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A Note About Configuration of A Group

1Ali Tavakoli, 2Ali Rejali, 3Akram Yousofzadeh, 4Alireza Abdollahi
1,2,4 Department of Mathematics,

University of Isfahan, Isfahan, Iran
3 Department of Mathematics,

Mobarakeh Branch, Islamic Azad University, Isfahan, Iran

Abstract In 2001, Rosenblatt and Willis defined the concept of configuration of a

group to give a condition for amenability of groups. In this paper, we study the relation

between configuration and commutator subgroup G
′ of G and prove that if G1 and G2

are two finitely generated groups with the same configuration set, then G1

G′

1

∼=
G2

G′

2

and if

G
′

1 and G
′

2 are finite, then G
′

1
∼= G

′

2. Also, we prove that if two free finitely generated

Burnside groups of finite exponent have the same configuration set, then they must be

isomorphic.
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1 Introduction

In [1], Rosenblatt and Willis defined the concept of configuration of groups for the first
time and applied it to prove that “weak convergence is not strong convergence for amenable
groups”. The definition of the configuration of a finitely generated group G is given in the
following.

Definition 1 Suppose that G is a finitely generated group. Let E = {E1, . . . , Em} be
a finite partition for G and g = (g1, . . . , gn) be an ordered set of generators for G. A
configuration corresponding to E and g is an (n + 1)-tuple C = (c0, c1, . . . , cn) such that
cj ∈ {1, . . . , m} for all j ∈ {0, 1, . . . , n} and there is an element x0 ∈ G with x0 ∈ Ec0

such that xj = gjx0 ∈ Ecj
for each j ∈ {1, . . . , n}. The element x0 is called a base point

of C and the elements xj, j = 1, . . . , n are called branch points of C. The set of all such
configurations C corresponding to E and g is denoted by Con(g, E). Also, the set of all
configuration sets of G will be denoted by Con(G).

A group property P is said to be characterized by configuration if a finitely generated
group G1 has P and if Con(G1) = Con(G2) for another finitely generated group G2, then
G2 has also P. The being finite property, periodic property and Abelian property can
be characterized by configuration (see [2]) and more generally the group property of being
nilpotent of class c can be characterized by configuration (see [3]). In the following theorem,
the amenability of groups is characterized by configuration.

Theorem 1 Suppose that Con(G1) = Con(G2), then we have:

(i) G1 is amenable if and only if G2 is amenable.

(ii) G′

1
is amenable if and only if G′

2
is amenable; where G′ is commutator subgroup of G.

(iii) τ (G1) = τ (G2); where τ (G) is Tarski number of G.
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Proof See [4]. �

2 Configuration and commutator subgroup

In this section, we study the relation between configuration and commutator subgroup.
Those groups whose commutator subgroup has finite index, are important to us. In [5]
some of these groups are studied; for a simple example let G be a finitely generated groups
in which every element has finite order (periodic groups), then G

G′
is finite. In section 3 we

will introduce a class of groups which satisfy this property.

Theorem 2 Let G1 and G2 be finitely generated groups and Con(G1) = Con(G2), then:

|G1| = |G2| and
G1

G′

1

∼=
G2

G′

2

.

Proof Let G1 be infinite. Thus it is countable and |G1| = ℵ0 = |G2|. To prove the next
assertion we use Proposition 2.3 of [3]; since G′

1
� G1, then there exists N2 � G2 such that

G1

G′

1

∼= G2

N2

. Therefore, G2

N2

is Abelian, then G′

2
⊆ N2. So we have:

G1

G′

1

ϕ
∼=

G2

G′

2

N2

G′

2

.

Similarly,

G2

G′

2

ψ
∼=

G1

G′

1

N1

G′

1

,

where N1 � G1 with G2

G′

2

∼= G1

N1

.

Now consider the following diagram:

G1

G′

1

π1−→

G1

G′

1

N1

G′

1

ψ
−→

G2

G′

2

π2−→

G2

G′

2

N2

G′

2

ϕ
−→

G1

G′

1

,

where π1 and π2 are natural epimorphisms. Thus we have a surjective endomorphism on
G1

G′

1

. Since G1

G′

1

and G2

G′

2

are finitely generated Abelian groups, then they are Hopfian. So

this surjective endomorphism is injective and thus π1 is an isomorphism. This implies that
G′

2
∼= N2. Therefore

G1

G′

1

∼=
G2

G′

2

. 2

Remark 1 Let G be a group. Let F(G) denote the set of isomorphism classes of finite
quotients of G and A(G) denote the set of isomorphism classes of Abelian quotients of G.
We say that groups G and H have isomorphic finite quotients if F(G) = F(H) and we say
that they have isomorphic Abelian quotients if A(G) = A(H). It is shown in [2] and [3] two
finitely generated groups have isomorphic finite quotients and isomorphic Abelian quotients
if they have the same configuration set.
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For a group G, let Z(G) denote the center of G.

Lemma 1 Let G1 and G2 be finitely generated groups with finite commutator subgroups
such that Con(G1) = Con(G2). Then

(i) G1 × Z ∼= G2 × Z.

(ii) G′

1
∼= G′

2
.

(iii) Z(G1) ∼= Z(G2).

Proof The proof of (i) follows from Remark 1 and Theorem 2.1 of [6]. Part (ii) can be
concluded from the part (i) easily.
By using (i), Z(G1)×Z ∼= Z(G2)×Z. But Z(G1) and Z(G2) are Abelian and then they must
be isomorphic. This proved (iii). �

The following theorem is a generalization of Corollary 3.4 of [3].

Theorem 3 Let G1, G2 and F be finitely generated groups with finite commutator sub-

groups such that Con(G1) = Con(G2 × F × Z). Then G1
∼= G2 × F × Z.

Proof Since G1 and G2 × F × Z have finite commutator subgroups, then by Lemma 1
part (i), we have G1×Z ∼= G2×F ×Z×Z . So G1

∼= G2×F ×Z by Lemma 1 in [7]. �

Question 1 Here there is a natural question; let G1 and G2 be finitely generated groups
and Con(G1) = Con(G2). Does it follow that G′

1
∼= G′

2
? Or in other words, can we say

that the finiteness of G′

1
implies the finiteness of G′

2
?

Note that if G1 or G2 is periodic then the other is periodic too and by Theorem 2 we have
|G′

1
| = |G′

2
|. On the other hand, there are two finite non-Abelian periodic groups G1 and

G2 such that:

Z(G1) ∼= Z(G2), G′

1
∼= G′

2
and

G1

G′

1

∼=
G2

G′

2

,

but
G1 � G2 and Con(G1) 6= Con(G2).

As an example, set G1 = D8 (dihedral group of order 8) and G2 = Q8 (quaternion group
of order 8).

3 Burnside groups

The Burnside problem, posed by Burnside in 1902 and one of the oldest and most influential
questions in group theory, asks whether a finitely generated group in which every element
has finite order must necessarily be a finite group. The problem has many variants that
differ in the additional conditions imposed on the orders of the group elements. Nevertheless,
the general answer to Burnside’s problem turned out to be negative. Golod [8] provided a
counter-example to the Burnside problem. Also, the restricted Burnside problem (RBP),
formulated in the 1930, asks another related question; are there only finitely many finite
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m-generator groups of exponent n up to isomorphism? In 1994, Zelmanov said yes to this
question.
The group B(m, n) is known as the m-generator Burnside group of exponent n which is
defined as follows.

Definition 2 Let Fm denote the free group of rank m on set {x1, ..., xm}. For a fixed n,
let F n

m denote the subgroup of Fm generated by gn for all g ∈ Fm. Then F n
m is a normal

subgroup of Fm and we define the Burnside group B(m, n) to be the quotient group Fm

Fn
m

.

In 1968 (see [9]) Novikov and Adyan presented the group B(m, n) by defining relations
of the form

B(m, n) =< x1, ..., xm; wn = 1 > .

It is known that B(m, n) is infinite (see [9]) and non-amenable (see [10]) for m ≥ 2 and
an odd integer n ≥ 665. On the other hand, since a group with finite exponent and finite
commutator subgroup is clearly finite, then B(m, n) is finite if and only if B′(m, n) is finite.

Lemma 2 If G = B(m, n) then G
G′

∼= Zmn = Zn × ...× Zn
︸ ︷︷ ︸

m

.

Proof First, note that G
G′

= Fm

F ′

mF
n
m

. Define ϕ : Fm → Zmn such that ϕ(xi) = (0, ..., 1, ..., 0)

for i = 1, ..., m and 1 ∈ Zn is located in the i-th place.
The epimorphism is given from Von Dycks’ theorem. On the other hand, ker(ϕ) = F ′

mF n
m;

indeed, this epimorphism has an Abelian image with exponent n, then F ′

mF n
m is contained

in ker(ϕ).
Also, if ϕ(xε1i1 ...xεsis) = (0, ..., 0) then the sum of exponents xi1 , ..., xis must be in the form

nkj. This implies that ker(ϕ) ⊆ F ′

mF n
m. �

Theorem 4 The following statements are equivalent:

(i) Con(B(m, n)) = Con(B(m′, n′)).

(ii) m = m′, n = n′.

(iii) B(m, n) ∼= B(m′, n′).

Proof It is sufficient to show (i) ⇒ (ii). Since B(m, n) and B(m′, n′) satisfy in semigroup
laws wn = 1 and wn′

= 1 respectively, and Con(B(m, n)) = Con(B(m′, n′)) then from
Theorem 5.1 of [2], n = n′. Also, Lemma 2 and Theorem 2 imply that |Zmn | = |Zm

′

n |. Thus
m = m′. �

Question 2 Let G be finitely generated group such that Con(G) = Con(B(m, n)) for some
m, n. Does it follow that G ∼= B(m, n)? Note that if G is a group of exponent n and m-
generated and further G and B(m, n) have isomorphic finite quotients, we can’t say that
G ∼= B(m, n). For this, take the intersection of all the normal subgroups of finite index in
B(m, n). From Zelmanov’s solution of the RBP there are only finite number of them. Thus,
the intersection is of finite index and the quotient satisfies our request, but it is finite (and
of course generally, B(m, n) is infinite).
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