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1 Introduction and Preliminaries

A metric space X is a CAT(0) space if it is geodesically connected and if every geodesic
triangle in X is at least as ’thin’ as its comparison triangle in the Euclidean plane. It is
well known that any complete, simply connected Riemannian manifold having non-positive
sectional curvature is a CAT(0) space. Other examples include Pre-Hilbert spaces (see [1]),
R-trees (see [2]), Euclidean buildings (see [3]), the complex Hilbert ball with a hyperbolic
metric (see [4]), and many others. For a thorough discussion of these spaces and of the
fundamental role they play in geometry, we refer the reader to Bridson and Haefliger [1].

Fixed point theory in a CAT(0) space was first studied by Kirk (see [5, 6]). He showed
that every nonexpansive (single-valued) mapping defined on a bounded closed convex subset
of a complete CAT(0) space always has a fixed point. Since, then the fixed point theory for
single-valued and multi-valued mappings in CAT(0) spaces has been rapidly developed, and
many papers have appeared (see, e.g. [7–19] and references therein). It is worth mentioning
that the results in CAT(0) spaces can be applied to any CAT(k) space with k ≤ 0 since any
CAT(k) space is a CAT(k′) space for every k′ ≥ k (see,e.g., [1]).

Let (X, d) be a metric space. A geodesic path joining x ∈ X to y ∈ X (or, more briefly,
a geodesic from x to y) is a map c from a closed interval [0, l] ⊂ R to X such that c(0) = x,
c(l) = y and d(c(t), c(t′)) = |t − t′| for all t, t′ ∈ [0, l]. In particular, c is an isometry and
d(x, y) = l. The image α of c is called a geodesic (or metric) segment joining x and y.
We say X is (i) a geodesic space if any two points of X are joined by a geodesic and (ii) a
uniquely geodesic if there is exactly one geodesic joining x and y for each x, y ∈ X, which
we will denoted by [x, y], called the segment joining x to y.

A geodesic triangle 4(x1, x2, x3) in a geodesic metric space (X, d) consists of three
points in X (the vertices of 4) and a geodesic segment between each pair of vertices (the
edges of 4). A comparison triangle for geodesic triangle 4(x1, x2, x3) in (X, d) is a triangle
4(x1, x2, x3) := 4(x1, x2, x3) in Euclidean plane R

2 such that dR2(xi, xj) = d(xi, xj) for
i, j ∈ {1, 2, 3}. Such a triangle always exists (see [1]).
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2 CAT(0) Space

A geodesic metric space is said to be a CAT (0) space if all geodesic triangles of appropriate
size satisfy the following comparison axiom.

Let 4 be a geodesic triangle in X and let 4 ⊂ R
2 be a comparison triangle for 4. Then

4 is said to satisfy the CAT (0) inequality if for all x, y ∈ 4 and all comparison points
x, y ∈ 4,

d(x, y) ≤ dR2(x, y). (1)

Complete CAT (0) spaces are often called Hadamard spaces (see [20]). If x, y1, y2 are points
of a CAT (0) space and y0 is the midpoint of the segment [y1, y2] which we will denote by
(y1 ⊕ y2)/2, then the CAT (0) inequality implies

d2
(

x,
y1 ⊕ y2

2

)

≤
1

2
d2(x, y1) +

1

2
d2(x, y2) −

1

4
d2(y1, y2). (2)

The inequality (2) is the (CN) inequality of Bruhat and Tits [21]. The above inequality
has been extended in [10] as

d2(z, αx⊕ (1 − α)y) ≤ αd2(z, x) + (1 − α)d2(z, y)

−α(1 − α)d2(x, y) (3)

for any α ∈ [0, 1] and x, y, z ∈ X.
Let us recall that a geodesic metric space is a CAT (0) space if and only if it satisfies the

(CN) inequality (see [1, page 163]). Moreover, if X is a CAT (0) metric space and x, y ∈ X,
then for any α ∈ [0, 1], there exists a unique point αx ⊕ (1 − α)y ∈ [x, y] such that

d(z, αx⊕ (1 − α)y) ≤ αd(z, x) + (1 − α)d(z, y), (4)

for any z ∈ X and [x, y] = {αx⊕ (1 − α)y : α ∈ [0, 1]}.
A subset C of a CAT (0) space X is convex if for any x, y ∈ C, we have [x, y] ⊂ C.
Let T be a self map on a nonempty subset C of X. Denote the set of fixed points of T

by F (T ) = {x ∈ C : T (x) = x}. We say that T is said to be:
(1) asymptotically nonexpansive if there exists a sequence {rn} ⊂ [0,∞) with limn→∞ rn =

0 such that

d(Tnx, Tny) ≤ (1 + rn)d(x, y), (5)

for all x, y ∈ C and n ≥ 1;
(2) asymptotically quasi-nonexpansive if F (T ) 6= ∅ and there exists a sequence {rn} ⊂

[0,∞) with limn→∞ rn = 0 such that

d(Tnx, p) ≤ (1 + rn)d(x, p), (6)

for all x ∈ C, p ∈ F (T ) and n ≥ 1;
(3) uniformly L-Lipschitzian if there exists a constant L > 0 such that

d(Tnx, Tny) ≤ L d(x, y), (7)

for all x, y ∈ C and n ≥ 1;
(4) semi-compact if for any bounded sequence {xn} in C with d(xn, Txn) → 0 as n → ∞,

there is a convergent subsequence of {xn}.
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Remark 1 From the above definitions, it is clear that the classes of quasi-nonexpansive
mappings and asymptotically nonexpansive mappings include nonexpansive mappings when
their fixed point sets are nonempty, whereas the class of asymptotically quasi-nonexpansive
mapping is larger than that of quasi-nonexpansive mappings and asymptotically nonexpan-
sive mappings when their fixed point sets are nonempty. The reverse of these implications
may not be true as the following examples show:

Example 1 Let E = [−π, π] and let T be defined by

Tx = x cosx

for each x ∈ E. Clearly F (T ) = {0}. T is a quasi-nonexpansive mapping since if x ∈ E and
z = 0, then

|Tx − z| = |Tx − 0| = |x||cos x| ≤ |x| = |x− z|,

and hence T is an asymptotically quasi-nonexpansive mapping with constant sequences
{kn} = {1}. But it is not a nonexpansive mapping and hence asymptotically nonexpansive
mapping. In fact, if we take x = π

2 and y = π, then

|Tx− Ty| =
∣

∣

∣

π

2
cos

π

2
− π cosπ

∣

∣

∣
= π,

whereas
|x − y| =

∣

∣

∣

π

2
− π

∣

∣

∣
=

π

2
.

Example 2 Let E = R and let T be defined by

T (x) =

{

x
2 cos 1

x
, if x 6= 0,

0, if x = 0.

If x 6= 0 and Tx = x, then x = x
2 cos 1

x
. Thus 2 = cos 1

x
. This is not hold. T is a

quasi-nonexpansive mapping since if x ∈ E and z = 0, then

|Tx− z| = |Tx− 0| =
∣

∣

∣

x

2

∣

∣

∣

∣

∣

∣
cos

1

x

∣

∣

∣
≤

|x|

2
< |x| = |x − z|,

and hence T is an asymptotically quasi-nonexpansive mapping with constant sequences
{kn} = {1}. But it is not a nonexpansive mapping and hence asymptotically nonexpansive
mapping. In fact, if we take x = 2

3π
and y = 1

π
, then

|Tx − Ty| =
∣

∣

∣

1

3π
cos

3π

2
−

1

2π
cosπ

∣

∣

∣
=

1

2π
,

whereas

|x− y| =
∣

∣

∣

2

3π
−

1

π

∣

∣

∣
=

1

3π
.

In 2002, Xu and Noor [22] introduced a three-step iterative scheme as follows:


















x0 ∈ C,

xn+1 = (1 − αn)xn + αnTnyn,

yn = (1 − βn)xn + βnTnzn,

zn = (1 − γn)xn + γnTnxn, n ≥ 0
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where {αn}, {βn} and {γn} are real sequences in [0, 1].

Recently, Y. Niwongsa and B. Panyanak [23] studied the Noor iteration scheme in
CAT(0) spaces and they proved some 4 and strong convergence theorems for asymptotically
nonexpansive mappings which extend and improve some recent results from the literature.

The aim of this paper is to study a three-step iterative scheme for four asymptotically
quasi-nonexpansive mapping in the setting of CAT (0) spaces. Also we establish some strong
convergence theorems for said scheme and mappings. Our results extend the corresponding
results of [23] and many others.

We need the following useful lemma to prove our convergence results.

Lemma 1 (See [24]) Let {pn}, {qn}, {rn} be three sequences of nonnegative real numbers
satisfying the following conditions:

pn+1 ≤ (1 + qn)pn + rn, n ≥ 0,

∞
∑

n=0

qn < ∞,

∞
∑

n=0

rn < ∞.

Then

(1) limn→∞ pn exists.

(2) In addition, if lim infn→∞ pn = 0, then limn→∞ pn = 0.

3 Strong Convergence Theorems in CAT(0) Space

We establish some convergence results of a three-step iteration scheme to a common fixed
point for four asymptotically quasi-nonexpansive self mappings in the framework of CAT(0)
spaces.

Theorem 1 Let X be a complete CAT(0) space and let C be a nonempty closed convex
subset of X. Let R, S, T, U : C → C be four asymptotically quasi-nonexpansive mappings
with sequence {kn} ⊂ [1,∞) such that

∑

∞

n=1(kn−1) < ∞. Suppose that F = F (R)∩F (S)∩
F (T )∩ F (U) is closed. Let {xn} be the three-step iteration process defined as : For a given
x1 ∈ C, define











zn = γnRnxn ⊕ (1 − γn)Unxn,

yn = βnTnzn ⊕ (1 − βn)Rnxn,

xn+1 = αnSnyn ⊕ (1 − αn)Rnxn, n ≥ 1,

(8)

where {αn}, {βn}, {γn} be real sequences in [0,1]. Then {xn} converges strongly to a
common fixed point p of the mappings R, S, T and U if and only if lim infn→∞ d(xn, F ) = 0,
where d(x, F ) = infp∈F {d(x, p)}.
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Proof The necessity is obvious and so it is omitted. Now, we prove the sufficiency. For
any p ∈ F , from (8), we have

d(zn, p) = d(γnRnxn ⊕ (1 − γn)Unxn, p)

≤ γnd(Rnxn, p) + (1 − γn)d(Unxn, p)

≤ γnknd(xn, p) + (1 − γn)knd(xn, p)

≤ knd(xn, p) (9)

again from (8) and using (9), we have

d(yn, p) = d(βnTnzn ⊕ (1 − βn)Rnxn, p)

≤ βnd(Tnzn, p) + (1 − βn)d(Rnxn, p)

≤ βnknd(zn, p) + (1 − βn)knd(xn, p)

≤ βnkn[knd(xn, p)] + (1 − βn)k2
nd(xn, p)

≤ k2
nd(xn, p) (10)

again using (8) and (10), we obtain

d(xn+1, p) = d(αnSnyn ⊕ (1 − αn)Rnxn, p)

≤ αnd(Snyn, p) + (1 − αn)d(Rnxn, p)

≤ αnknd(yn, p) + (1 − αn)knd(xn, p)

≤ αnkn[k2
nd(xn, p)] + (1 − αn)k3

nd(xn, p)

≤ k3
nd(xn, p)

= [1 + θn]d(xn, p) (11)

where θn = (k3
n − 1) = (kn − 1)(k2

n + kn + 1), since by hypothesis,
∑

∞

n=1(kn − 1) < ∞,
it follows that

∑

∞

n=1 θn < ∞, from Lemma 1, we know that limn→∞ d(xn, p) exists. Also
from (11), we have

d(xn+1, F ) ≤ (1 + θn)d(xn, F ), (12)

since
∑

∞

n=1 θn < ∞, from Lemma 1, we know that limn→∞ d(xn, F ) exists.

Now, we prove that {xn} converges strongly to a common fixed point of the mappings
R, S, T and U if and only if lim infn→∞ d(xn, F ) = 0.

If xn → p ∈ F , then limn→∞ d(xn, p) = 0. Since 0 ≤ d(xn, F ) ≤ d(xn, p), we have
lim infn→∞ d(xn, F ) = 0.

Conversely, suppose that lim infn→∞ d(xn, F ) = 0. Since limn→∞ d(xn, F ) exists, by
hypothesis lim infn→∞ d(xn, F ) = 0, we conclude that limn→∞ d(xn,
F ) = 0. Next, we show that {xn} is a Cauchy sequence.

Since 1 + x ≤ ex for x ≥ 0, from (11), we obtain

d(xn+1, p) ≤ {eθn}d(xn, p). (13)
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Hence for any positive integers m, n and from (13) with
∑

∞

n=1 θn < ∞, we have

d(xn+m, p) ≤
{

eθn+m−1

}

d(xn+m−1, p)

≤
{

eθn+m−1

}[

eθn+m−2d(xn+m−2, p)
]

≤
{

e(θn+m−1+θn+m−2)
}

d(xn+m−2, p)

≤ . . .

≤ . . .

≤
{

e
Pn+m−1

k=n
θk

}

d(xn, p). (14)

Let K = e
Pn+m−1

k=n
θk . Then 0 < K < ∞ and

d(xn+m, p) ≤ Kd(xn, p), (15)

for the natural numbers m, n and p ∈ F . Since limn→∞ d(xn, F ) = 0, therefore for any
ε > 0, there exists a natural number n0 such that d(xn, F ) < ε/2K for all n ≥ n0. So, we
can find p∗ ∈ F such that d(xn0

, p∗) < ε/2K. Hence, for all n ≥ n0 and m ≥ 1, we have

d(xn+m, xn) ≤ d(xn+m, p∗) + d(xn, p∗)

≤ Kd(xn0
, p∗) + Kd(xn0

, p∗)

= 2Kd(xn0
, p∗)

< 2K.
ε

2K
= ε. (16)

This proves that {xn} is a Cauchy sequence. Thus, the completeness of X implies that
{xn} must be convergent. Assume that limn→∞ xn = z. Since C is closed, therefore z ∈ C.
Next, we show that z ∈ F . Now, the following two inequalities:

d(z, p) ≤ d(z, xn) + d(xn, p) ∀p ∈ F, n ≥ 1,

(17)

d(z, xn) ≤ d(z, p) + d(xn, p) ∀p ∈ F, n ≥ 1

give that

−d(z, xn) ≤ d(z, F )− d(xn, F ) ≤ d(z, xn), n ≥ 1. (18)

That is,

|d(z, F )− d(xn, F )| ≤ d(z, xn), n ≥ 1. (19)

As limn→∞ xn = z and limn→∞ d(xn, F ) = 0, we conclude that z ∈ F . This completes the
proof. 2

We deduce some results from Theorem 1 as follows.

Corollary 1 Let X be a complete CAT(0) space and let C be a nonempty closed convex
subset of X. Let R, S, T, U : C → C be four asymptotically quasi-nonexpansive mappings
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with sequence {kn} ⊂ [1,∞) such that
∑

∞

n=1(kn − 1) < ∞. Suppose that F = F (R) ∩
F (S) ∩ F (T ) ∩ F (U) is closed. Let {xn} be the three-step iteration process defined as by
(8). Then {xn} converges strongly to a common fixed point p of the mappings R, S, T and
U if and only if there exists some subsequence {xnj

} of {xn} which converges to p ∈ F .

Corollary 2 Let X be a Banach space, and let C be a nonempty closed convex subset of X.
Let R, S, T, U : C → C be four asymptotically quasi-nonexpansive mappings with sequence
{kn} ⊂ [1,∞) such that

∑

∞

n=1(kn−1) < ∞. Suppose that F = F (R)∩F (S)∩F (T )∩F (U)
is closed. Let {xn} be the three-step iteration process defined as by (8). Then {xn}
converges strongly to a common fixed point p of the mappings R, S, T and U if and only
if lim infn→∞ d(xn, F ) = 0, where d(x, F ) = infp∈F {d(x, p)}.

Proof The proof of Corollary 2 immediately follows by taking λx⊕(1−λ)y = λx+(1−λ)y
in Corollary 1. This completes the proof. 2

Lemma 2 Let X be a complete CAT(0) space and let C be a nonempty closed convex
subset of X. Let R, S, T, U : C → C be four uniformly 1-Lipschitzian asymptotically
quasi-nonexpansive mappings with sequence {kn} ⊂ [1,∞) such that

∑

∞

n=1(kn − 1) < ∞.
Let {xn} be the three-step iteration process defined as by (8). Let {αn}, {βn} and {γn} be
the real sequences in [δ, 1− δ] for some δ ∈ (0, 1). If F = F (R)∩ F (S) ∩ F (T )∩ F (U) 6= ∅,

d(x, Sy) ≤ d(Rx, Sy), ∀x, y ∈ C (20)

and

d(x, Rx) ≤ d(Ux, Rx), ∀x ∈ C. (21)

Then
lim

n→∞

d(Rxn, xn) = lim
n→∞

d(Sxn, xn) = lim
n→∞

d(Txn, xn)

= lim
n→∞

d(Uxn, xn) = 0.

Proof Let p ∈ F . Then, by Theorem 1, we have limn→∞ d(xn, p) exists. Let limn→∞ d(xn, p)
= a. If a = 0, then by the continuity of T the conclusion follows. Now suppose a > 0.
Since {xn} is bounded, there exists R > 0 such that {xn} {yn}, {zn} ⊂ BR(p) for all n ≥ 1.
Using (3) and (8), we have

d2(zn, p) = d2(γnRnxn ⊕ (1 − γn)Unxn, p)

≤ γnd2(Rnxn, p) + (1 − γn)d2(Unxn, p)

−γn(1 − γn)d(Rnxn, Unxn)

≤ γnk2
nd2(xn, p) + (1 − γn)k2

nd2(xn, p)

−γn(1 − γn)d(Rnxn, Unxn)

≤ k2
nd2(xn, p) − γn(1 − γn)d(Rnxn, Unxn) (22)

Now equation (22) implies that

d2(zn, p) ≤ k2
nd2(xn, p). (23)



176 G. S. Saluja

Again using (3), (8) and (23), we obtain that

d2(yn, p) = d2(βnTnzn ⊕ (1 − βn)Rnxn, p)

≤ βnd2(Tnzn, p) + (1 − βn)d2(Rnxn, p)

−βn(1 − βn)d2(Tnzn, Rnxn)

≤ βnk2
nd2(zn, p) + (1 − βn)k2

nd2(xn, p)

−βn(1 − βn)d2(Tnzn, Rnxn)

≤ βnk2
n[k2

nd2(xn, p)] + (1 − βn)k4
nd2(xn, p)

−βn(1 − βn)d2(Tnzn, Rnxn)

≤ k4
nd2(xn, p)− βn(1 − βn)d2(Tnzn, Rnxn). (24)

Now equation (23) implies that

d2(yn, p) ≤ k4
nd2(xn, p). (25)

Now using (3), (8) and (25), we obtain that

d2(xn+1, p) = d2(αnSnyn ⊕ (1 − αn)Rnxn, p)

≤ αnd2(Snyn, p) + (1 − αn)d2(Rnxn, p)

−αn(1 − αn)d2(Snyn, Rnxn)

≤ αnk2
nd2(yn, p) + (1 − αn)k2

nd2(xn, p)

−αn(1 − αn)d2(Snyn, Rnxn)

≤ αnk2
n[k4

nd2(xn, p)] + (1 − αn)k6
nd2(xn, p)

−αn(1 − αn)d2(Snyn, Rnxn)

≤ k6
nd2(xn, p) − αn(1 − αn)d2(Snyn, Rnxn)

= [1 + (k6
n − 1)]d2(xn, p)− αn(1 − αn)d2(Snyn, Rnxn)

= [1 + (kn − 1)(k5
n + k4

n + k3
n + k2

n + kn + 1)]d2(xn, p)

−αn(1 − αn)d2(Snyn, Rnxn)

= [1 + tn]d2(xn, p) − αn(1 − αn)d2(Snyn, Rnxn) (26)

where tn = (kn − 1)(k5
n + k4

n + k3
n + k2

n + kn + 1). Since by hypothesis of the theorem
∑

∞

n=1(kn − 1) < ∞, it follows that
∑

∞

n=1 tn < ∞. Observe that αn(1 − αn) ≥ δ2 and
∑

∞

n=1 tn < ∞. For m ≥ 1, (26) implies that

m
∑

n=1

d2(Snyn, Rnxn) ≤
1

δ2

[

d2(x1, p) − d2(xm+1 , p) +

m
∑

n=1

tnd2(xn, p)
]

≤
1

δ2

[

d2(x1, p) + R2
m

∑

n=1

tn

]

. (27)

When m → ∞, we have
∑

∞

n=1 d2(Snyn, Rnxn) < ∞, since
∑

∞

n=1 tn < ∞ and d(xn, p) ≤ R,
∀n.

Hence

lim
n→∞

d(Snyn, Rnxn) = 0. (28)
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Using (20) and (28), it follows that

d(Rnxn, xn) ≤ d(Rnxn, Snyn) + d(Snyn, xn)

≤ 2d(Rnxn, Snyn) → 0 as n → ∞, (29)

and hence

d(Snyn, xn) ≤ d(Snyn, Rnxn) + d(Rnxn, xn)

→ 0 as n → ∞. (30)

Now, we have

d(xn, p) ≤ d(xn, Snyn) + d(Snyn, p)

≤ d(xn, Snyn) + knd(yn, p), (31)

from which we deduce that a ≤ lim infn→∞ d(yn, p). On the other hand, taking lim supn→∞

on both the sides of (10), we have

lim sup
n→∞

d(yn, p) ≤ lim sup
n→∞

k2
nd(xn, p) = a,

which implies that

lim
n→∞

d(yn, p) = a. (32)

Again consider equation (24), we have

d2(yn, p) ≤ k4
nd2(xn, p) − βn(1 − βn)d2(Tnzn, Rnxn)

= [1 + (k4
n − 1)]d2(xn, p)− βn(1 − βn)d2(Tnzn, Rnxn)

= [1 + (kn − 1)(k3
n + k2

n + kn + 1)]d2(xn, p)

−βn(1 − βn)d2(Tnzn, Rnxn)

= (1 + mn)d2(xn, p)− βn(1 − βn)d2(Tnzn, Rnxn) (33)

where mn = (k4
n − 1) = (kn − 1)(k3

n + k2
n + kn + 1), since by assumption of the theorem

∑

∞

n=1(kn − 1) < ∞, it follows that
∑

∞

n=1 mn < ∞. For m ≥ 1, (33) implies that

m
∑

n=1

d2(Tnzn, Rnxn) ≤
1

δ2

[

m
∑

n=1

mnd2(xn, p)
]

≤
R2

δ2

m
∑

n=1

mn. (34)

When m → ∞, we have
∑

∞

n=1 d2(Tnzn, Rnxn) < ∞, since
∑

∞

n=1 mn < ∞ and d(xn, p) ≤ R,
∀n.

Hence

lim
n→∞

d(Tnzn, Rnxn) = 0, (35)
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consequently,

d(Tnzn, xn) ≤ d(Tnzn, Rnxn) + d(Rnxn, xn)

→ 0 as n → ∞. (36)

Again note that

lim sup
n→∞

d(Unxn, p) ≤ lim sup
n→∞

knd(xn, p) = a, (37)

and

lim sup
n→∞

d(Rnxn, p) ≤ lim sup
n→∞

knd(xn, p) = a. (38)

Also,

d(xn, p) ≤ d(xn, Tnzn) + d(Tnzn, p)

≤ d(xn, Tnzn) + knd(zn, p). (39)

Using (36) in above inequality, we obtain

a = lim
n→∞

d(xn, p) ≤ lim inf
n→∞

d(zn, p). (40)

On the other hand, taking lim supn→∞
on both the sides of (9), we have

lim sup
n→∞

d(zn, p) ≤ lim sup
n→∞

knd(xn, p) = a.

This together with (40) gives

lim
n→∞

d(zn, p) = a. (41)

Again consider equation (22), we have

d2(zn, p) ≤ k2
nd2(xn, p) − γn(1 − γn)d2(Rnxn, Unxn)

= [1 + (k2
n − 1)]d2(xn, p) − γn(1 − γn)d2(Rnxn, Unxn)

= [1 + (kn − 1)(kn + 1)]d2(xn, p)

−γn(1 − γn)d2(Rnxn, Unxn)

≤ (1 + un)d2(xn, p) − γn(1 − γn)d2(Rnxn, Unxn) (42)

where un = (kn − 1)(kn + 1), since by assumption of the theorem
∑

∞

n=1(kn − 1) < ∞, it
follows that

∑

∞

n=1 un < ∞. For m ≥ 1, (42) implies that

m
∑

n=1

d2(Rnxn, Unxn) ≤
1

δ2

[

m
∑

n=1

und2(xn, p)
]

≤
R2

δ2

m
∑

n=1

un. (43)
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When m → ∞, we have
∑

∞

n=1 d2(Rnxn, Unxn) < ∞, since
∑

∞

n=1 un < ∞ and d(xn, p) ≤ R,
∀n.

Hence

lim
n→∞

d(Rnxn, Unxn) = 0. (44)

Using (21) and (44), it follows that

d(Unxn, xn) ≤ d(Unxn, Rnxn) + d(Rnxn, xn)

≤ 2d(Unxn, Rnxn) → 0 as n → ∞. (45)

Consequently, we have

d(xn, Tnxn) ≤ d(xn, Tnzn) + d(Tnzn, Tnxn)

≤ d(xn, Tnzn) + knd(zn, xn)

≤ d(xn, Tnzn) + kn[(1− γn)d(Unxn, xn)

+γnd(Rnxn, xn)]

= d(xn, Tnzn) + kn(1 − γn)d(Unxn, xn)

+knγnd(Rnxn, xn). (46)

Using (29), (36) and (45) in (46), we have

lim
n→∞

d(xn, Tnxn) = 0. (47)

Thus,

d(xn, Snxn) ≤ d(xn, Snyn) + d(Snyn, Snxn)

≤ d(xn, Snyn) + knd(yn, xn)

≤ d(xn, Snyn) + kn[(1 − βn)d(Rnxn, xn)

+βnd(Tnzn, xn)]

= d(xn, Snyn) + kn(1 − βn)d(Rnxn, xn)

+knβnd(Tnzn, xn). (48)

Using (29), (30) and (36) in (48), we have

lim
n→∞

d(xn, Snxn) = 0. (49)

Again note that

d(xn+1, xn) ≤ (1 − αn)d(Rnxn, xn) + αnd(Snyn, xn)

using (29) and (30), we have

lim
n→∞

d(xn+1, xn) = 0, (50)

and

d(xn, Txn) ≤ d(xn, xn+1) + d(xn+1, T
n+1xn+1)

+d(Tn+1xn+1, T
n+1xn) + d(Tn+1xn, Txn).
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Since T is uniformly 1-Lipschitzian, we obtain that

d(xn, Txn) ≤ d(xn, xn+1) + d(xn+1, T
n+1xn+1)

+d(xn+1, xn) + d(Tnxn, xn). (51)

Using (47) and (50),

lim
n→∞

d(xn, Txn) = 0. (52)

Similarly, we can prove that

lim
n→∞

d(xn, Rxn) = lim
n→∞

d(xn, Sxn) = lim
n→∞

d(xn, Uxn) = 0. (53)

This completes the proof. 2

Theorem 2 Let X be a complete CAT(0) space and let C be a nonempty closed convex
subset of X. Let R, S, T, U : C → C be four uniformly 1-Lipschitzian asymptotically quasi-
nonexpansive mappings with sequence {kn} ⊂ [1,∞) such that

∑

∞

n=1(kn − 1) < ∞. Let
{xn} be the three-step iteration process defined as by (8). Let {αn}, {βn} and {γn} be
the real sequences in [δ, 1 − δ] for some δ ∈ (0, 1) and R, S, U satisfy the conditions
(20) and (21). Suppose one of the mappings in {R, S, T, U} is semi-compact. If F =
F (R) ∩ F (S) ∩ F (T ) ∩ F (U) 6= ∅, then {xn} converges strongly to a common fixed point of
the mappings R, S, T and U .

Proof Suppose R is semi-compact. By Lemma 2, we have limn→∞ d(xn, Rxn) = 0. So
there exists a subsequence {xnj

} of {xn} such that limj→∞ xnj
= x1 ∈ C. Now, Lemma 2

guarantees that limnj→∞ d(xnj
, Rxnj

) = 0, limnj→∞ d(xnj
, Sxnj

) = 0, limnj→∞ d(xnj
, Txnj

)
= 0, limnj→∞ d(xnj

, Uxnj
) = 0 and so d(x1, Rx1) = 0, d(x1, Sx1) = 0, d(x1, Tx1) = 0,

d(x1, Ux1) = 0. This implies that x1 ∈ F = F (R) ∩ F (S) ∩ F (T ) ∩ F (U). Since
limn→∞ d(xn, F ) = 0, it follows, as in the proof of Theorem 1, that {xn} converges strongly
to a common fixed point of the mappings R, S, T and U . This completes the proof. 2

For further analysis, we need the following concept.
Senter and Dotson [18] introduced the concept of Condition (A) as follows.

Definition 1 (See [18]) A mapping T : C → C is said to satisfy Condition (A) if there
exists a non-decreasing function f : [0,∞) → [0,∞) with f(0) = 0 and f(r) > 0 for all
r > 0 such that d(x, Tx) ≥ f(d(x, F (T ))), for all x ∈ C. It is to be noted that Condition
(A) is weaker than compactness of the domain C.

Now, we generalize the above definition for four mappings.

Definition 2 Four mappings R, S, T and U : C → C where C is a nonempty subset of
a metric space (X, d) with at least one common fixed point is said to satisfy Condition

(GA) if there exists a nondecreasing function f : [0,∞) → [0,∞) with f(0) = 0, f(r) > 0
for all r ∈ (0,∞) such that a1d(x, Rx)+ a2d(x, Sx)+ a3d(x, Tx)+ a4d(x, Ux) ≥ f(d(x, F ))
for all x ∈ C, where d(x, F ) = inf{d(x, p) : p ∈ F = F (R) ∩ F (S) ∩ F (T ) ∩ F (U)} and a1,
a2, a3, a4 are four nonnegative real numbers such that a1 + a2 + a3 + a4 = 1.
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Remark 2 Condition (GA) reduces to condition (A) [18] when R = S = T = U .

Theorem 3 Let X be a complete CAT(0) space and let C be a nonempty closed convex
subset of X. Let R, S, T, U : C → C be four uniformly 1-Lipschitzian asymptotically quasi-
nonexpansive mappings with sequence {kn} ⊂ [1,∞) such that

∑

∞

n=1(kn − 1) < ∞ and
satisfying condition (GA). Let {xn} be the three-step iteration process defined as by (8).
Let {αn}, {βn} and {γn} be the real sequences in [δ, 1− δ] for some δ ∈ (0, 1) and R, S, U
satisfy the conditions (20) and (21). If F = F (R) ∩ F (S) ∩ F (T ) ∩ F (U) 6= ∅, then {xn}
converges strongly to a common fixed point of the mappings R, S, T and U .

Proof We proved in Lemma 2 that

lim
n→∞

d(xn, Rxn) = lim
n→∞

d(xn, Sxn) = lim
n→∞

d(xn, Txn)

= lim
n→∞

d(xn, Uxn) = 0. (54)

From the condition (GA) and (54), we have

lim
n→∞

f(d(xn, F )) ≤ lim
n→∞

[a1 d(xn, Rxn) + a2 d(xn, Sxn)

+a3 d(xn, Txn) + a4 d(xn, Uxn)]

≤ a1 lim
n→∞

d(xn, Rxn) + a2 lim
n→∞

d(xn, Sxn)

+a3 lim
n→∞

d(xn, Txn) + a4 lim
n→∞

d(xn, Uxn) = 0.

Hence
lim

n→∞

f(d(xn, F )) = 0.

Since f : [0,∞) → [0,∞) is a nondecreasing function satisfying f(0) = 0, f(r) > 0 for all
r ∈ (0,∞), therefore we have

lim
n→∞

d(xn, F ) = 0.

It follows, as in the proof of Theorem 1, that {xn} converges strongly to a common fixed
point of the mappings R, S, T and U . This completes the proof. 2

4 Conclusion

The class of asymptotically quasi-nonexpansive mappings is more general than the class
of nonexpansive, quasi-nonexpansive and asymptotically nonexpansive mappings and the
modified Noor iteration scheme is more general than Noor iteration scheme. Thus the
results presented in this paper are good improvement and generalization of corresponding
results of Xu and Noor [22], Niwongsa and Panyanak [23] and many others from the existing
literature.
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