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Abstract In this study, the probability distribution of returns for the index 

prices of FTSE Bursa Malaysia KLCI based on the Heston Model with 

stochastic variance is constructed to analyse its capability in describing the 

returns. The values of parameters in Heston Model of the index prices of 

FTSE Bursa Malaysia KLCI have been estimated using Simulated Maximum 

Likelihood method. Euler-Maruyama method has been used to approximate 

the solutions of the stochastic differential equation. It is found that for 

complete set of the data, the probability distribution of log returns for closing 

prices of FTSE Bursa Malaysia KLCI fitted the theoretical curve better at 

time lag, t =1 and 20. In addition, we used Hurst exponent to measure the 

existing of long range dependence of time series towards the real data.  

 

Keywords Financial mathematics; Heston Model; Simulated Maximum 

Likelihood; Stochastic Differential Equation; Hurst Exponent. 

2010 Mathematics Subject Classification 62P05. 

1 Introduction 
 

In 1993, Steven Heston [1] proposed a model for the stock price dynamics using 

Geometric Brownian Motion with stochastic volatility. The model described by Heston is 

well known as Heston model. This model assumes that the volatility of the asset is not 

constant but follows a random process. Index prices behave randomly so it is not accurate 

to be represented by initial value problem with ordinary differential equation. The Heston 

model, which is governed by Geometric Brownian Motion with stochastic volatility, is 

always used to describe the evolution of the volatility of an underlying asset since the 

volatility of the underlying asset is not constant. Hence, the incorporation of stochasticity 

into index prices is important in determining correctly the probability distribution of log 

returns for stock indexes.  
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However, Heston model itself does not provide the probability distribution of log 

returns for stock prices. Dragulescu and Yakovenko [2] had derived the analytical 

formula for the probability distribution of log returns in the Heston model. According to 

them, their equations reproduce the probability distribution of returns for time lag 1 and 

250 trading days very well by using only four parameters. But, the number of parameters 

of other similar models can easily go to a few tens. Moreover, Silva and Yakovenko [3] 

had tested that the probability distribution of log returns agreed very well with the 

analytical formula for NASDAQ, S&P 500 and Dow-Jones for the period of 1982-1999 

via visual inspection. 

Kuala Lumpur Stock Exchange started to have a downward trend in July 1997 as it 

fell below its psychological level of 1000 points. According to Hughes [4], the contagious 

effects of speculative activity on the Thai Baht had led to the crisis in 1997. Based on the 

economic report 1997/98, in September 1997, the KLCI touched its lowest level since 20 

April 1993 of 675.15.  In September 1998, the KLCI fell sharply to as low as 262.7 points 

from 1077.3 points in June 1997 following the implementation of exchange control on 1st 

September 1998 [4]. According to Goh and Lim [5], the Dot Com bubble that burst in 

March 2000 had adversely affected the growth of Malaysia’s economy. The KLCI which 

was recovering from the 1997 crash took another hit and went down. From 2003 to 2007, 

the index point of KLCI started to pick up and eventually surpassed the 1500 points in the 

early of 2008. Unfortunately, in 2008, severe global recession crisis that began with the 

burst of the U.S. housing bubble was transmitted to Malaysia [5]. KLCI fell below 1000 

points markedly in September 2008. According to The World Bank [6], the Malaysian 

economy completed the rebound from the downturn but the growth momentum is volatile. 

Thus, we have studied the real data of the closing prices of FTSE Bursa Malaysia KLCI 

from 1st September 1998 until 31st July 2008 for the probability distributions of log 

returns to analyse the trend of Malaysia economy during the period.  
In this study, we will use the techniques given in Dragulescu and Yakovenko [2] to 

assess the suitability of the index prices for FTSE Bursa Malaysia KLCI (formerly known 

as KLCI) based on the analytical formula derived by Dragulescu and Yakovenko for the 

Heston model with stochastic volatility. Parameters of the model will be estimated based 

on Simulated Maximum Likelihood method. The stochastic differential equation will be 

solved by Euler-Maruyama method. With the analytical formula, the probability of 

particular log return and time lag for index prices can be calculated. Investors can then 

plan their investments accordingly based on the probability of getting certain return. Last 

but not least, the index prices were estimated with Hurst exponent [7, 8] to measure the 

existing of long range of dependence of time series.  

 

 

2 Methodology 

2.1 Heston Model 

 

We first consider stock price tS , as a time dependent function of t, which obeys the 

stochastic differential equation of a Geometric Brownian Motion     
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(1)  .t t t t tdS S dt S dW  

                          (1) 

Subscript t indicates time dependence, µ is the drift parameter,  (1)

tW  is a standard random 

Wiener process, and  t  is the time dependent volatility. We are interested in log-returns, 

hence change the stock price tS  to log-return 0ln( / )t tr S S and eliminate the drift 

parameter    by introducing t tx r t   , we get 

 

            
(1) 

2

t
t t t

v
dx dt v dW                                           (2)                                         

                   

where 2  t tv  is the variance. 

Now, let us assume that the variance vt obeys the CIR process 

 

  (2) t t t tdv v dt v dW           (3) 

.                                        

Here θ is the long time mean of v,   is the rate of relaxation to this mean, (2)

tW  is a 

standard Wiener process, and κ is the variance noise. The Wiener process in (1) can be 

correlated with the Wiener process in (3) 

 

(2) (1) 2  1  t t tdW dW dZ     

 

where tZ  is a Wiener process independent of (1)

tW  , and [ 1,1]   is the correlation 

coefficient.  

Stochastic processes (2) and (3) constitute the Heston model. According to Gardiner 

[9], the Fokker-Planck equation can be derived for the transition probability ( , | )t iP x v v  to 

have log-return x and variance v at time t given the initial log-return x = 0 and variance iv  

at  t = 0, 

         
2 2 2 2

2 2

1 1
 

2 2 2
P v P vP vP vP vP

t v x x y x v


  

     
             

        (4) 

The initial condition for (4) is a product of two delta functions 

 

     0 , | .t i iP x v v x v v     

 

The probability distribution for the variance itself,  Π   ( , )t tv dx P x v  , satisfies the 

equation  
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The Fokker-Planck equation above had been solved analytically [2] for the transition 

probability ( , | )t iP x v v  . Then   ( , | )t iP x v v  is integrated over the variance, v to give  

 

 
0

|   ( , | )t i t iP x v dv P x v v



       (5) 

However, equation (5) cannot be directly compared with financial time series data, since 

it depends on an unknown variable  iv .  

In order to solve the problem, Dragulescu and Yakovenko [2] assumed that  follows 

stationary probability distribution *Π ( )iv  and averaging (5) over  iv  with the weight  

*Π ( )iv  to give the PDF ( )tP x : 

     *

0

Π |t i i t iP x dv v P x v



       (6) 

This is the PDF of log-returns x after the time lag t and it can be directly compared with 

the financial time series data.  

We can find in Dragulescu and Yakovenko [2] that the fitted data are not very 

sensitive to the parameter , hence we only consider the case  0   for simplicity in this 

project. The final expression for (6) at  0   has the form of a Fourier integral 

 

      
/2

( )

0

,
2

t

x
ipx F p

t

e dp
P x e

x 






                            (7) 

 

 
2Ωt Ω 1 Ω

ln[ ,        
2 2 22Ω

t

t t
F p cosh sinh





      (8) 

where    
2

0Ω 1 ,                 ,                   / ,              p t t x x x     

 
2

0  / ,            2 / .x        

In the long-time limit  2, t equation (7) and (8) exhibit scaling behaviour. 

 tP x becomes a function of a single combination  z  of the two variable, x  and t  . 

 

  /2

1( ) /x

t tP x N e K z z    
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where      
2 2  z x t       ,              

2

0    /t t x   ,              
0/t

tN te x  

 

and  
1( )K z  is the first-order modified Bessel function. 

 

 

2.2  Parameters Estimation of Heston Model 
 

We use the stochastic differential equation (SDE) toolbox in Matlab to obtain the 

estimated parameters  ,  ,       and   . According to Picchini [10], the integration of the 

stochastic differential equations is based on the Euler-Maruyama method [11] while the 

implementation of simulation is based on Simulated Maximum Likelihood. 

According to Picchini [10], the general framework of stochastic differential equations 

in Ito form 

 

   ,  ; , ;  ,t t t tdS f t S dt g t S dW     

 

with initial condition 0 0S s  and 0t  ,where W is standard Wiener process is known 

function depending on parameter θ. Since S is Markovian, the maximum likelihood 

estimator of θ can be calculated if the transition densities of S are known. The log-

likelihood function of    is given by  

 

   1

1

log ( ; , )
n

n i i

i

l p s s 



                                        (9) 

 

and the maximum likelihood estimator ̂  can be found by maximising (9) with respect to  

 .  

However, the transition density function of the underlying diffusion process is often 

unknown. SDE toolbox computes an approximation to the transition density function 

numerically by simulating R times the process using Monte-Carlo Simulations. 

 

 

2.3 Algorithm for Calculating Probability Distribution of Log-returns For   

KLCI 

 

Time series   S is formed by the data set of the index prices of FTSE Bursa Malaysia 

KLCI, where   is the number of trading days. We will follow the procedures mentioned 

in Dragulescu and Yakovenko [2] to extract the probability density of log-return r ,  
    KLCI

tP r for a given time lag t from the    S .  
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Step 1 

For fixed t, calculate the set of log-returns  ln /  tr S S   for all possible times   . 

 

Step 2 

Partition the r-axis into equally spaced bins of width r  . 

 

Step 3 

Count the number of the log-returns belonging to each bin. 

Step 4 

Omit the bins with occupation numbers less than five. 

 

Step 5 

Divide the occupation number of each bin by  and by the total occupation number of all 

bins. This is the probability density  
 

( )
KLCI

tP r  for a given time lag t. 

 

Step 6 

To find  
    , KLCI

tP x  replace r x t  . 

 

2.4 Hurst Exponent Estimation 

 

The Hurst Exponent is used as a measure of long memory of time series [12, 13]. There 

are three distinct classifications for the Hurst exponent H.  

For the 0.5< H ≤ 1, it shows that the time series have long-term positive 

autocorrelation. This means that a high value in the series will probably be followed by 

another high value and that the values along time into the future will also tend to be 

high. This series is considered to be persistent. The strength of this persistent trend 

depends on how close H is to 1.  

For the case 0 ≤ H < 0.5, it denotes a time series with long-term switching between 

high and low values in next pairs, which mean that a single high value will probably be 

followed by a low value and that the value after that will tend to be high, with this trend 

to switch between high and low values lasting a long time into the future. This type of 

series is called an anti-persistent. The strength of this anti-persistent trend depends on 

how close H is close to zero.  

For the case H equals to 0.5 denotes that the series are random and uncorrelated.  In 

fact, the value is applicable to series for which the autocorrelations at small time lags can 

be positive or negative but where the absolute values of the autocorrelations decay 

exponentially quickly to zero.  
To estimate the Hurst exponent, we need to estimate the dependence of the rescaled 

range, the /R S statistic [12, 13]. The adjusted range R is defined as 
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i i

R n X kX X kX
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   
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   
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where X    represents the sample mean. The standard deviation S is given by  

 

  2

1

1
    (     )

n

i

i

S n X X
n 

    

 

The Hurst exponent is estimated by calculating the average rescaled range over multiple 

regions of the data. The expected value of R/S converges on the Hurst exponent power 

function are shown in (10) as below 

        

 

 
         H

R n
E Cn

S n

 
 

  
       as     n    (10) 

 

By plotting the logarithm of equation (10) as a function of log n with fitting a straight line, 

the slope of lines gives H.  

 

3     Results 

 

3.1 Data Description 

 

Figure 1: Closing Prices of FTSE Bursa Malaysia KLCI 

 

The historical prices of FTSE Bursa Malaysia KLCI were described through graphical 

representation. The graphing representation of the time series data was done via scatter 

plot. 
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3.1.1  Historical Prices FTSE Bursa Malaysia KLCI (1/9/1998-31/7/2008 ) 
 

The real data of the closing prices of FTSE Bursa Malaysia KLCI from 1st September 

1998 until 31st July 2008 were plotted against its trading days. 

From figure 1, it showed that the real prices of FTSE Bursa Malaysia KLCI during 

this period have an increase trend. The economy growth is quite stable along the period.  

 

3.2 Estimation of the Heston Model Parameters 

 

The values of the ,  ,      and    parameters were estimated based on simulated 

maximum likelihood method using Matlab. Table 1 shows the values of the estimated  

,  ,      and   parameters of Heston Model for the closing prices of FTSE Bursa 

Malaysia KLCI. 

 

Table 1: Estimated Values of Heston Model Parameters 

 

Types of Parameter Values of Parameter 

Drift,   0.003750684 

Long-time mean of variance,    0.0000713 

Rate of relaxation to   ,    0.07797 

Variance noise,    0.00225 

 

3.3 Comparison with the FTSE Bursa Malaysia KLCI Time Series 

 

Figure 2, 3, 4 and 5 compare the theoretical curve that was derived by Dragulescu and 

Yakovenko [4] with the probability distribution of log returns for historical prices of 

FTSE Bursa Malaysia KLCI at delay of time, t = 1, 20,40 and 250 respectively. 

 

 
 

Figure 2: Theoretical curve and the probability distribution of log returns for historical 

prices of FTSE Bursa Malaysia KLCI at a delay of time, 1t   
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Figure 3: Theoretical curve and the probability distribution of log returns for historical 

prices of FTSE Bursa Malaysia KLCI at a delay of time, 20t   
  

 From Figure 2, we are able to notice that the real data points fitted the theoretical 

curve quite well. On the other hand, Figure 3 shows that the real data points have flatter 

shape than curve of the theoretical curve. The data points that have log return x nearer to 

value zero tend to fall below the curve. However, the data points that have log return x 

further from value zero tend to fall above the curve. 

 

 
 

Figure 4: Theoretical curve and the probability distribution of log returns for historical 

prices of FTSE Bursa Malaysia KLCI at a delay of time, t = 40 
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Figure 5: Theoretical curve and the probability distribution of log returns for historical 

prices of FTSE Bursa Malaysia KLCI at a delay of time, t = 250 

 

From Figure 4 and 5, there are more real data points which deviate from the curve. 

The real data points have flatter shape than curve of the theoretical curve. The data points 

that have log return x nearer to value zero tend to fall below the curve. Whereas, the data 

points that have log return x further from value zero tend to fall above the curve. However, 

the shape of real data points tends to shift to the left. 

In summary, only Figure 2 show quite close match between the theoretical curve and 

real data. 

 

 

3.4 Hurst Exponent Estimation in FTSE Bursa Malaysia KLCI 

 
Figure 6 showed the pox plot of the Hurst Exponent. The slope in the graph represents the 

Hurst exponent H. 

Figure 6: Pox plot of Hurst Exponent 
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From figure 6, the Hurst Exponent is estimated to be 0.9038. This indicates that 

the data set had long dependence range toward the time series. It can be 

categorised in case (i) which is 0.5  1H  . It shows that the time series have 

long-term positive autocorrelation. This means that a high value in the series will 

probably be followed by another high value and that the values along time into the 

future will also tend to be high. This series is considered to be persistent. The 

strength of this persistent trend depends on how close H is to 1. 
 

 

4 Discussion and Conclusion 

 
For the comparison between the analytic formula that derived by Dragulescu and 

Yakovenko [2] with the probability distribution of log returns for historical prices of 

FTSE Bursa Malaysia KLCI, the curves given by the analytic formula are much more 

flatter than the shape constituted by the real data points at a delay of time,  40 and 250. 

Furthermore, most of the real data points also do not lie nicely on the curves, the greater 

the time lag, the greater the deviation noticed. However, the probability distribution of 

log returns for prices of FTSE Bursa Malaysia KLCI fitted the theoretical curve better at a 

delay of time, t= 1 and 20. As t increases, the greater the deviation noticed. 

The Hurst exponent estimation showed that the index prices of FTSE Bursa Malaysia 

KLCI have long range dependence time series. Thus, it is reasonable that the probability 

distribution of log returns for historical prices of FTSE Bursa Malaysia KLCI does not lie 

nicely for the greater time lag.  

The probability distribution of the index prices of FTSE Bursa Malaysia KLCI will 

help investors to have an idea on the probability of getting certain returns after a certain 

period. Since FTSE Bursa Malaysia KLCI comprises the largest 30 companies listed on 

the Main Board, it will more aptly define market activities in Malaysian stock market. The 

result would provide a guideline to the investors to plan a good strategy for their 

investment based on the result of this study. 

We conclude that, the analytical formula that was derived by Dragulescu and 

Yakovenko [2] does not agree very well with the probability distribution for log returns of 

index prices FTSE Bursa Malaysia KLCI which is from 1st September 1998 until 31st July 

2008. By looking at Figure 1, there is a strong downward trend in 2000 but still we are 

trying to fit the data using a constant positive growth rate µ. However, the constant 

positive growth rate µ is not suitable to describe the growth rate of the data. As mentioned 

in the paper of Dragulescu and Yakovenko [2], the growth rates in 1998, 2000 and 2008 

were rather negative values than positive values. The Hurst exponent showed that the data 

set has long term memory which is persistent. Thus, it is reasonable that the analytical 

formula does not agree very well with the probability distribution for log returns of index 

prices FTSE Bursa Malaysia KLCI during the period. This is due to the exclusion of long 

memory in the model. It can be seen for Heston model in equation (2) and (3) which 

averaged the long time variance, . For future research, this study will consider long 
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memory in Heston model which implies a new technique in parameters estimation need to 

be developed. 
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