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Abstract Single-row routing is a technique to route pairs of pins aligned in a single 

axis into non-crossing nets to form a least congested network. The technique has its 

main application in the printed circuit board design where the nets between the pins 

are drawn statically, that is, in a fixed manner. In the dynamic single-row routing, 

the nets from the pairs of pins in the network are allowed to change according to 

the requirement. This paper proposes a new dynamic single-row routing model for 

the switching of pins based on the cylindrical design. In the model, a cylinder has 

unlimited number of planes that are formed by traversing its circular cross-section. 

Each plane houses a network of single-row pins that share the same pins. As the 

planes do not overlap, the nets in the networks do not cross as they are placed in 

different planes. This makes it possible to allow the configuration of the nets to 

change according to pin connection requirements for forming the dynamic model. 

The single-row routings in each network are produced optimally using our earlier 

model called ESSR (Enhanced Simulated annealing for Single-row Routing). This 

suggests that the cylindrical model is optimal and suitable for adoption into 

problems requiring massive pin connections such as in switching. 
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1 Introduction 
 

A VLSI integrated-circuit is formed by combining thousands number of transistors into a single 

chip. In a real large systems the number of interconnections between the microscopic components 

may exceeds thousands or millions. Due to its importance and pervasive applications in the 

industries, a significant demand increase for digital designers to optimize the number of wire 

routing and interconnections in this circuit. Hence, various routing techniques have been 
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introduced in the literature to help in the designs. This involves single-row routing, maze routing, 

channel routing, line probe routing and many more. 

Routing is a process of selecting paths in order to perform given task. Generally, routing can 

be divided into two types, namely, static and dynamic routing. In static routing, the routes are 

configured manually by the administrator and these routes will not change after the configuration 

unless a human change them. Static routes are typically used in small networks. The major 

advantages of static routing are reduced routing protocol overhead and network traffic. However, 

it requires a manual reconfiguration and this cannot be done automatically. Therefore, it will be 

difficult to use static routing in complex network.  

The opposite of static routing is dynamic routing. This routing protocol usually supported by 

software applications which dynamically set up the configuration for each routes. Unlike static 

routing, dynamic routing enables routers to select paths according to real-time logical network 

layout. To perform routing in complex network, dynamic routing should be very useful. The 

router itself will dynamically choose different or better router if a link goes down. 

Routing problem occurs in many kinds of job. In travelling salesman problem (TSP), the 

salesman needs to perform a complete tour starting from a point and need to determine the 

shortest path to cover all the identified stations, passing each station only once and come back to 

starting point while minimizing the distance travelled [1]. Routing method also widely used to 

solve problems in printed circuit boards (PCB’s) design [2], VLSI design [3], circuit switching 

and transportation network.  

In [2], Salleh et al. proposed enhanced simulated annealing for single-row routing problem 

(ESSR). The strategy is by performing slow cooling, so that the nets will align themselves to a 

configuration in the lowest energy. The total energy in a net list is given as follows: 
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where im  is the number of segments in the net iN , for 1,2,3,...,i m . The absolute value of the 

height ,i jh  is the segment relative to the node axis. In order to speed up the convergence, the 

value of street congestion is pivoted while having the energy drops directly proportional to the 

number of doglegs. As the energy drops, the number of doglegs can be minimized. This simulated 

annealing is finally proven efficient to produce small number of street congestion and doglegs 

especially in large number of nets. 

In very large system, the number of interconnections may exceed tens of thousands; therefore 

an efficient design that optimizes wire routing is needed. Several methods are used in this 

research to find the best design for this problem such as Kernighan-Lin algorithm, traveling 

salesman problem, simulated annealing algorithm and single row routing problem. A model 

consists of 160 pins has been developed to illustrates the problem. The result has shown that the 

system ‘freezes’ and no further changes occur at certain temperature [3]. 

In [4], dynamic single-row routing technique is applied on channel assignment problem 

according to the given requirements. Here, we are motivated to extend the use of dynamic routing 



technique by applying the concept into single-row network and later transform it into a cylindrical 

model.  

 

 

2 Problem Background 

 

Single-row routing problem is actually two-dimensional in nature. In this paper, a method to 

transform the problem into a dynamic three-dimensional model is proposed. In the dynamic 

single-row routing, the nets from the pairs of pins in the network are allowed to change according 

to the requirement. This new dynamic single-row routing model for the switching of pins is based 

on the cylindrical design. We model this transformation into a cylindrical model mainly because a 

cylinder is symmetrical along an infinite number of planes due to the fact that its cross sectional 

area is that of a circle. A circle always has infinite lines of symmetry. This differs with other 

shapes which has limited symmetrical axis as shown in Figure 1. Therefore, due to this fact, we 

will be able to generate unlimited number of planes inside a cylinder. This makes it possible to 

allow the configuration of the nets to change according to pin connection requirements for 

forming the dynamic model. 

 

 

 

 

 

 

 

 

Figure 1: A regular hexagon has 6 lines of symmetry, a regular octagon has 8 lines of 

symmetry but a circle has unlimited symmetrical axis. 

 

Each plane houses a network of single-row pins that share the same pins. As the planes do not 

overlap, the nets in the networks do not cross as they are placed in different planes at different 

angles. The angle can be determined by max2 / L  where maxL  is the maximum number of 

configurations. Overall radius for the cylindrical model will be maxr Q  where iQ  is the 

congestion level for {1,2,..., }.i n  This is illustrated in Figure 2. 

 

 

 

 

 

 

 

 

Figure 2: The components of cylindrical model. 

 

 



The single-row routings in each network are produced optimally using our earlier model called 

ESSR (Enhanced Simulated annealing for Single-row Routing) [2].  

 

 

3     Dynamic Single-row Routing 

 

In this problem, we are given a set of n  evenly spaced nodes, sometimes called terminals or pins, 

on a domain as illustrated in Figure 3. The nodes { }iP P for 1,2,...,i n  are arranged 

horizontally from left to right along single-row axis. The problem is to construct / 2n  nets from 

list kL N  for 1,2,...,k n  that connect all nodes pair by pair in such a way that it obeys all the 

rules of single row routing as below [5]: 

(i) ,i jN N i j    

(ii) {1,2,..., }iN n      

(iii) The nets are to be drawn from left to right, while reverse direction is not allowed. 

(iv) The path is made up of horizontal and vertical segments. 

(v) The path should not cross. 

 

 

 

 

 

Figure 3: Node axis 

 

Another point of concern is to minimize the number of street congestion Q and doglegs D . 

Single-row routing (SRR) is a combinatorial optimization problem which is known to be NP-

complete [5]. This classical technique is use to solve major problem arises in layout design such 

as conductor routing in PCB’s. In this problem, a set of n  evenly spaced pins representing 

terminals were given and is drawn horizontally from left to right. The path joining two successive 

pins is called net, wiring tracks or conductor path. This path must not cross each other and made 

up of horizontal and vertical segments only. The movement of the path is also in forward 

direction while the reverse is not allowed. Each net in the single-row consist of two terminals, xv

and 1xv   with a unit interval x  and 1x  . The nets also must satisfy the following conditions [6]: 

 

(i) ,i jN N i j    

(ii) {1,2,..., }iN n    

 

The area above the single-row axis is called upper street, while below is the lower street. The 

number of wiring tracks in the upper street is called upper street congestion and denoted by uQ  

while lQ  is the number of horizontal wiring tracks in the lower street and yet called lower street 

    



congestion. The overall street congestion of a realization is the maximum number of net covering 

a terminal. In mathematical formulation, Q is expressed as max( , )u lQ Q Q  

The interstreet crossing in nets or often called doglegs D  is a vertical line crossing the 

terminals axis. Its number will greatly determine the congestion level in PCBs layout. These 

interstreet crossings in single-row routing problem are allowed in order to prevent the path from 

crossing each other. However, its number need to be minimized therefore the overall length of the 

track will be shortened and make it more compact by reducing the space taken. Thus, the 

communication cost between terminals will be reduced and the performance is improved [7]. 

Figure 4 illustrates the terminologies of single-row routing technique.  

 

 

 

 

 

 

 

 

 

 

 

Figure 4: The single-row routing terminologies. 

 

Figure 5 shows four nets in the order 1 4 3 2{ , , , }L N N N N  formed from the following intervals: 

1 2 3(1,6), (2,4), (5,8)N N N    and 4 (3,7)N  . The net ordering in the figure gives a street 

congestion value 2Q   , as 6P  has 2 nets covering from below ( 2)lQ  and 4P  has 2 nets 

covering above ( 2)uQ  . In this figure, it is clearly seen the number of doglegs for this realization 

is 1 which is present in the interval (3,7) . 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5: Energy level diagram for net ordering 1 4 3 2{ , , , }L N N N N  
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Figure 6 shows the graphical realization corresponding to the net ordering 1 4 3 2{ , , , }L N N N N  

from Figure 5. 

 

 

 

 

 

 

 

 

 

 

 

Figure 6: Realization for net ordering 1 4 3 2{ , , , }L N N N N . 

 

From the graphical realization, it is easy to determine the number of doglegs and the level of 

congestion for the respective net ordering. In general, it is difficult to determine an optimal 

realization due to the large number of interacting variables in the problem, especially when the 

number of nets is large. A feasible realization that is the one that approximates the solution close 

to its optimal value is often accepted in many cases. A model then has been developed by [2] to 

visualize optimal single-row routing problem by taking into account various necessary and 

sufficient conditions for optimal routing. This model makes use of enhanced simulated annealing 

(SA) technique.  

 SA method is a probabilistic method which is first simulated by Metropolis et al. and 

Kirkpatrick et al. ([8], [9]). This algorithm now has become a very useful tool in solving a variety 

of combinatorial optimization problems. SA makes use of iterative improvement procedure starts 

with an initial state. SA generates new solution at each temperature while the temperature is 

lowered gradually, until it met the stopping criteria. SA avoids being trapped at local minima by 

accepting sometimes uphill moves. This acceptance is determined by using Boltzmann 

probability 
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where E is the difference costs between the current solution and previous one while iT  is 

current temperature.  

 In this study, the single-row routing is assumed to be dynamic which means all the pins will be 

configured dynamically according to the constantly changing intervals between the pairs of pins 

and routes themselves by taking into account all the conditions for optimal routing. Unlike the 

two-dimensional static single-row networks, the cylindrical model allows any combination of 
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pairs of pins suitable for dynamic routing. In our model, pin x  is not necessary to be connected 

with pin y  all the time. At different time slots, it can be connected to any other different pins. 

 

 

4          Multi Connection of Pins Using the Cylindrical Model 
 

In this problem, the connection for each net need to be established by obeying the rules of SRR as 

stated in Section 2. Our model proposes the task of transforming dynamical single-row routing 

configuration into a cylindrical model. One of the important things is to identify how many axes a 

cylindrical model will have for any n  pins together with its radius. Therefore, the very first step 

is to determine all possible net ordering or list L  for every n .  

 

4.1   Maximum Possible Net Ordering 

The maximum possible net ordering or list L  can be calculated using few steps below. Let us 

begin with the smallest number of pins we can have as an illustration for the problem description 

above which is 4n  . Table 1 illustrates all possible ways to route these pins. 

 

 

Table 1: All possible routings for 4n  . 

 

Order Realization Q  D  
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From Table 1, it can be seen that each of the realization obeys all conditions for a successful 

routing. For this example, the most optimal route is the first order while the third order is the most 

expensive one since it has highest number of congestions level. The optimal route from this 

illustration forms the list {(1,2),(3,4)}L  . Next, we continue with 6n  . 
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Table 2: Net Ordering for 6.n   

 

Fixed net Remaining pins Net Ordering 

(1,2) 3,4,5,6 1 {(1,2),(3,4),(5,6)}L   

2 {(1,2),(3,5),(4,6)}L   

3 {(1,2),(3,6),(4,5)}L   

(1,3) 2 ,4,5,6 4 {(1,3),(2,4),(5,6)}L   

5 {(1,3),(2,5),(4,6)}L   

6 {(1,3),(2,6),(4,5)}L   

(1,4) 2,3,5,6 7 {(1,4),(2,3),(5,6)}L   

8 {(1,4),(2,5),(3,6)}L   

9 {(1,4),(2,6),(3,5)}L   

(1,5) 2,3,4,6 10 {(1,5),(2,3),(4,6)}L   

11 {(1,5),(2,4),(3,6)}L   

12 {(1,5),(2,6),(3,4)}L   

(1,6) 2,3,4,5 13 {(1,6),(2,3),(4,5)}L 

14 {(1,6),(2,4),(3,5)}L 

15 {(1,6),(2,5),(3,4)}L   

  :  

:  

 TOTAL 1 2 3 15{ , , ,..., }L L L L L  

        Note: ( , ) ( , )a b b a  

 

Table 2 summarizes the all possible routing for 6n  . It can be clearly seen there are 15 

different net orderings can be form. For larger n , more net orderings can be generated this job is 

quite computationally expensive. Therefore, an induction formula is derived to compute all 

possible routings and the result is summarized in Table 3. 

 

 

 

 

 

 

 

 



Table 3: Inductive relationship for orders of pins up to 20.n   

 

n  Inductive Relationship maxL  

4 ( 1)( 3)n n   3 

6 ( 1)( 3)( 5)n n n    15 

8 ( 1)( 3)( 5)( 7)n n n n     105 

10 ( 1)( 3)( 5)( 7)( 9)n n n n n      945 

12 ( 1)( 3)( 5)( 7)( 9)( 11)n n n n n n       10 395 

14 ( 1)( 3)( 5)( 7)( 9)( 11)( 13)n n n n n n n        135 135 

16 ( 1)( 3)( 5)( 7)( 9)( 11)( 13)( 15)n n n n n n n n         2 027 025 

18 ( 1)( 3)( 5)( 7)( 9)( 11)( 13)( 15)

( 17)

n n n n n n n n

n

       


 

34 459 425 

20 ( 1)( 3)( 5)( 7)( 9)( 11)( 13)( 15)

( 17)( 19)

n n n n n n n n

n n

       

 
 

654 729 075 

 

For 2n  , it can be summarized in a form of equation as below. Let maxL  be the maximum 

number or net ordering for n  pins, therefore 

max [ (2 1)];(2 1)L n r r n       for  1,2,3,...r                          (1) 

 

 

 

5 Dynamic Switching Model 
 

In this paper, we propose a new technology for single-row routing problem. Previous research 

only focuses on two-dimensional static single-row network. However, in this paper, we extend 

this problem into a three-dimensional cylindrical model of dynamic single-row routing. A 

cylindrical model is a three-dimensional model in cylinder shape which having unlimited number 

of planes inside that are formed by traversing its circular cross-section. Each realization or 

routing will form an axis and the radius of the cylinder is proportional to the maximum street 

congestion for all routings. 

 By using Equation (1), maxL  for 6n   is 15. The realizations for each network in L  is 

produced optimally using our earlier model called ESSR. Such realization obeys all the rules for 

single-row routing while minimizing both congestion level Q  and number of doglegs D . Each 

realization will form a plane in the cylinder. Therefore, for 6n  , 15 planes at different angle 

will be form and is drawn at 2 /15  . 

 The height of each plane is the axis of the cylinder and is proportional to the number of street 

congestion of the respected L . Overall radius for the cylindrical model will be maxr Q  and its 



total length depends on number of pins along the single-row axis. Figure 7 demonstrates a 

cylindrical model having six planes. Notice that the single-row axis will be the intersection lines 

for all planes. Each plane houses a network. As the planes do not overlap, the nets in the networks 

do not cross as they are placed in different planes.  

 

 

 

 

 

 

 

 

 

Figure 7: A six planes cylindrical model 

 

 

 A clear front view of this model for maxL  up to 15 is illustrated as in Figure 8 while 

Figure 9 shows the cross section of the model that illustrates the position of the respective 

plane for 7L , 9L  and 12L . 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8: Front view of the cylindrical model showing the axis ia  for all 15 planes. 

 

 

 

 

 

 

 

 
 

 

 

 

 

 
  

 

 
 

  

 



 

 

 

 

 

 

 

Figure 9: Cross section of the cylindrical model illustrating the  

position of three planes at different angle. 

 

 

6 Simulation and Results 
 

A random list L  is form at random time t . The list at each time slot may be different or repeated 

from the previous one. Then, we seek for its optimal realization. Assuming for ten different time 

slots, the respected list is as in the Table 4. 

 

 

Table 4: Generating list L  for 20n   at ten different time slots. 

 

it  iL  

0t  0 {(1,20),(2,15),(3,10),(4,5),(6,9),(7,19),(8,17),(11,13),(12,16),(14,18)}L   

1t  1 {(1,20),(2,15),(3,10),(4,5),(6,9),(7,14),(8,9),(11,18),(12,13),(16,17)}L   

2t  2 {(1,3),(2,18),(8,17),(14,19),(11,13),(4,16),(5,9),(6,7),(10,12),(15,20)}L   

3t  3 {(1,7),(2,11),(3,9),(4,19),(5,15),(6,17),(10,18),(8,12),(13,14),(16,20)}L   

4t  4 {(1,10),(2,19),(3,17),(4,7)5,9),(6,12),(8,11),(13,18),(14,15),(16,20)}L   

5t  5 {(1,4),(2,10),(3,9),(11,17),(5,8),(6,12),(7,13),(14,18),(15,20),(16,19)}L   

6t  6 {(1,11),(2,12),(3,10),(4,9),(5,17),(6,19),(7,20),(8,13),(16,18),(10,15)}L   

7t  7 {(1,15),(2,11),(3,10),(4,9),(5,13),(6,14),(7,20),(8,17),(12,19),(16,18)}L   

8t  8 {(1,9),(2,8),(3,10),(4,11),(5,7),(6,12), (13,17),(14,18),(15,20),(16,19)}L   

9t  9 {(1,5),(2,10),(3,9),(4,20),(6,12),(7,11),(8,19),(13,17),(14,16),(15,18)}L   

 

Next step is to identify the optimal configuration for each iL . Obviously, to complete this step 

manually is very computationally expensive and almost impossible. However, this step can be 

Single-row 

axis 

 

 

 



done easily using our previous model, ESSR. Figures 10-12 present the optimization of energy 

level for each plane in the cylindrical model while minimizing congestion level and number of 

doglegs. 

 

 

 
Figure 10: The optimization of energy level at each time slot. 

 

 

 
Figure11: The minimization of congestion level at each time slot. 
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Figure12: The minimization of number of doglegs at each time slot. 

 

 This suggests that each plane will have optimal configuration for each pair of pins. Since the 

networks is configured dynamically according to constantly changing intervals between the pair 

of pins, our cylindrical model is optimal and suitable for adoption into problems requiring 

massive pin connections such as in switching. Through our simulation program, we also identify 

the time taken to achieve optimality for each plane and this is summarized in Figure 13. 

 

 

 
Figure 13: Time taken to achieve optimal arrangement at each time slot. 

 

 

7  Conclusion 
 

  In this paper, we proposed a new technology to single-row routing (SRR) problem. We 

introduced a method to transform two-dimensional SRR problem into a dynamic three-

dimensional problem. This transformation is modeled as a cylinder due to the fact that a cylinder 

is symmetrical along an infinite number of planes since its cross sectional area is that of a circle. 

This differs with other shapes which has limited planes of symmetry. Therefore, we will be able 
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to generate unlimited number of planes inside this cylindrical model. First, the single-row routing 

technique is described clearly and the problem statement is discussed. We applied the concept of 

combinations in statistics and derived an induction formula in order to identify all possible L  can 

be form for n  numbers of pins. Then we seek for optimal realizations for each L  that satisfy 

single-row rules and conditions while minimizing number of street congestion and doglegs. Each 

realization will form an axis in the cylindrical model and its radius is equal to the maximum 

number of street congestion for all realizations achieved. From the simulation program, we were 

able to produce optimal realization for each iL  at reasonable time taken. This suggests that our 

model is suitable for adoption into problems requiring massive connection of pins. 
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