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1 Introduction

Fractional differential equations have gained considerable importance due to their various
applications in visco-elasticity, electro-chemistry and many physical problems (see [1–2], see
also [3–4]). So far, there have been several fundamental works on the fractional derivative
and fractional differential equations, see [3,5–10] and references therein. Moreover, the study
of systems of fractional order is also important as such systems occur in various problems of
applied nature, for instance, see [11–13]. Recently, many people have studied the existence
and uniqueness for solutions of some systems of nonlinear fractional differential equations,
reader can see [ 10,13–16] and references cited therein.

This paper deals with the existence and uniqueness of solutions for the following system
of n fractional differential equations:







































Dα1x1(t) = f1(t, x1(t), x2(t), ..., xn(t)), t ∈ J,

Dα2x2(t) = f2(t, x1(t), x2(t), ..., xn(t)), t ∈ J,

.

.

.

Dαnxn(t) = fn(t, x1(t), x2(t), ...,n (t)), t ∈ J,

xi (0) = γi

∫ ηi

0 Ai (s) xi (s) ds, 0 < ηi < 1, i = 1, 2, ..., n,

(1)

where Dαi denote the Caputo fractional derivatives, 0 < αi < 1, J = [0, 1], γi ∈ R, Ai are
continuous functions and fi are some functions that will be specified later.

The rest of this paper is organized as follows: In section 2, we give some preliminaries
and lemmas. In Section 3, we establish new conditions for the uniqueness of solutions and
for the existence of at least one solution of problem (1). The first main result is based
on Banach contraction principle and the second on Schaefer fixed point theorem. In the
last section, some examples are discussed to illustrate the application of the established
analytical results.
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2 Preliminaries

The following notations and preliminary facts will be used throughout this paper:

Definition 1 The Riemann-Liouville fractional integral operator of order α > 0, for a
continuous function f on [0,∞) is defined as:

Jαf (t) =
1

Γ (α)

∫ t

0

(t − τ )α−1
f (τ ) dτ ; α > 0, t > 0. (2)

J0f (t) = f (t) , (3)

where Γ (α) :=
∫ ∞

0
e−uuα−1du.

Definition 2 The Caputo derivative of order α of f ∈ Cn ([0,∞[) is defined as:

Dαf (t) =
1

Γ (n − α)

∫ t

0

(t − τ )
n−α−1

f(n) (τ ) dτ, n − 1 < α, n ∈ N∗. (4)

For more details about fractional calculus, we refer the reader to [17, 18]. For i =
1, 2, ..., n, we introduce the spaces

Xi = {xi(t), i = 1, 2, ..., n : xi ∈ C(J, R)}

endowed with the norm

‖xi‖Xi
= sup

t∈J

|xi| .

It is clear that for each i = 1, 2, ..., n,
(

Xi, ‖.‖Xi

)

is a Banach space. The product space
(

X1 × X2 × ...× Xn, ‖.‖X1×X2×...×Xn

)

is also a Banach space with norm

‖(x1, x2, ..., xn)‖X1×X2×...×Xn
= max

t∈J

(

‖x1‖X1
, ‖x2‖X2

, ..., ‖xn‖Xn

)

We give the following lemmas [19]:

Lemma 1 For α > 0, the general solution of the fractional differential equation Dαx = 0
is given by

x (t) = c0 + c1t + c2t
2 + ... + cn−1t

n−1, (5)

where ci ∈ R, i = 0, 1, 2, .., n− 1, n = [α] + 1.

Lemma 2 Let α > 0. Then we have

JαDαx (t) = x (t) + c0 + c1t + c2t
2 + ... + cn−1t

n−1, (6)

for some ci ∈ R, i = 0, 1, 2, ..., n− 1, n = [α] + 1.

We prove also the following auxiliary lemma:
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Lemma 3 Let g ∈ C ([0, 1]). The solution of the equation

Dαx (t) = g (t) , t ∈ J, 0 < α < 1, (7)

subject to the condition

x (0) = γ

∫ η

0

A (s)x (s) ds, 0 < η < 1, (8)

is given by:

x (t) =

∫ t

0

(t − s)α−1

Γ (α)
g (s) ds

+
γ

1 − γ
∫ η

0
A (s) ds

∫ η

0

A (s)

[

∫ s

0

(s − τ )
α−1

Γ (α)
g (τ ) dτ

]

ds (9)

provided that 1 − γ
∫ η

0 A (s) ds 6= 0.

Proof By lemmas 3 and 4, the general solution of (6) is given by the following formula

x (t) =

∫ t

0

(t − s)

Γ (α)
g (s) ds − c0. (10)

According to (7), we get

c0 =
−γ

1 − γ
∫ η

0
A (s) ds

∫ η

0

A (s)Jαg (s) ds. (11)

Substituting the value of c0 in (9), we obtain the desired quantity (8). �

3 Main Results

We begin by introducing the quantities:

Mi =
1

Γ (αi + 1)
+

|γi| sup0≤s≤1 |Ai (s)| ηαi+1

∣

∣1 − γi

∫ ηi

0
Ai (s) ds

∣

∣ Γ (αi + 1)
, i = 1, ..., n,

M = max
i=1,...,n

Mi.

We impose also the following hypotheses:

(H1): The functions fi : [0, 1]× R
n → R are continuous.

(H2): There exist nonnegative functions{mi,j}i,j=1,...,n
such that for all t ∈ [0, 1] and
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x = (x1, ..., xn) , y = (y1, ..., yn) ∈ R
n, we have

|f1 (t, x) − f1 (t, y)| ≤
n

∑

i=1

m1,i (t) |xi − yi| ,

|f2 (t, x) − f2 (t, y)| ≤
n

∑

i=1

m2,i (t) |xi − yi| ,
.

.

.

|fn (t, x) − fn (t, y)| ≤
n

∑

i=1

mn,i (t) |xi − yi| ,

where

m = max
i,j=1,...,n

{

sup
0≤t≤1

mi,j (t)

}

.

(H3): There exist positive constants Li, i = 1, ..., n, such that

|fi (t, x)| ≤ Li,

for each t ∈ J and all x ∈ R
n.

Our first result is based on Banach contraction principle. We have:

Theorem 1 Suppose γi

∫ ηi

0
Ai (s) ds 6= 1 for all i = 1, ..., n, and assume that the hypothesis

(H2) holds. If

Mmn < 1, (12)

then the system (1) has a unique solution on J .

Proof Consider the operator T : X1 × X2 × ...× Xn → X1 × X2 × ...× Xn defined by:

T (x1, ..., xn) (t) = (T1 (x1, ..., xn) (t) , T2 (x1, ..., xn) (t) , ..., Tn (x1, ..., xn) (t)) ,

where

T1 (x1, ..., xn) (t) : =

∫ t

0

(t − τ )
α1−1

Γ (α1)
f1 (τ, x1 (τ ) , ..., xn (τ )) dτ +

γ1

1 − γ1

∫ η1

0
A1 (s) ds

×
∫ η1

0

A1 (s)

[

∫ s

0

(s− τ )
α1−1

Γ (α1)
f1 (τ, x1 (τ ) , ..., xn (τ )) dτ

]

ds,

and for all i = 1, ..., n,

Ti (x1, ..., xn) (t) : =

∫ t

0

(t − τ )
αi−1

Γ (αi)
fi (τ, x1 (τ ) , ..., xn (τ )) dτ +

γi

1 − γi

∫ ηi

0
Ai (s) ds

×
∫ ηi

0

Ai (s)

[

∫ s

0

(s− τ )
αi−1

Γ (αi)
fi (τ, x1 (τ ) , ..., xn (τ )) dτ

]

ds.
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We shall prove that T is contractive:
For x = (x1, ..., xn) , y = (y1, ..., yn) ∈ X1 × X2 × ...× Xn and for each t ∈ J , we have:

|T1 (x1, ..., xn) (t) − T1 (y1, ..., yn) (t)|

= |
∫ t

0

(t − τ )
α1−1

Γ (α1)
f1 (τ, x1 (τ ) , ..., xn (τ )) dτ

+
γ1

1 − γ1

∫ η1

0
A1 (s) ds

∫ η1

0

A1 (s) ×
[

∫ s

0

(s− τ )
α1−1

Γ (α1)
f1 (τ, x1 (τ ) , ..., xn (τ )) dτ

]

ds

−
∫ t

0

(t − τ )
α1−1

Γ (α1)
f1 (τ, y1 (τ ) , ..., yn (τ )) dτ

+
γ1

1 − γ1

∫ η1

0
A1 (s) ds

∫ η1

0

A1 (s)

[

∫ s

0

(s − τ )
α1−1

Γ (α1)
f1 (τ, y1 (τ ) , ..., yn (τ )) dτ

]

ds |

Thus,

|T1 (x1, ..., xn) (t) − T1 (y1, ..., yn) (t)|

≤
∫ t

0

(t − τ )
α1−1

Γ (α1)
× sup

0≤τ≤1
|f1 (τ, x1 (τ ) , ..., xn (τ )) − f1 (τ, y1 (τ ) , ..., yn (τ ))|

+
|γ1 | sup0≤s≤1 |A1 (s)|
∣

∣1 − γ1

∫ η1

0
A1 (s) ds

∣

∣

∫ η1

0

∫ s

0

(s− τ )
α1−1

Γ (α1)
dτds

× sup
0≤τ≤1

|f1 (τ, x1 (τ ) , ..., xn (τ )) − f1 (τ, y1 (τ ) , ..., yn (τ ))| .

Consequently,

|T1 (x1, ..., xn) (t) − T1 (y1, ..., yn) (t)|

≤ 1

Γ (α1 + 1)
× sup

0≤τ≤1
|f1 (τ, x1 (τ ) , ..., xn (τ )) − f1 (τ, y1 (τ ) , ..., yn (τ ))|

+
|γ1| sup0≤s≤1 |A1 (s)| ηα1+1

1
∣

∣1 − γ1

∫ η1

0
A1 (s) ds

∣

∣ Γ (α1 + 2)

× sup
0≤τ≤1

|f1 (τ, x1 (τ ) , ..., xn (τ )) − f1 (τ, y1 (τ ) , ..., yn (τ ))| .

Using (H2), we can write:

|T1 (x1, ..., xn) (t) − T1 (y1, ..., yn) (t)| (13)

≤ 1

Γ (α1 + 1)
+

|γ1| sup0≤s≤1 |A1 (s)| ηα1+1
1

∣

∣1 − γ1

∫ η1

0
A1 (s) ds

∣

∣Γ (α1 + 2)
m

n
∑

i=1

|xi (t) − yi (t)| .

With some simple calculations, we obtain
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|T1 (x) (t) − T1 (y) (t)| ≤ M1mn ‖x − y‖X1×X2×...×Xn
. (14)

Hence, we have

‖T1 (x) − T1 (y)‖X1
≤ M1mn ‖x − y‖X1×X2×...×Xn

. (15)

With a similar method as before, for i = 2, ..., n, we can write

‖Ti (x) − Ti (y)‖Xi
≤ Mimn ‖x − y‖X1×X2×...×Xn

. (16)

Thanks to (15) and (16) yields the following inequality

‖T (x) − T (y)‖X1×X2×...×Xn
≤ Mmn ‖x − y‖X1×X2×...×Xn

. (17)

Consequently by (12), we conclude that T is contractive. As a consequence of Banach
fixed point theorem, we deduce that T has a unique fixed point which is a solution of
(1). �

The second main result is the following theorem:

Theorem 2 Suppose that for all i = 1, 2, ..., n, γi

∫ ηi

0
Ai (s) ds 6= 1 and assume that the

hypotheses (H1)and (H3) are satisfied. Then, the system (1) has at least one solution on

J .

Proof We use Scheafer fixed point theorem to prove that T has at least one fixed point
on X1 × X2 × ...× Xn :

step 1: T is continuous on X1 × X2 × ...× Xn in view of (H1)
step 2: The operator T maps bounded sets into bounded sets in X1 × X2 × ... × Xn.

For σ > 0 we take (x1, ..., xn) ∈ Bσ such that:
Bσ :=

{

(x1, ..., xn) ∈ X1 × X2 × ...× Xn, ‖(x1, ..., xn)‖X1×X2×...×Xn
≤ σ

}

. Then, for each
t ∈ J , we have:

|T1 (x1, ..., xn) (t)| ≤
∫ t

0

(t − τ )
α1−1

Γ (α1)
× sup

0≤τ≤1
|f1 (τ, x1 (τ ) , ..., xn (τ ))| (18)

+
|γ1| sup0≤s≤1 |A1 (s)|
∣

∣1 − γ1

∫ η1

0
A1 (s) ds

∣

∣

∫ η1

0

∫ s

0

(s − τ )
α1−1

Γ (α1)
dτds

× sup
0≤τ≤1

|f1 (τ, x1 (τ ) , ..., xn (τ ))| .

Thanks to (H3), we obtain

|T1 (x1, ..., xn) (t)| ≤ L1

Γ (α1 + 1)
+

L1 |γ1| sup0≤s≤1 |A1 (s)|
∣

∣1 − γ1

∫ η1

0
A1 (s) ds

∣

∣ Γ (α1 + 2)
. (19)

Thus,

|T1 (x1, ..., xn) (t)| ≤ L1M1, t ∈ J. (20)
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Consequently,

‖T1 (x1, ..., xn)‖X1
≤ L1M1. (21)

Similarly, for all i = 2, ..., n, we can write

‖Ti (x1, ..., xn)‖Xi
≤ LiMi. (22)

Consequently, we obtain,

‖T (x1, ..., xn)‖X1×X2×...×Xn
≤ M max{Li}n

i=1 . (23)

Therefore,

‖T (x1, ..., xn)‖X1×X2×...×Xn
< ∞. (24)

Step 3: The equi-continuity of T : Let us take (x1, ..., xn) ∈ Bσ, t1, t2 ∈ J , such that
t1 < t2. We have:

|T1 (x1, ..., xn) (t2) − T1 (x1, ..., xn) (t2)| (25)

≤
∫ t1

0

(t2 − τ )α1−1 − (t1 − τ )α1−1

Γ (α1)
× sup

0≤τ≤1
|f1 (τ, x1 (τ ) , ..., xn (τ ))|

+

∫ t2

t1

(t2 − τ )
α1−1

Γ (α1)
× sup

0≤τ≤1
|f1 (τ, x1 (τ ) , ..., xn (τ ))| .

Thanks to (H3), we can write

|T1 (x1, ..., xn) (t2) − T1 (x1, ..., xn) (t2)| ≤
L1

Γ (α1 + 1)
(tα1

2 − tα1

1 ) . (26)

Thus,

‖T1 (x1, ..., xn) − T1 (x1, ..., xn)‖X1
≤ L1

Γ (α1 + 1)
(tα1

2 − tα1

1 ) . (27)

Analogously, for all i = 2, ..., n, we can write

‖T1 (x1, ..., xn) − T1 (x1, ..., xn)‖Xi
≤ Li

Γ (αi + 1)
(tαi

2 − tαi

1 ) . (28)

And then,

‖T1 (x1, ..., xn) − T1 (x1, ..., xn)‖X1×X2×...×Xn
≤ max

{

Li

Γ (αi + 1)

}n

i=1

(tαi

2 − tαi

1 ) . (29)

This implies that ‖T1 (x1, ..., xn) − T1 (x1, ..., xn)‖X1×X2×...×Xn
→ 0 as t2 → t1:

By Arzela-Ascoli theorem, we conclude that T is a completely continuous operator.

Step 4: We shall prove that the set Ω defined by

Ω = {(x1, ..., xn) ∈ X1 × X2 × ...× Xn, (x1, ..., xn) = λT (x1, ..., xn) , 0 < λ < 1} .
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is bounded. Let (x1, ..., xn) ∈ Ω, then (x1, ..., xn) = λT (x1, ..., xn) , for some 0 < λ < 1.

Thus, for each t ∈ J , we have:

x1 (t) = λT1 (x1, ..., xn) (t)

x2 (t) = λT2 (x1, ..., xn) (t)

.

.

.

xn (t) = λTn (x1, ..., xn) (t) .

Then,

1

λ
|x1 (t)| ≤

∫ t

0

(t − τ )α1−1

Γ (α1)
× sup

0≤τ≤1
|f1 (τ, x1 (τ ) , ..., xn (τ ))| (30)

+
|γ1| sup0≤s≤1 |A1 (s)|
∣

∣1 − γ1

∫ η1

0
A1 (s) ds

∣

∣

∫ η1

0

∫ s

0

(s − τ )
α1−1

Γ (α1)
dτds

× sup
0≤τ≤1

|f1 (τ, x1 (τ ) , ..., xn (τ ))| .

Thanks to (H3), we can write

1

λ
|x1 (t)| ≤ L1

Γ (α1 + 1)
+

L1 |γ1| sup0≤s≤1 |A1 (s)| ηα1+1
1

∣

∣1 − γ1

∫ η1

0
A1 (s) ds

∣

∣Γ (α1 + 2)
. (31)

Therefore,

|x1 (t)| ≤ λL1

[

1

Γ (α1 + 1)
+

|γ1| sup0≤s≤1 |A1 (s)| ηα1+1
1

∣

∣1 − γ1

∫ η1

0 A1 (s) ds
∣

∣Γ (α1 + 2)

]

. (32)

Hence,
|x1 (t)| ≤ λL1M1, t ∈ J. (33)

Thus,
‖x1‖X1

≤ λL1M1. (34)

With the same arguments as before and using (H3 ), we can state that

‖xi‖Xi
≤ λLiMi. (35)

Thanks to (34) and (35), we obtain

‖(x1, x2, ..., xn)‖X1×X2×...×Xn
≤ λmax {LiMi}n

i=1 . (36)

Hence,
‖(x1, x2, ..., xn)‖X1×X2×...×Xn

< ∞.

This shows that Ω is bounded. As consequence of Schaefer’s fixed point theorem, we
deduce that T at least a fixed point, which is a solution of the fractional differential system
(1). �
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4 Example

To illustrate our main results, we present the following examples:

Example 1: Consider the following fractional differential system:























Dα1x1 (t) = e−t sin(x1(t)+x2(t)+x3(t))
16(πt2+1)

+ 2t2 + 1, t ∈ [0, 1] ,

Dα2x2 (t) = |x1(t)|+|x2(t)|+|x3(t)|
(πt+20)(1+|x1(t)|+|x2(t)|+|x3(t)|)

+ et, t ∈ [0, 1] ,

Dα3x3 (t) = sin(x1(t))+sin(x2(t))+sin(x3(t))
(t2+t+20)

+ e−t, t ∈ [0, 1] ,

xi (0) = γi

∫ ηi

0
si

16xi (s) ds, (i = 1, 2, 3) ,

(37)

with αi = 1
2
, ηi = 1

4
, (i = 1, 2, 3) , γ1 = −16, γ2 = −24, γ3 = −64 and Ai (t) = ti

16
, t ∈ [0, 1] .

For (u1, v1, z1), (u2, v2, z2) ∈ R
3, t ∈ [0; 1], we have

f1 (t, u, v, z) =
e−t sin (u + v + z)

16 (πt2 + 1)
+ 2t2 + 1,

f2 (t, u, v, z) =
|u|+ |v| + |z|

(πt + 20) (1 + |u| + |v| + |z|) + et,

f3 (t, u, v, z) =
sin (u) + sin (v) + sin (z)

(t2 + t + 20)
+ e−t,

and

|f1 (t, u2, v2, z2) − f1 (t, u1, v1, z1)| ≤ e−t

16 (πt2 + 1)
(|u2 − u1| |v2 − v1| |z2 − z1|) ,

|f2 (t, u2, v2, z2) − f2 (t, u1, v1, z1)| ≤ 1

(πt + 20)
(|u2 − u1| |v2 − v1| |z2 − z1|) ,

|f2 (t, u2, v2, z2) − f2 (t, u1, v1, z1)| ≤ 1

(t2 + t + 20)
(|u2 − u1| |v2 − v1| |z2 − z1|) ,

So we take m11(t) = m12(t) = m13(t) = e−t

16(πt2+1)
, m21(t) = m22(t) = m23(t) = 1

(πt+20)
,

m31(t) = m32(t) = m33(t) = 1
(t2+t+20) , and then, we obtain m = max{mij}3

i,j=1 = 1
16 . On

the other hand,γi

∫ ηi

0
Ai (s) ds 6= 1, i = 1, 2, 3, and

M1 =
2√
π

+
16

99
√

π
= 1, 219,

M2 =
2√
π

+
32

129
√

π
= 1, 269,

M1 =
2√
π

+
512

771
√

π
= 1, 504.

Hence, we obtain

Mmn = 1, 504× 1

16
× 3 = 0, 282 < 1.
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The conditions of Theorem 6 hold. Therefore, the problem (37) has a unique solution on
[0, 1].

Example 2: Consider the following problem:



















D
1

4 x1 (t) = e−t

2+sin(x1(t))+cos(x2(t)+x3(t))
, t ∈ [0, 1] ,

D
2

5 x2 (t) =
e−2t sin(x1(t))

2+cos(x2(t)+x3(t))
, t ∈ [0, 1] ,

Dα1x3 (t) = e−2t sin (x1 (t)) + cos (x2 (t) + x3 (t)) , t ∈ [0, 1] ,

xi (0) = −
√

2
∫ ηi

0 exp (is) xi (s) ds, (i = 1, 2, 3) ,

(38)

For this example, we have α1 = 1
4 , α2 = 2

5 , α3 = 2
7 , γ1 = γ2 = γ3 = −

√
2 We take

η1 = 4
5 , η2 = η3 = 1

5 , Ai (t) = exp (it) ; (i = 1, 2, 3) , and for (u, v, z) ∈ R
3, t ∈ [0, 1], we have

f1 (t, u, v, z) =
e−t

2 + sin (u) + cos (v + z)
,

f2 (t, u, v, z) =
e−2t sin (u)

2 + cos (v + z)
,

f3 (t, u, v, z) = e−2t sin (u) + cos (v + z) .

It is clear that the conditions of Theorem 7 hold. Then the problem (38) has at least one
solution on [0, 1].
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