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Abstract Doubtful outlier between clusters may show some meaningful data. In 

some cases for example it may explain the potential or the unique pattern within 

the data. However, there is still no further analysis to show how this data 

(doubtful) connected to one another. In the simulation, we use different 

threshold values to detect how many doubtful outliers exist between clusters. 

For these cases we will use 1%, 5%, 10%, 15% and 20% of threshold values. 

For real data, we fit a linear model using an M estimator with the existences of 

doubtful data with 10% threshold value. The objective is to determine if 

doubtful data affect the parameter of M estimator. By comparing using linear 

model with the deletion of outliers we can conclude that doubtful outlier affect 

the parameter of M estimator make it less robust towards doubtful outliers in the 

present of 10% of threshold value. 
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1 Introduction 
 

The presence of certain amount of outlying observations is common in many practical 

statistical applications. In cluster analysis methods those outlying observations may lead to 

unsatisfactory clustering results. Methods for cluster analysis are basically aimed at detecting 

homogeneity with large heterogeneity among them. For non-robust methods, clustering may 

be heavily influenced by even a small fraction of outlying data. Thus application of robust 

clustering methods is very appropriate. Certain technique related with cluster analysis and 
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robust methods may lead for the interest of robust clustering techniques. For instance, robust 

clustering method can be used to handle data of highly concentrated outliers. The TCLUST 

package in R statistical computing implements different robust non-hierarchical clustering. In 

TCLUST, trimming plays a key role as it allows the removal of a fraction,   of the most 

outlying data and therefore the influence of outlying data can be avoided and robustness 

naturally arises. This trimming approach to clustering has been introduced in Cuesta-Abertos 

et.al (1997), Gallegos (2002), Gallegos and Ritter (2005) and Garcia-Escudero et.al. (2008) 

[1,2,6]. In TCLUST analysis, selecting the number of groups and trimming size perhaps the 

most complex problems when applying cluster analysis. In some cases, researcher might have 

an idea on the number of clusters or the trimming proportion of true contamination level. 

In TCLUST, some additional exploratory graphical tool can be applied in order to 

evaluate the quality of the cluster assignment and the trimming decision. This is done by 

applying the function of discriminant factor DF
i( )

. The use of this type of discriminant 

factors was suggested in Van Aelst et al. (2006) [7] in a cluster problem without trimming. 

Silhouette plots (Rousseeuw, 1987) can be used for summarizing the obtained order 

discriminant factors. Clusters in silhouette plot with indicated value of discriminant factor 

would suggest the existence of well-determined cluster. The most doubtful assignment with 

certain degree of discriminant value will allow us to determine if the cluster is well defined or 

not. Besides that, an argument may arise whether the doubtful assignment came from the 

outlier or from the some doubtful trimmed observation. Furthermore, the existence of 

outlying data may strongly influence the cluster assignment. Therefore, the outlier detection 

in cluster analysis is required in order to make the cluster assignment to be well classified 

according to its own cluster. This may help the data not to be in the overlapping cluster. 

Good clustering explained the data to describe real life condition especially applied analysis 

for example in medical data namely cancer and blood transfusion for blood group. Therefore 

the outlier detection methods in cluster analysis are required. 

 

 

2     Method and Data 
 

2.1 Past Studies 
 

In clustering analysis, trimming the data simply means removing the outlying observations 

and do not intend to fit all of them. Researchers sometimes view isolated data or small groups 

of outliers as cluster. This is quite logical because cluster is obviously heterogeneous to other 

data structures. In model-based clustering, the methods intend to find clusters formed around 

different types of objects. For example these objects were initially centers of cluster, the 

number of clusters and the constraints on scatter matrices of the clusters. Measuring 
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robustness in cluster analysis is a very difficult task because the measure, for example the 

location scatter estimation or regression model sometimes may be insufficient. In most cases 

we do not know the true proportion of outliers that exist in the data. However by trial and 

error the trimming proportion in cluster analysis for example in robust k-means, partition 

around mediod (PAM), and TCLUST may give rise to a close estimate of the percentages of 

true outliers that exists. Gallegos (2002) and Gallegos and Ritter (2005) [2] suggest that we 

may assume the doubtful assignment in cluster analysis as indication of outliers or bad 

trimming proportion (false trimming). The question is, if we know exactly the proportion of 

outliers and but still can detect the doubtful assignment, what does this tell us? Can we use 

doubtful assignment as a tool to detect outliers? 

 

2.2 Strength of Cluster Assignments 

 

For a given TCLUST clustering solution, we now introduce some confirmatory graphical tools 

that will help us to evaluate the quality of the cluster assignments and the strength of trimming 

decisions. Let us consider an optimal solution R̂ = R̂0, R̂1,..., R̂k{ },q̂ = q̂0,...,q̂k{ }  and 

p̂ = p̂1,...,p̂ k{ } returned by the TCLUST for some k, a  and values. Given an observation 

xi
, let us define  

 

Dj xi :q̂,p̂( ) = p̂ jf xi ,q̂ j( ) for j = 1,2,..., k     (1) 

 

Ri i = 0,1,..., k( ) is a set of indices of
 xi

, q̂i i = 0,1,..., k( )  is a covariance matrices of xi
 and 

p i i = 0,1,..., k( ) is a weight of each cluster.  The values in equation (1) can be sorted as 

D
1( ) xi;q̂,p̂( ) £ ... £ D

k( ) xi;q̂,p̂( ) . A non-trimmed observation xi
 would be assigned to 

group j if D
j( ) xi;q̂,p̂( ) £ ... £

k( ) xi;q̂,p̂( ) (Garcia et.al. 2008). Therefore, we can measure the 

strength of the assignment of xi
 to group j by analyzing the size of D

k( ) xi;q̂,p̂( )  with respect 

to the second largest value D
k-1( ) xi;q̂,p̂( ). We thus define the discriminant factors DF

i( )
’s as  

  

DF
i( ) = log D

k-1( ) xi;q̂,p̂( ) D
k( ) xi;q̂,p̂( )( )    (2) 
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The idea of using posterior probabilities (equation 1) to measure assignment strengths is not 

new in clustering. The use of these DF
i( )

’s was already suggested in Van Aelst et.al. 2006. Let 

us consider d
i( ) = D

k( ) xi;q̂,p̂( )  for all the observations in the sample and sort them in 

d
1( ) £ ... £ d

n( )
. The TCLUST trims off a proportion a  , of observations with smallest 

assignment strengths. In other words, the trimmed observations 

are R̂0 = i Î 1,...,n{ } :d
i( ) £ d

naéê ùú{ }. Therefore, we can quantify the certainty of the trimming 

decision for the trimmed observation xi
 through 

 

   DF
i( ) = log d

naéê ùú+1
D

k( ) xi;q̂,p̂( )( )     (3) 

 

Large values of DF
i( )

 for example DF
i( ) > log y( ) can be explain where y is a comparison 

value to indicate doubtful assignments or trimming decisions. Of course, this log y( )  

threshold value is a subjective choice. With this in mind, different summaries of the 

discriminant factors may be obtained. For instance silhouette plot (Rousseeuw 1987) can be 

made that can indicate the value of DF
i( )

. The larger value tells that the obtained solution 

includes some groups having not enough strength (the existences of doubtful data is high). 

Moreover we can also plot observation having large DF
i( )

 values and these observations 

correspond to doubtful assignment or trimming decisions. In graphical view, the observations 

in the frontier between clusters that appear when splitting one of the main groups are labeled 

as doubtful assignments that are referred as data in overlapping clusters. Some trimmed 

observations in the boundaries of the main groups may be considered as doubtfully trimmed 

ones. 

 

2.3  The Spurious Outliers Model 

 

The discussion about simulated examples goes back to Gallegos (2002) and Gallegos and 

Ritter (2005) [1,2] who proposed the spurious outliers model. This model is defined through 

likelihoods in equation (4).  

 

P
j=1

k

P
iÎRj

f xi;m j ,S j( )é

ëê
ù

ûú
P

iÎR0

gi xi( )é
ëê

ù
ûú

    (4) 
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where f ×;m j ,S j( )  is a probability density function of the p-variate normal distribution with 

mean m   and covariance matrix S  . From (equation 4) R0,..., Rk{ } being partitioned to the 

set of indices 1,2,...,n{ }  such that R0 = naéê ùú . R0
  are the indices of non regular 

observation generated by probability function of gi
. The search of

 
R0,..., Rk{ } , vector 

m j
and matrices S j  maximizing (equation 4) can be simplified such that equation 5 

 

 log f xi;m j ,S j( )
iÎRj

å
j=1

k

å       (5) 

The maximum of equation 5 implicitly assumes equal cluster weight and alternatively cluster 

weight can be considered as p j Î 0,1[ ] maximizing  

 

 logp j + log f xi;m j ,S j( )( )
iÎRj

å
j=1

k

å      (6) 

 

For doubtful assignment in cluster analysis we may use theorem from Gallegos (2002) and 

Gallegos and Ritter (2005) to assume that there are outliers between the overlapping areas of 

two artificially found clusters. Observations with large DF
i( )

 values indicate doubtful 

assignments or trimming decision. In clustering problem, the use of discriminant factors was 

already suggested by Van Aelst et.al (2006). Silhouette plot (Rousseeuw 1987) can be used to 

summarize the order of discriminant factors. Figure 1 shows the result after applying the 

DF
i( )

 function to a clustering solution found for the real data (real data will be explain in 

section 2.6). The most doubtful assignments with DF
i( )

 larger than a log (threshold) value are 

highlighted in such 

 

 DF
i( ) ³ log threshold( )      (7) 

 

Threshold = 0.1 means that a decision on a particular observation is considered as doubtful if 

the quality of the second best possible decision is smaller than one tenth of the quality of the 

actual made decision. All observations with DF
i( ) ³ log 0.1( )are highlighted in darker color 

in Figure 1. 
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Figure 1: Result of Cluster analysis using doubtful assignment (+ is a data for cluster 1, Δ is a 

data for cluster 2) 

 

 

2.4  The Quality of the Actual Made Decision 

 

The actual made decision is a threshold value, which the existence of doubtful data is as 

minimum as possible. Figure 2 illustrates the number of outlying observations in the 

simulated data. The data generated was 1000 observations together with 5% of trimming 

proportion and two clusters. By setting the threshold value (x1), therefore for 
  
DF i( ) ³ log x1( ) 

the doubtful data may arise when the strength of cluster assignment is low. Furthermore, the 

doubtful observation might tell us about the overall cluster in TCLUST. Figure 2 for example, 

we let threshold to be 0.1 because we assume that only less than 10% of the quality of actual 

made decision for observation belongs to the second best possible cluster. For the next 

analysis we tried using different values of threshold that are 1%, 5%, 15%, 20% and 25% 
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Figure 2: Graphical displays based on  iDF  
values for the number of observations. The 

dark colour of observation indicate as normal outlier whereas the coloured one consider as 

doubtful observations 

 

 

 

Figure 3: Graphical displays: Threshold 15%(Left), Threshold 20%(middle) and Threshold 

25%(Right) (o is a real outlier, Δ is a doubtful observations) 
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Figure 3 represent the threshold values for 15%, 20%, and 25% whereas Figure 4 represent 

the threshold values for 1% and 5%. These values were chosen to find the best estimation for 

the threshold value therefore we can find the best possible percentages of outliers exist. The 

summary of threshold value and doubtful data from Figure 3 and Figure 4 are summaries in 

Table 1.  From Table 1, as the threshold values increases, we can see the doubtful data 

decrease. In this study we try to show how important it is to estimate the threshold value so 

that we can know precisely the number of true outliers that exist in doubtful assignment. 

Table 1 shows that the suitable threshold value should be greater than 15%. Since there is no 

change in doubtful assignment when threshold value increases, we decided that the suitable 

value of threshold is 15%. There are 4 most doubtful decision (threshold value of 15%, 20% 

and 25%) and perhaps can be considered as outliers. If we let threshold value to be 15%, we 

can conclude that there are 4 most doubtful assignments with    log 0.15iDF  . Which means, 

a decision of 4 doubtful assignments on observation, 
i

x  are considered as doubtful because of 

the quality of second best possible decision is smaller than 15% of the quality of the actual 

made decision. The summary is in Table 1. 

 

 

 

 

Figure 4: Graphical displays: Threshold 1% (Left) and Threshold 5%(Right) (o is a real 

outlier, Δ is a doubtful observations for cluster 1, + is a doubtful observations for cluster 2) 
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 Table 1: Summary of threshold value and doubtful data detected 

Threshold Value 

(%) Number of Doubtful Data 

  1 8 

5 6 

10 5 

15 4 

20 4 

25 4 

 

 

2.5  Robust Linear Model, M Estimator 

 

It is known that the median is the best robust estimator for the parameter b  (the weighted 

mean). The median is neither very efficient nor can it be well generalized to the regression 

model. The M-estimator here is another family of estimator for the location model. M-

estimator plays a role not only in fitting of location models but also in fitting of regression 

models. From practical point of view, the M-estimator is essentially a weighted mean, where 

the weights are designed to prevent the influence of outliers of the estimator as much as 

possible. The weighted is defined, 

 

  b̂M =
wiyii=1

n

å
wii=1

n

å
      (8) 

2.6  Data 

 

A total of 30 participants to undergo the treadmill exercise are used. 15 of these participants 

are healthy and have no family history of hypertension or any cardiovascular disease, these 

groups are categorized as ‘Control Group’. On the other hand, the other 15 is a healthy 

participant with a family history of hypertension. This group is categorized as ‘High Risk 

Group’. The data is collected from Faculty of Biomedical Sciences, University of Selangor 

(Unisel). 
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3 Results and discussion 
 

 

3.1 Result of Cluster Analysis 

 

The systolic and diastolic of data before the exercise are used to indicate the existence of 

doubtful data. The output data of blood pressure before exercise are calculated so that the 

discriminant factor and doubtful data can be measure and plotted. The result in Figure 5 

indicated the systolic against diastolic blood pressure before having exercise. The result 

shows that groups of people can be divided into two. Mean of discriminant factor shows that 

the clusters are well defined. In doubtful assignment, there are four doubtful data exist. Let 

threshold value 0.1, therefore for DF
i( ) ³ log 0.1( )  the observations that can be considered as 

doubtful are number 14, 15, 16, 29 and number 30 (Figure 5). With this simulation output, 

the doubtful observations or outliers may arise when the strength of cluster assignment is low. 

Furthermore, the doubtful observation might tell us about the overall cluster. For the case in 

Figure 5, we just set the threshold to be 0.1 because we assume that only less than 10% of the 

quality of actual made decision for observation belongs to the second best possible cluster. 

 

 
Figure 5: The observation of doubtful data 
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3.2 Fitting Linear Model Using M-estimator 

 

The use of M-estimator in this paper is to fit linear model of robust regression allowing 

robust inference for parameters and robust model selection. It is because outliers in both 

respond variables and explanatory variable minimally influence robust fit. In the case of 

outlier in clusters, there are only doubtful observations that are exist between overlapping 

clusters. We try to figure out if robust regression having any affect with the presences of 

doubtful data in clustering. We run result for regression with deletion of doubtful data and on 

the other hand we run result for robust regression (M-estimator) with and without the deletion 

of doubtful data. Table 2 is a summary of regression analysis for linear and robust (m-

estimator). Table 2 shows the coefficient of linear regression with intercept 14.89 where the 

slope is 0.4598. After the deletion of doubtful data, the intercept increase to 15.33 and the 

slope is 0.4639. For M-estimator, the data before the deletion, result shows the intercept is 

high which 30.47 and its slope is 0.3569. After the deletion of doubtful data, intercept is 

17.62 and slope is 0.4498. This significant result shows that the M-estimator is less robust if 

there is doubtful data exist. Since we are remove the doubtful data, M-estimator shows that 

the right value of parameter as almost the same if using normal regression with deletion of 

doubtful data. 

 

 

 

Table 2: Summary of linear regression and robust regression with and without (deletion) 

doubtful outlier. 

  Linear Regression M-estimator 

  Before deletion After deletion Before deletion After deletion 

Intercept 14.89 15.33 30.47 17.62 

Slope 0.4598 0.4639 0.3569 0.4498 

 

 

 

4 Conclusion 

 
It is found that robust linear regression using M-estimator is affected (no deletion of doubtful 

data) when there is doubtful data exists. For simulation, result shows that the threshold value 

of 15% can detect the doubtful data more accurate compare to 10%. However, using real data 

with n=30 with threshold value of 10% we can verify the numbers of doubtful data exist. In 

this case we classified it as doubtful outlier. To test if the doubtful data affected a linear 
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model, comparison (linear model and robust linear model) shows that doubtful data affected 

the parameter of robust linear regression. 
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