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1 Introduction

An Evolution Equation is an equation that can be interpreted as the differential law of the
development in time of a system [1]. The term does not have an exact definition, and its
meaning depends not only on the equation itself but also on the formation of the problem
for which it is used. Typical of an Evolution Equation is the possibility of constructing the
solution from a prescribed initial condition that can be interpreted as the description of the
initial state of a system [1].

Merenkov [2] considered an Evolution Equation in which the stability was investigated
using Lyapunov

′

s functional. Egwurube and Garba [3] considered a quasi-linear hyperbolic
differential equation.

ut + f(u)x = 0, 0 < x < 1

u(0, x) = u0(x), 0 < x < 1

u(t, 0) = 0, t > 0 (1)

which was transformed into an initial value problem

du

dt
+ Au(t) = 0 , u(0) = u0 (2)

defined on a Banach space L1 [0, 1] with D (A) = C [0, 1] and proved that the operator A

is m-accretive and that it does admit a solution. Egwurube [4] also considered the same
Evolution problem and gave condition for the asymptotic stability of its solution in C [0, 1].
Igobi et al. [5] investigated the existence and uniqueness, and asymptotic stability analysis
of solution of a retarded equation model of HIV/AIDS transmission. Egwurube et al. [6]
showed the existence and asymptotic stability of solutions of the same Evolution Equation.
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Abstract differential equation involves regarding the solution of a differential equation
as an element of some function space in X that depends on the parameter t [1]. We shall
consider the solution of this evolution problem, prove its existence, asymptotic stability and
also show contraction of the solution in L1 [0, 1] .

Definition 1 [7] Let P be a positive real number. A function defined on [0, 1] is said to

belong to the space LP [0, 1] if
∫ 1

0
|f |

P
< ∞. For a function f ∈ LP , we define ‖f‖ =

‖f‖P =
{

∫ 1

0
|f |

P
}1/P

.

2 Main Result

Let u∗ be the steady state solution of (2) and assume x = u − u∗ so that

dx

dt
+ a x (t) = h (x) , x (0) = x0 (3)

where a is a bounded linear operator and h (x) represents the non-linear term.
The solution of (3) is

|x (t)| ≤ eαt |x0|

[

1 +

∫ t

∞

eατ

]

X (τ + γ) =

{

0, ∀τ < γ

1, ∀τ > γ

then

|x (t)| ≤ eαt

∣

∣

∣

∣

x0

[

1 +

∫ t

0

eατdτ

]∣

∣

∣

∣

. (4)

Theorem 1 Suppose x (t) is a measureable function on [0, 1] and P = 1, then

∫ 1

0

|x(t)|P ≤
|x0|

α
[eα − 1]

[

1 −
1

α

[

1 − e−αγ
]

]

< ∞ .

Proof On integrating (4) with respect to t we obtain

∫ 1

0

|x (t)| dt ≤

∫ 1

0

∣

∣

∣

∣

eαt |x0|

[

1 +

∫ γ

0

e−ατdτ

]
∣

∣

∣

∣

dt

≤

∫ 1

0

eαt |x0|dt + |x0|

∫ 1

0

∫ γ

0

e−ατeατdτ dt

≤
|x0|

α
[eα − 1] +

|x0|

α

[

1 − e−αγ
]

∫ 1

0

eαtdt

≤
|x0|

α
[eα − 1]

[

1 −
1

α

[

1 − e−ατ
]

]

= M (say)

But M < ∞. ⇒ x (t) ∈ L1 [0, 1] , since
∫ 1

0
|x (t)| dt < ∞ .
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In obtaining asymptotic stability behavior of the solution of this quasi-linear hyperbolic
differential equation, the interval of the space ranges from 0 to t (where t ≤ ∞). So that

‖x (s)‖LP [0,t] =

{
∫ t

0

|x (s)|
P

}

1

P

but P = 1, therefore

‖x (s)‖L1[0,t] =

∫ t

0

eαs |x0|

[

1 +
1 − e−αγ

α

]

ds

‖x (s)‖L1[0,t] =
|x0|

α

[

1 +
1 − e−αγ

α

]

∣

∣eαt − 1
∣

∣

lim
t→∞

‖x (s)‖L1[0,t] =
|x0|

α

[

1 +
1 − e−αγ

α

]

= M (where M = constant)

Lemma 1 Let α, m , mi and M ∈ R. Then

(i) mi ≤ m

(ii) M
m = +ve

(iii) M
mi

= +ve.

Theorem 2 Suppose the solution x (t) ∈ LP [0, 1] and S (t) a strongly continuous semi-
group, then, ‖S (t)x (t)‖LP [0,1] ≤ ‖x (t)‖LP [0,1] for P = 1.

Proof For a function f ∈ LP , then ‖f‖P =
{

∫ 1

0
|f |

P
}

1

P

.

Therefore ‖x (t)‖LP [0,1] =
{

∫ 1

0
|x (t)|P

}
1

P

, then ‖S (t) x (t)‖LP [0,1] =
{

∫ 1

0
|S (t)x (t)|P

}
1

p

.

Let S (t) the strongly continuous semi-group be eat, then,

∥

∥eatx (t)
∥

∥

LP [0,1]
=

{
∫ 1

0

∣

∣eatx (t)
∣

∣

P
dt

}

1

P

.

For P = 1

∥

∥eαtx (t)
∥

∥

L1[0,1]
=

∫ 1

0

∣

∣eαtx (t)
∣

∣ dt

=

∫ 1

0

eαteat |x0|

[

1 +
1 − e−αγ

α

]

dt =

∫ 1

0

e(α+a)t |x0|

[

1 +
1 − e−αγ

α

]

Let M = |x0|
[

1 + 1−e−αγ

α

]

and m = (a + α), then,

∥

∥eαtx (t)
∥

∥

LP [0,1]
=

∫ 1

0

emtM dt =
M

m
[em − 1] (5)
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Also,

‖x (t)‖LP [0,1] =

∫ 1

0

|x (t)| dt =

∫ 1

0

eαt |x0|

[

1 +
1 − e−αγ

α

]

dt.

Let M = |x0|
[

1 + 1−e−αγ

α

]

and mi = α, then,

‖x (t)‖LP [0, 1] =

∫ 1

0

emitM dt

=
M

mi

[

emi−1
]

(6)

On comparing (5) and (6), it is easy to see that ‖s (t)x (t)‖LP [0,1] ≤ ‖x (t)‖LP [0,1]. Hence
a contraction.

3 Conclusion

Thus, the solution of the Evolution Equation exists, is asymptotically stable and contracts
in L1 [0, 1] . Having shown this it is hoped that the existence, asymptotic stability and con-
traction of solutions can perhaps be shown for other types of related Evolution Equations
in the same space or other spaces.
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