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Abstract The purpose of this paper is to show that the operator H (h) = −h2∆x −
∆y+V (x, y), V is continuous (or V ∈ L2

`

R
n

x × R
p

y

´

), and V (x, y) → ∞ as ‖x‖+‖y‖ →
∞, has purely discrete spectrum. We give an application to the harmonic oscillator.
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1 Introduction

The Born-Oppenheimer approximation is a method introduced in [1] to analyze the spec-
trum of molecules. It consists in studying the behavior of the associate Hamiltonian when
the nuclear mass tends to infinity. This Hamiltonian can be written in the form:

H (h) = −h2∆x − ∆y + V (x, y)

where x ∈ Rn represents the position of the nuclei, y ∈ Rp is the position of the electrons,
h is proportional to the inverse of the square-root of the nuclear mass and V (x, y) is the
interaction potential.

In the last decade, many efforts have been made in order to study in the semiclassical
limit the spectrum of H (h) (see e.g. [2–7]). These authors have shown that in many
situations it is still possible to perform, by Grushin’s method, semiclassical constructions
related to the existence of some hidden effective semiclassical operator.

In this paper, we study the semiclassical approximation to the eigenvalues and eigen-
functions of H (h) for potentials V (x, y) with inf‖x‖+‖y‖>R V (x, y) , for some R > 0, in
particular when lim‖x‖+‖y‖→∞ V (x, y) = ∞. Our main result in this sense is to show that
in this case the Hamiltonian H (h) has a purely discrete spectrum. The technique used is

based on the so called locally compact operator. The resolvent RH(h) (z) = (H (h) − z)−1,

Imz 6= 0, of the operator H (h) on L2
(
Rn

x × Rp
y

)
is typically not compact (however, it usu-

ally is on L2 (X), when X ⊂ Rn
x×Rp

y is compact). If RH(h) (z) is compact, then the spectrum

σ
(
RH(h) (z)

)
is discrete with zero the only possible point in the essential spectrum. Hence,

one would expect that H (h) has discrete spectrum with the only possible accumulation
point at infinity (i.e., the essential spectrum σess (H (h)) = ∅). In this way, the spectrum
σ (H (h)) reflects the compactness of RH(h) (z). It turns out that these properties are basi-
cally preserved if, instead of RH(h) (z) being compact, it is compact only when restricted to
any compact subset of Rn

x ×Rp
y. This is the notion of local compactness. From an analysis

of this notion we will see that the discrete spectrum of H (h) is determined by the behavior
of H (h) on bounded subsets of Rn

x ×Rp
y and the essential spectrum of H (h) is determined

by the behavior of V (x, y) in a neighborhood of infinity.
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We introduce a specific family of sequences, called Zhislin sequences, which will allow
us to characterize the cress of locally compact, self-adjoint operators, representing Weyl
sequences for a self-adjoint operator.

We finish our work by an application to calculate the spectrum of the harmonic oscillator
of semiclassical Schrödinger operator and of the Hamiltonian in the Born-Oppenheimer
approximation H (h) .

2 Preliminaries

Let’s recall some basic definitions on the spectrum of unbounded operator on Hilbert space.

Definition 1 Let A be a linear operator on a Hilbert space X with domain D (A) ⊂ X.

(i) The spectrum of A, σ (A), is the set of all points λ ∈ C for which A −λ (A −λI, I is
the identity) is not invertible.

(ii) The resolvent set of A, ρ (A), is the set of all points λ ∈ C for which A −λ is invertible.

(iii) If λ ∈ ρ (A), then the inverse of A− λ is called the resolvent of A at λ and is written

as Rλ (A) = (A− λ)
−1
.

Let us note that by definition, ρ (A) = C\σ (A) . We can classify σ (A) as below:

Definition 2 Let A be a linear operator on a Hilbert space X with domain D (A) ⊂ X.

(i) If λ ∈ σ (A) is such that ker(A − λ) 6= {0}, then λ is an eigenvalue of A and any
u ∈ ker(A − λ), u 6= 0, is an eigenvector of A for λ and satisfies Au = λu. More-
over, dimker(A− λ) is called the (geometric) multiplicity of λ and ker(A− λ) is the
(geometric) eigenspace of A at λ.

(ii) The discrete spectrum of A, σdisc(A), is the set of all eigenvalues of A with finite
(algebraic) multiplicity and which are isolated points of σ(A).

(iii) The essential spectrum ofA is defined as the complement of σdisc(A) in σ(A): σess(A) =
σ(A)\ σdisc(A).

Let h ∈ ]0, h0] , h0 > 0, a small semiclassical parameter.

Theorem 1 The spectrum of the self-adjoint operator −h2∆x− ∆y on H2
(
Rn

x × Rp
y

)
is

σ
(
−h2∆x − ∆y

)
= σess

(
−h2∆x − ∆y

)
= [0,+∞[ , for all h ∈ ]0, h0] .
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Proof The proof is similar as in [8, 9]. 2

Let V ∈ L2
loc

(
Rn

x × Rp
y

)
and be real. We define H (h) = −h2∆x − ∆y + V (x, y) on

D
(
−h2∆x − ∆y

)
∩D (V ) , where D

(
−h2∆x − ∆y

)
= H2

(
Rn

x × Rp
y

)
and :

D (V ) =

{
ϕ ∈ L2

(
Rn

x × Rp
y

)
;

∫
|V ϕ|2 dxdy < +∞

}
.

Note that C∞
0

(
Rn

x × Rp
y

)
⊂ D (H (h)) , so H (h) is densely defined. The Hamiltonian in the

Born-Oppenheimer approximation is symmetric on this domain:

〈H (h)ϕ, ψ〉L2(Rn

x
×R

p

y) = 〈ϕ,H (h)ψ〉L2(Rn

x
×R

p

y) , ∀ϕ, ψ ∈ C∞
0

(
Rn

x × Rp
y

)
, ∀h ∈ ]0, h0] .

Hence, we have that D (H (h)) ⊂ D (H∗ (h)) . Moreover, if V ≥ 0, then H (h) ≥ 0 as

〈H (h)ϕ, ϕ〉L2(Rn
x
×R

p

y) = ‖h∇xϕ‖2 + ‖∇yϕ‖2 + 〈V ϕ, ϕ〉L2(Rn
x
×R

p

y) ≥ 0

for any ϕ ∈ D (H) , ∀h ∈ ]0, h0] .

Theorem 2 Let V ∈ L2
loc

(
Rn

x × Rp
y

)
and V ≥ 0. Then the operator H (h) is essentially

self-adjoint on C∞
0

(
Rn

x × Rp
y

)
, for all h ∈ ]0, h0].

Proof See [8, Theorem 7.6, page 73 ], [9]. 2

3 Locally Compact Operators and Their Application to the Born-

Oppenheimer Operator

Definition 3 Let A be a closed operator on L2(Rn) with ρ(A) 6= ∅, let χB be the charac-
teristic function for a set B ⊂ Rn. Then A is locally compact if for each bounded set B,
χB (A− λ)

−1
is compact for some (and hence all) λ ∈ ρ(A).

Example 1 ∆ is locally compact on L2(R3). Note that χB (1 − ∆)
−1

has kernel

χB (x) [4π ‖x− y‖]−1
e−‖x−y‖,

which belong to L2(R3×R3). By Hilbert-Schmidt theorem [8–10], χB (1 − ∆)
−1

is compact.
We mention that the same compactness result holds in n dimension (see [9]).

Example 2 (−∆)
1

2 , the positive square root of (−∆) ≥ 0 is locally compact. Indeed,

note that it suffices to show that A∗ = χB

(
i + (−∆)

1

2

)−1

is compact. As A =
(
− i +

(−∆)
1

2

)−1

χB, we have

A∗A = χB (1 − ∆)
−1
χB ,

and by (1) above, A∗A is compact. Now we claim that this implies that A is compact, for

if un
w→ 0 (weakly convergence),

‖Aun‖2
= 〈un, A

∗Aun〉 ≤ ‖un‖ ‖A∗Aun‖ ,

and as the sequence (un)n is uniformly bounded and A∗Aun
s→ 0 (strongly convergence),

we have Aun
s→ 0. Hence, A is compact.
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We now show that certain classes of Hamiltonian operators H (h) = −h2∆x − ∆y +
V (x, y) are locally compact.

Theorem 3 Let V be continuous (or V ∈ L2
loc

(
Rn

x × Rp
y

)
), V ≥ 0, and V → +∞ as

‖x‖ + ‖y‖ → ∞. Then H (h) = −h2∆x − ∆y + V (x, y) is locally compact, for every
h ∈ ]0, h0] .

Proof Note that H (h) is self-adjoint by the Kato inequality [11], and H (h) ≥ 0, ∀h ∈
]0, h0] . We first make the following claim:(
−h2∆x − ∆y

)1/2
isH1/2 (h)-bounded and

(
−h2∆x − ∆y + 1

)1/2
is (H (h) + 1)

1/2
-bounded.

Indeed, since −h2∆x − ∆y ≥ 0 and H (h) ≥ 0, all the operators
(
−h2∆x − ∆y

)1/2
,

H1/2 (h) and (H (h) + 1)1/2 are well defined. We have a simple estimate for any u ∈
C∞

0

(
Rn

x × Rp
y

)
,

∥∥∥
(
−h2∆x − ∆y

) 1

2 u
∥∥∥

2

=
〈
u,

(
−h2∆x − ∆y

)
u
〉
≤ 〈u,H (h)u〉 ≤ 〈u, (H (h) + 1)u〉

≤ ‖(H (h) + 1)u‖2
. (1)

This estimate extends to all u ∈ D
(
H1/2 (h)

)
. Consequently, equation (1) shows that

(
−h2∆x − ∆y

) 1

2 is H1/2 (h)-bounded. Also, as we have

〈u,H (h)u〉 ≤
∥∥∥H1/2 (h)u

∥∥∥
2

,

which follows from the Schwarz inequality, it follows from this and the third term of (1)that(
−h2∆x − ∆y

) 1

2 is H1/2 (h) -bounded.

We have

χB (1 +H (h))
−1/2

=

χB (1 +H (h))
−1

(
1 +

(
−h2∆x − ∆y

)1/2
)−1 (

1 +
(
−h2∆x − ∆y

)1/2
)

(1 +H (h))
−1/2

(2)

and by Example 2, the first factor on the right in (2) is compact, the second is bounded,

and so χB (1 +H)−1/2 is compact. To prove the theorem, simply write

χB (1 +H (h))
−1

= χB (1 +H (h))
− 1

2 (1 +H (h))
− 1

2 ,

and observe that the right side is a product of a compact and a bounded operator and is
hence compact. 2

3.1 Spectral Properties of Locally Compact Operators

A specific family of sequences, called Zhislin sequences [12], which will allow us to charac-
terize the essential spectrum σess of locally compact, self-adjoint operators.



Semiclassical Analysis for Hamiltonian in the Born-Oppenheimer Approximation 139

Definition 4 Let Bk = {x ∈ Rn : ‖x‖ ≤ k, k ∈ N} . A sequence (un)n is a Zhislin for a
closed operator A and λ ∈ C if un ∈ D(A),

‖un‖ = 1, suppun ⊂ {x; x ∈ Rn�Bn} and ‖(A− λ)un‖ → 0 as n → ∞.

By Weyl’s criterion [9], it is clear that if A is self-adjoint and there exists a Zhislin
sequence for A and λ, then λ ∈ σess (A).

Definition 5 Let A be a closed operator. The set of all λ ∈ C such that there exists a
Zhislin sequence for A and λ is called the Zhislin spectrum of A, which we denote by Z (A) .

Notation 1 The commutator of two linear operators A and B is defined formally by [A,B]
= AB − BA.

Let B(x, R) denote the ball of radius R centered at the point x. Our main theorem
states that the essential spectrum is equal to the Zhislin spectrum of a self-adjoint, locally
compact operator that is also local in the sense of (3) ahead.

Theorem 4 Let A be a self-adjoint and locally compact operator on L2 (Rn). Suppose that
A also satisfies ∥∥∥[A, φn (x)] (A − i)

−1
∥∥∥ → 0, as n→ ∞ (3)

where φn (x) = φ (x/n) for some φ ∈ C∞
0 (Rn) , suppφ ⊂ B (0, 2) , φ ≥ 0 and φ|B(0,1) = 1.

Then σess (A) = Z (A).

Proof

(i) It is immediate that Z(A) ⊂ σess (A), by Weyl’s criterion. To prove the converse,
suppose λ ∈ σess (A). Then there exists a Weyl sequence (un)n forA and λ : ‖un‖ = 1,

un
w→ 0 and ‖(A − λ) un‖ → 0. Let φn be as in the statement of the theorem, and let

φn = 1 − φn. We first observe that (i− A)un
w→ 0, because

(i− A)un = (λ− A)un + (i− λ) un (4)

and the first term goes strongly to zero whereas the second goes weakly to zero. Next,
note that by local compactness, for any fixed n, φnum

w→ 0 as m → ∞. This can be
seen by writing

φnum = φn (i−A)
−1

(i−A)um, (5)

and noting that by (4), (i− A)um
w→ 0 and φn (i−A)

−1
is compact. Consequently,

‖φnum‖ → 0 and
∥∥φnum

∥∥ → 1 for any fixed n as m→ ∞.

(ii) We want to construct a Zhislin sequence from φnum. To this end, it remains to consider

∥∥(λ− A)φnum

∥∥ ≤
∥∥φn

∥∥ ‖(λ −A)um‖ + ‖[A, φn] um‖ . (6)

The commutator term is analyzed using (4):

‖[A, φn] um‖ ≤
∥∥∥[A, φn] (i−A)

−1
∥∥∥ (‖(λ− A)um‖ + |i− λ|) ,
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since ‖um‖ = 1. This converges to zero as n → ∞ uniformly inm because the sequence
((λ −A)um)m is uniformly bounded, say by M , so

‖[A, φn] um‖ ≤
∥∥∥[A, φn] (i−A)

−1
∥∥∥ (M + |i− λ|) → 0, as n→ ∞.

(iii) To construct the sequence, it follows from (6) that for each k there exists n (k) and
m (k) such that n (k) → ∞ and m (k) → ∞ as k → ∞, and

∥∥∥φn(k)um(k)

∥∥∥ ≥ 1 − k−1 (7)

and ∥∥∥(λ− A)φn(k)um(k)

∥∥∥ ≤ k−1, (8)

as k → ∞. We define vk = φn(k)um(k)

∥∥∥φn(k)um(k)

∥∥∥
−1

. It then follows that (vk)k is a

Zhislin sequence for A and λ by (7)-(8) and the fact that suppvk ⊂ Rn\B2k. Hence,
λ ∈ Z(A) and σess (A) ⊂ Z(A). 2

We will now apply these ideas to compute σess (H (h)) of the locally compact Hamilto-
nian in the Born-Oppenheimer approximation operators H (h) = −h2∆x − ∆y + V (x, y).

Theorem 5 Assume that V ≥ 0, V is continuous (or V ∈ L2
(
Rn

x × Rp
y

)
), and V (x, y) →

∞ as ‖x‖ + ‖y‖ → ∞. Then H = −h2∆x − ∆y + V (x, y) has purely discrete spectrum.

Proof By Theorem 3, the self-adjoint operator H is locally compact. Suppose that h = 1,
and H (1) = H for simplification. Let φq (X) be as in Theorem 4, with q = n + m and
X = (x, y). We must verify (3). A simple calculation gives

[H, φq] =
2

q
φ′

q∇X − 1

q2
φ′′

q , (9)

where φ′
q and φ′′

q are uniformly bounded in q. For any u ∈ D (H) , it follows as in (1) that

‖∇Xu‖2 ≤ 〈u,−∇Xu〉 ≤ 〈u, (H + 1)u〉 ,

by the positivity of V. Taking u = (H + 1)
−1
v for any v ∈ L2(Rn

x × Rp
y), it follows that

∇X (H + 1)
−1

and, consequently, ∇X (H − i)
−1

are bounded. This result and (9) verify
(3).

Hence, it follows by Theorem 4 that Z (H) = σess (H). We show that Z (H) = {∞}.
If λ ∈ Z (H), then there exists a Zhislin sequence (uq)q for H and λ. By the Schwarz
inequality, we compute a lower bound,

‖(λ−H)uq‖ ≥ |〈uq , (λ −H)uq〉| ≥ ‖∇Xu‖2 + 〈uq, V uq〉 − |λ|

≥
[

inf V (x, y)
(x,y)∈Rn

x
×R

p

y\B(0,q)

]
− λ. (10)

As q → ∞, the left side of (10) converges to zero whereas the right side diverges to +∞
unless λ = +∞. Then σess (H) = {∞}, that is, it is empty. 2
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4 Application to the Harmonic Oscillator

The semiclassical Schrödinger operator is P (h) = −h2∆ + V on L2(Rn). We treat h as an
adjustable parameter of the theory. We will study the semiclassical approximation to the
eigenvalues and eigenfunctions of P (h) = −h2∆+V for potentials V with in particular when
lim‖x‖→∞ V (x) = ∞. Because the small parameter h appears in front of the differential
operator −∆, it may not be clear what is happening as h is taken to be small. It is more
convenient, and perhaps more illuminating, to change the scaling. Letting λ = 1/h, we
rewrite the Schrödinger operator as

P (λ) = −∆ + λ2V = h−2P (h) ,

looking at P (λ), we see that the semiclassical approximation involves λ→ ∞.

Definition 6 Let A be a real n×n matrix, A is a positive definite matrix if 〈Ax.x〉
Rn > 0,

for all x ∈ Rn.

Definition 7 Let A be a symmetric, positive definite matrix. The Schrödinger operator of
type:

K (λ) = −∆ + λ2 〈Ax, x〉
Rn (11)

is said to be the harmonic oscillator.

Here 〈x, Ax〉
Rn =

n∑
i,j=1

aijxixj is the Euclidean quadratic form which is bounded from

below by
〈Ax, x〉

Rn ≥ λmin ‖x‖2
,

where λmin is the smallest eigenvalue of A and is strictly positive.
We see that K (λ) is positive with a lower bound strictly greater than zero. Since the

harmonic oscillator is continuous and Vhar (x) = 〈x, Ax〉
Rn → ∞, as ‖x‖ → ∞, the harmonic

oscillator Hamiltonian (11) is self-adjoint. Moreover, the spectrum of K (λ), σ (K (λ)), is
purely discrete by Theorem 5.

We would like to find out how the eigenvalues of K (λ) depend on the parameter λ.

Definition 8 Two operators A and B, with D(A) = D(B) = D, are called similar if there
exists a bounded, invertible operator C such that CD ⊂ D and A = CBC−1.

Proposition 1 If A and B are similar, then σ(A) = σ(B).

Proof It suffices to show that

µ ∈ ρ (A) ⇐⇒ µ ∈ ρ (B)

where ρ (A) := C\σ(A) is the resolvent set. This comes from

A− λI = C (B − λI)C−1. 2
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Definition 9 For θ ∈ R+, we define, the so-called dilation group, is a map on any ψ ∈
C∞

0 (Rn) by
Uθψ (x) = θn/2ψ (θx) .

Lemma 1 The dilation Uθ is a unitary on L2 (Rn) → L2 (Rn), and

(Uθ)
∗

= (Uθ)
−1

= Uθ−1 .

We have also, for θ, θ′ ∈ R+,
UθUθ′ = Uθ+θ′ .

Proof The proof is straightforward and is omitted. 2

We now claim that U
λ−

1

2

implements a similarity transformation on K (λ) by

U
λ−

1

2

K (λ)U−1

λ
−

1

2

= λK (12)

where
K = −∆ + 〈Ax, x〉

Rn (13)

Now we compute the spectrum of the harmonic oscillator K.

Proposition 2 The eigenvalues of K are given by

σ (K) =

{
n∑

i=1

(2ni + 1)wi; ni ∈ Z+ ∪ {0}
}
,

where
{
w2

i

}n

i=1
are the eigenvalues of the matrix A.

Proof The proof is by induction on the dimension n ∈ N∗.
For n = 1, the Hermite polynomials Hp are defined by

(
d

dx

)2 (
e−x2

)
= (−1)

p Hpe
−x2

.

We recall that they satisfy the relations

H0 = 1 and Hp+1 =

(
− d

dx
+ 2x

)
Hp, p ≥ 0.

Hermite functions Ψn are defined by

Ψp = CpHpe
−x2/2, where Cp =

(√
π2pp!

)−1/2
.

For p ≥ 1, we have (
d

dx
+ x

)
Ψ0 = 0 (14)

and (
− d

dx
+ x

)
Ψp =

√
2 (p+ 1)Ψp+1. (15)
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Now, if H is the harmonic oscillator in one dimension

H = −
(
d

dx

)2

+ x2,

it follows from (14) and (15) that

HΨp = (2p+ 1)Ψp. 2

Corollary 1 As a consequence of Proposition 1 and (12), σ (K (λ)) = λσ (K), where σ (K)
is independent of λ. Hence the eigenvalues of K (λ) depend linearly on λ. Moreover, the
multiplicities of the related eigenvalues are the same. Now

σ (K (λ)) =

{
n∑

i=1

(2ni + 1)λwi; ni ∈ Z+ ∪ {0}
}

where
{
w2

i

}n

i=1
are the eigenvalues of the matrix A. The eigenfunctions are related through

the unitary operator U
λ−

1

2

. If Ψp are the eigenfunctions of K, then Ψ̃p = U
λ−

1

2

Ψp are the

eigenfunctions of K (λ) .

5 Conclusion

The semiclassical harmonic oscillator P (h) = −h2∆ + 〈Ax, x〉
Rn has purely discrete spec-

trum

σ (P (h)) = {hej , j ∈ Z+ ∪ {0}}

where ej ∈ σ (K) .

In general, we can give the spectrum the harmonic oscillator in the Born-Oppenheimer
Approximation

H (h) = −h2∆x − ∆y + 〈Ax, x〉
Rn

x

+ 〈By, y〉
R

p

x

on L2
(
Rn

x × Rp
y

)

where A and B are two symmetric, positive definite matrix. Hence,

σ (H (h)) = σdisc (H (h)) =

{
n∑

i=1

(2ni + 1)hwi +

p∑

i=1

(2ni + 1)µi, ni ∈ Z+ ∪ {0}
}

where
{
w2

i

}n

i=1
and

{
µ2

i

}p

i=1
are respectively the eigenvalues of the matrix A and B.
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