homotopy
function in [27] was for solving scalar of nonlinear equations. The results in [25] and
[27] indicated that QBHF performs better than standard homotopy function in terms of
accuracy.

3.3 Linear fixed point function

Similar to the development of QBHF, Nor et al. [26] introduced a new auxiliary homotopy
function known as linear fixed point (LFP) function. The auxiliary homotopy function or
starting function, denoted as G(x), plays an important role to initiate the computation. As
discussed in Nor et al. [14,25,26] , when homotopy function H(x, t) or H2(x, t) is evaluated
at t = 0, we have

H(x, 0) = G(→
∼

x),

= H2(x, 0).
(10)

Similarly, when we developed new auxiliary homotopy function G(x, t), we have

H(x, 0) = G(x, 0),
= H2(x, 0).

(11)

One of advantages of using LFP over standard of auxiliary function is that G(x, t) always
moves whilst G(x) is always fixed for every increment parameter t [26]. This situation
accelerates the speed of convergence to the solution of equations.

A familiar auxiliary homotopy function that is widely used is the fixed point function.
The fixed point function is

G(x) = x− x0. (12)

Nor et al. [26] developed

G(x, t) = (1 − t)(x− x0) + tF(x). (13)

Nor et al. [26] demonstrated several systems of equations to investigate the advantages
of LFP. The results obtained showed that LFP was better than the standard auxiliary
homotopy function.
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3.4 Super Ostrowski-HCM

We combine the formulae developed in Nor et al. [14, 25, 26] to become a new scheme. The
improved homotopy function is

H2(x, t) = (1 − t)2G(x, t) + 2t(1 − t) [(1 − t)G(x, t) + tF(x)] + t2F(x). (14)

We use the technique from Palancz et al. [24] to accelerate the convergence of Ostrowski-
HCM

xi+1 = NewtonRaphson(H(xi, ti+1), (x, xi)). (15)

We modify this technique to

xi+1 = Ostrowski’sMethod(H2(xi, ti+1), (x, xi)), i = 0, 1, 2, ..., k− 1. (16)

However, we only iterate twice for every ti+1 to reduce the number of iterations involved
and to enhance the accuracy of solutions. Finally, our proposed global procedures becomes

yi = xi − [DxH2(xi, t)]
−1

H2(xi, t),

xi+1 = yi − [DxH2(xi, t)]
−1

O
(j)
2 (x, t),

i = 0, 1, 2, ..., k− 1, j = 1, 2, ..., n, (17)

where H2(xi, t) is the improved of homotopy function as (9) and O2(x, t) can be written as

O
(j)
2 (xi, t) =



























H
(1)
2 (xi, t)H

(1)
2 (yi, t)

H
(1)
2 (xi, t) − 2H

(1)
2 (yi, t)

H
(2)
2 (xi, t)H

(2)
2 (yi, t)

H
(2)
2 (xi, t) − 2H

(2)
2 (yi, t)

...

H
(n)
2 (xi, t)H

(n)
2 (yi, t)

H
(n)
2 (xi, t) − 2H

(n)
2 (yi, t)



























. (18)

All of this combination is named Super Ostrowski homotopy continuation method. We
re-solve Example 2.1 using Super Ostrowski-HCM. The results are as in Table 4, Table 5
and Table 6. The tables show that Super Ostrowski-HCM performs better and converge
faster than Ostrowski-HCM as the numbers of iterations have been vastly reduced. Super
Ostrowski-HCM needs less than 10 iterations when starting from three starting values:
(x0, y0) = (2.5, 3.5), (x0, y0) = (−100,−100) and (x0, y0) = (1000, 1000). It is observed that
Super Ostrowski-HCM can resolve the starting value problem which is faced by Ostrowski-
HCM.

4 Numerical experiments and discussion

We test four examples of system of polynomial equations. The comparative study involves
standard Ostrowski-HCM and Super Ostrowski-HCM. The performances of both methods
are measured by the range of starting value and the number of iterations (NOI) needed to
solve the system of equations. The stopping criterion used is

‖F(xk)‖
∞

< ε, (19)

where ε = 10−3.
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Table 4: Performance of super Ostrowski-HCM for equation (5) with starting value
(x0, y0) = (2.5, 3.5)

Iterations t Approximate solution (x̃, ỹ) F(x̃, ỹ)

0 0 (2.5, 3.5) (−6.5,−2.25)

1 1 (3.0000000010576, 4.000000006225) (5.61× 10−8, 1.21× 10−10)

Table 5: Performance of super Ostrowski-HCM for equation (5) with starting value
(x0, y0) = (−100,−100)

Iterations Approximate Solution (x̃, ỹ) F(x̃, ỹ)

0 (−100,−100) (19975, 10095)

1 (−5.97694,−7.76859) (71.0748,38.4924)

2 (-1.48746,-5.10653) (3.28916,2.31906)

3 (−0.34214,−5.0193) (0.310444,0.136361)

4 (0.0427401,−5.00036) (0.00539642,0.00218368)

5 (2.95256,3.98892) (−0.370909,−0.271339)

6 (−0.12185,−5.00279) (0.0427771,0.0176397)

7 (0.0155802,−5.00003) (0.0005668,0.000275147)

Table 6: Performance of super Ostrowski-HCM for Eq. (5) with starting value

Iterations Approximate Solution (x̃, ỹ) F(x̃, ỹ)

0 (1000, 1000) (1999975, 998995)

1 (62.9921,62.1387) (7804.23,3900.87)

2 (16.2309,15.5624) (480.63,242.881)

3 (4.86538,5.01062) (23.7783,13.6613)

4 (3.02308,4.02287) (0.322549,0.116163)

5 (2.99999649, 4.00002164) (0.00015203,-0.0000426916)
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Example 4.1 Consider the following system of polynomial equations in [13] :

f1(x, y) = x2 + y2 − 25 = 0,

f2(x, y) = x2 − y − 5 = 0,
(20)

where the exact solutions are (x1, y1) = (3,4), (x2, y2) = (-3,4) and (x3, y3) = (0,−5). The
results are shown in Table 7 by varying the values of starting value. The table shows that
1. Super Ostrowski-HCM uses fewer iterations than Ostrowski-HCM.
2. Ostrowski-HCM was a large number of iterations unless the starting value is close to

the actual roots.
3. All the starting values proved to be successful for Super Ostrowski-HCM.

Table 7: Comparison between the NOI when using Ostrowski-HCM and our proposed pro-
cedure for equation (20)

Starting Value Location of starting value with Ostrowski- Super
(x0, y0) respect to the exact solution HCM Ostrowski-HCM

(2.5, 3.5) Close 2 1

(−3.5, 4.5) Close 3 1

(−10,−10) Far 12 5

(10, 10) Far 5 2

(−100,−100) Far 35 7

(100, 100) Far 35 3

(−1000,−1000) Very far 138 5

(1000, 1000) Very far 331 5

Example 4.2 Consider the following system of polynomial equations in [28] :

f1(x, y) = x2 − 2x− y + 0.5 = 0,

f2(x, y) = x2 + 4y2 − 4 = 0,
(21)

where the exact solutions are (x1, y1) = (1.900676726367066,0.3112185654192943) and
(x2, y2) = (-0.2222145550597218,0.993808418599834). The results are shown in Table 8
by varying the values of the starting value. The table shows that
1. Super Ostrowski-HCM uses fewer iterations than Ostrowski-HCM.
2. Ostrowski-HCM was a large number of iterations unless the starting value is close to

the actual roots.
3. All the starting values proved to be successful for Super Ostrowski-HCM.

Example 4.3 Consider the following example in [10]:

f1(x, y, z) = x2 + y2 + z2 − 1 = 0,

f2(x, y, z) = 2x2 + y2 − 4z = 0,

f3(x, y, z) = 3x2 − 4y2 + z2 = 0,

(22)
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Table 8: Comparison between the NOI when using Ostrowski-HCM and our proposed pro-
cedure for equation (21)

Starting Location of starting value with Ostrowski- Super
Value (x0, y0) respect to the exact solution HCM Ostrowski-HCM

(2, 1
2) Close 2 1

(−10,−10) Far 32 5

(10, 10) Far 39 3

(−100,−100) Far 159 11

(100, 100) Far 239 9

(−1000,−1000) Very far 274 17

(1000, 1000) Very far 1831 9

where (x, y, z) = (0.69828860997151, -0.62852429796021, 0.342564189689569) is an exact so-
lutions. The results are shown in Table 9 by varying the value of starting values. The table
shows that

1. Super Ostrowski-HCM uses fewer iterations than Ostrowski-HCM.
2. Ostrowski-HCM was a large number of iterations unless the starting value is close to

the actual roots.
3. All the starting values proved to be successful for Super Ostrowski-HCM.

Table 9: Comparison between the NOI when using Ostrowski-HCM and our proposed pro-
cedure for equation (22)

Starting Location of starting value with Ostrowski- Super
Value (x0, y0) respect to the exact solution HCM Ostrowski-HCM

(1
2 ,−1

2 , 1
2 ) Close 3 1

(−10,−10,−10) Far 56 10

(10, 10, 10) Far 38 3

(−100,−100,−100) Far 318 17

(100, 100, 100) Far 319 5

(−1000,−1000,−1000) Very far 1734 18

(1000, 1000, 1000) Very far +∞ 9
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Example 4.4 Consider the following example in [29] :

f1(w, x, y, z) = x + 10y = 0,

f2(w, x, y, z) =
√

5(z − w) = 0,

f3(w, x, y, z) = (y − 2z)2 = 0,

f4(w, x, y, z) =
√

10(x − w)2 = 0,

(23)

where (w, x, y, z) = (0, 0, 0, 0) is an exact solutions. The results are shown in Table 10 by
varying the values of the starting value. The table shows that
1. Super Ostrowski-HCM uses fewer iterations than Ostrowski-HCM.
2. Ostrowski-HCM was a large number of iterations unless the starting value is close to

the actual roots.
3. All the starting values proved to be successful for Super Ostrowski-HCM.

Table 10: Comparison between the NOI when using Ostrowski-HCM and our proposed
procedure for equation (23)

Starting Location of starting Ostrowski- Super
Value (x0, y0) value with respect to HCM Ostrowski-HCM

the exact solution

(0.001,−0.001, 0.001,−0.001) Close 1 1

(1, 4, 1, 2) Not close 126 4

(10,−10, 10,−10) Far +∞ 6

(−10, 10,−10, 10) Far +∞ 7

(100,−100, 100,−100) Far +∞ 12

(−100, 100,−100, 100) Far +∞ 12

(1000,−1000, 1000,−1000) Very far +∞ 28

(−1000, 1000,−1000, 1000) Very far +∞ 28

The superior performance of the Super Ostrowski-HCM may be due to the combination
of the superior accuracy of homotopy continuation method, homotopy function and auxiliary
homotopy function as developed by Nor et al. [14, 25, 26] respectively. The technique
of Palancz et al. [24] may also have contributed to the superior performance of Super
Ostrowski-HCM.

5 Conclusion

The results from Tables 7 – 10 indicate that Super Ostrowski-HCM performs better than the
standard of Ostrowski-HCM. Ostrowski-HCM performs well if the selected starting value
is close to the actual roots of equations but requires more iterations when the selected
starting value is far away from the exact solutions. The problem arises when the user does
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not know their chosen starting value is close or not to the exact solutions. An starting
value that is not close to the exact solution gives poor results when using Ostrowski-HCM
in the examples considered. This means an arbitrary starting value using Ostrowski-HCM
does not guarantee the acceleration of convergence. The main contribution in this paper
is the proposed method can resolve the problem associated with the starting values which
are faced by standard of Ostrowski-HCM. The aforementioned problem can be resolved
by using the Super Ostrowski-HCM which only needs a few iterations to converge to the
solutions of a system of polynomial equations.
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