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Abstract. In this paper, we address a non-preemptive task scheduling 

problem with an objective function of minimizing the makespan. We 

consider online scheduling with release date on identical parallel processing 

system with centralized and no splitting structure. Multi-steps heuristic 

algorithms are proposed to solve this non-deterministic scheduling problem. 

A computational experiment is conducted to examine the effectiveness of 

the proposed multi-steps method in different size problem. The 

computational results show that all the proposed heuristics obtain good 

results with the gap between optimal solutions are less than 10% even for a 

large date set. The experiment is performed using Microsoft Visual C++ 

programming software in windows environment.  
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1 Introduction 
 

This paper studies the non-deterministic aspect in identical parallel processor systems. An 

added feature is considered to the standard task characteristic, which is the online 

scheduling with different task release dates. Online scheduling refers to the availability of 

task information. All the problem instances can only be known during the course of 

scheduling. Online scheduling is in contrast to offline scheduling where all the 

information of the tasks are ready and known before the execution starts. Heuristic 

algorithms are developed as the optimum solution for the problem can only be obtained 
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for the offline model. Our proposed heuristics for online scheduling problem are based on 

the multi-step algorithm and will be applied in the task selection phase.  

For a literature review survey about online scheduling, Sgall [1] presented a 

comparative results analysis for different types of online paradigms. He mentioned in one 

theorem that for any variant of online scheduling of job arrival over time, there exist a 2-

competitive algorithm with respect to makespan. Lee et al. [2] provided a survey for 

online scheduling specifically in minimizing the makespan subject to machine eligibility. 

They proceed with the results for online over list and online over time. There are review 

focussed on the competitive analysis of the online algorithms by Albers [3]. 

Different algorithms have been developed for solving online scheduling. For 

example, Hurink and Paulus [4] showed the use of a greedy algorithm, where the online 

over list problems have a competitive ratio strictly not less than 2. Fu et al. [5] considered 

an online over time problem on unbounded batch machine to minimize makespan with 

limited restart. They provided an algorithm with a competitive ratio of 3/2. Tian et al. [6] 

proposed an online over time algorithm with a competitive ratio no greater than √2. They 

showed the bound is tight for the problem on two parallel batch machines with the 

objective of minimizing the makespan. 

Some researchers also considered online scheduling with other task characteristics. 

For example, Epstein [7] addressed online scheduling with precedence constraints. The 

lower bound is proved to be 2 −
1

𝑚

 
on the competitive ratio of any deterministic 

algorithm and 2 −
2

1−𝑚
 on any randomized algorithm. Both results are applied to (1−m) 

preemptive or non-preemptive cases. Huo et al. [8] also considered precedence 

constraints and also other features with a set of equal-processing time with the objective 

of minimizing the makespan. 

Our work focuses on online scheduling with a different task release date in 

minimizing the makespan. This problem also has many applications in industry. For 

example, identical parallel machine scheduling systems can be found in real-world 

manufacturing environment such as in the integrated-circuit packing manufacturing 

particularly in wirebonding workstation [9]. The wirebonding operations also deal with 

online job arrival case and minimizing the makespan as the objective. Online scheduling 

on identical parallel processors also can be applied in another application involving high 

tech equipment on operating rooms in health care industry [10]. A utilization schedule 

needs to be prepared daily as well as monthly to fit the room with patients' cases (as 

many as possible) and facilities needed for each. The room scheduler will consider the 

operating room as the identical machine and the cases represent the jobs. The room 

utilization or the makespan is very critical to profitability. 

 

2 Problem Description 
 

The parallel processor system can be stated as follows: We are given a set of n tasks, Ji = 

J1, J2, …, Jn, that are to be processed on a set of m parallel processors, Mj = M1, M2, …, 

Mm. The tasks are independent in that there are no precedence relations among them. The 
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processors are said to be identical, when the processing time pij = pi  for all tasks i and 

processor j with the same processor speed. The performance criterion of interest is the 

makespan, Cmax of the system. In real-time systems, it is important to minimize the 

makespan, which is the maximum of total tasks execution times for every processor, to 

balance the capacity utilization among parallel processors. 

We are concerned with scheduling policies in parallel processing systems with 

centralized and no splitting system structure. In such systems, there are m > 1 identical 

processors. A set of sequence of tasks arrives in the system at random points in time with 

arbitrarily distributed inter-arrival times. When a task arrives into the system, it is 

immediately queued up in order and centralized (the queue is common for all the m 

processors). Each task requires an amount of random service time. The scheduling of 

tasks on the processors has no splitting structure since the entire set of tasks are 

scheduled to run sequentially on the same processor once the task are scheduled. 

In this scheduling problem, we assume that all processors are available to serve at 

time zero and can process not more than one task at a time. Each processor is 

continuously available and there is no idle time between the execution of a pair of tasks. 

Each task has a processing requirement with positive processing time units. Each arrival 

tasks will be assigned to one processor only, inferring that the task migration between 

processors is prohibited. The processing of any operation may not be interrupted. Every 

task execution must be completely done before another task is assigned to the same 

processor and each task must be successfully assigned to only one processor. Moreover, 

each task i has a non-negative integer release date, ri, at which time it becomes available 

for processing. 

We consider the scheduling with online characteristic where all information is not 

known in advance. The scheduling decision by the scheduler has to be made at execution 

time and in this model, the operation is irrevocable. All previous decisions to assign and 

schedule a task also may not be revoked. In online scheduling, there are several 

classifications of possibilities on the arrival tasks. The most attention on online model 

systems has been focused on online over list and online over time scheduling. Online 

over list systems do not notice the existence of the arrival task until all its predecessors 

have already been scheduled while online over time systems know the existence of the 

tasks at their release date. In our problem, the way of task characteristics information 

received is the model of scheduling online over time. Note that, for the multiprocessor 

systems, there are no online scheduling algorithms that can be optimal in most cases [11]. 

It is due to the lack of global information on the instances [12]. The optimum value for 

online scheduling with task release dates can only be obtained when the scheduling is 

performed offline. 

From all these descriptions and assumptions, our task scheduling problem can 

specifically be denoted based on the established three-filed notation as P|online,ri|Cmax, i.e. 

the task scheduling problem for minimizing the makespan on identical parallel processors 

with the model requires scheduling to be online over time where the availability of each 

task is restricted by release date. We have added a substantial degree of difficulty to the 

classical problems P||Cmax which is already strongly NP-hard [13]. 
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3     Proposed Heuristics Algorithm for Online Scheduling 
 

In this section, we consider three heuristic algorithms that required less 

arrangement time for solving P|online,ri|Cmax which are simple and fast. The fast 

arrangement time is needed as for the online scheduling, we have to compete with the 

running time. The proposed algorithms that we are going to introduce share a common 

structure. First, task selection phase is obtained with a loop of multi-step procedures. The 

proposed heuristics design a slot for a refinement step during the running time in the loop 

and produce new Qlist for each refinement step. At the first step of the loop, we apply 

priority rule for the whole system until the solution is obtained. Along with this step, two 

subsequent modification methods are applied but still in the priority rule loop. This 

modification steps are based on a Cluster Insertion (CI) and a Local Cluster Interchange 

(LCI) methods. After obtaining a list of candidate in the task selection phase, the 

procedure is continued with processor selection phase until the system is terminated. The 

overall structure of the proposed heuristics is given in Figure 1. 

 
Figure 1: Pseudo-algorithm for proposed heuristic 

 

3.1      Task Selection Scheme 

 

3.1.1 Local Priority Rule 

 

A priority rule in task scheduling is a policy in assigning an available task to an 

idle processor with a specific sequencing decision [14]. An available task refers to a 

waiting task that is ready to be assigned. The goal of applying a priority based rule is to 

select the task which has to be scheduled next, so that the system correctly allocates the 

resource. The rule also gives acceptable results with a reasonable computational time and 

is easy to implement [15]. The task selection is important to predict the outcome 

expressed by the objective function. The priority rules can be classified into two types 

[14]: local and global. The distinction between the local and global rules is in term of the 

information status rule. In local rule, the information on the waiting jobs at the machine is 
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for a current time only. A global rule requires information on the jobs beyond the 

corresponding queue. The local information of the queue can be applied to our parallel 

processing system with centralized and no splitting structure. In local priority rule, the 

information is also more specific to the workstation. The local rules are widely used 

because they are robust against disruption [16]. Our local rule has time independent 

priority computation. Obviously, the processing time does not change over time once 

they have been computed in a queue. 

In the parallel processing system, ready tasks share a single waiting list. In multi-

step method, First-Come-First-Serve (FCFS) priority rule is computed at the first stage of 

the method and produces a local priority rule (LPR) scheduling list, QLPR. Figure 2 

depicts the process of the LPR. FCFS is a random attribute in the local queue and a 

simple task priority rule which can often be found in real-systems but is usually 

considered inadequate by others. Note that, a FCFS discipline implies that services begin 

in the same order as arrival, but that tasks may have a different order because of 

different-length service time. The multi-step scheduler serves the unscheduled tasks in 

the waiting list using a specific task selection process that will be discussed in the next 

subsection. 

 

Procedure Local_Priority_Rule() 

     begin 

          for 1t   to maxt t  do 

               if 1 2 maxt t t   do 

                    for 1i   to n  do 

                         : perform candidates for list LPRQ Q   

                    endfor 

               endif 

          endfor 

     end 

 

Figure 2:  Pseudo-algorithm for Local Priority Rule 

 

FCFS policies have been seen to be optimal in terms of the number of tasks and 

the throughput (i.e. the number of activities that run to completion within the given 

amount of time) [17]. There are cases where FCFS also exhibit a nice property regarding 

response time and smaller vectors of transient response time for all tasks. However, 

sometimes the optimality properties of FCFS fail to hold when tasks entering the system 

have such a random structure. The multi-step method can be effectively employed to 

improve the system. In order to escape from this randomization problem, we propose the 

following two modification procedures in the multi-step method loop: Cluster Insertion 

(CI) and Local Cluster Interchange (LCI).  
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3.1.2 Cluster Insertion (CI) 

 

We define an insertion for the P|online,ri|Cmax problem in the tasks sequence 

where one task is moved from a current Qlist to an improved Qlist . The CI procedure is a 

build up phase for refinement purpose in the local priority rule loop. In this phase, the 

tasks are extracted from QLPR and inserted one by one to a build up phase that constructs a 

cluster. We employ this CI idea from clustering method in proposed heuristic algorithm 

in the literature for the general clustering problem. Most of them consider the clustering 

problem in offline scheduling. In more detail, clustering is a method of gathering tasks 

together and mapping them in the same group. Formally, the clustering method is either 

based on linear clustering or non-linear clustering. Linear clustering is a situation where 

the tasks gather in the same cluster and dependent to each other as they have precedence 

relations among them. The CI process can be considered as non-linear clustering. The 

step involves two or more tasks in a cluster where the tasks are independent. These 

independent tasks can be easily distributed to parallel processors since there is no 

interference among the processors and other tasks. Therefore, there is no restriction in 

partitioning the tasks in CI process. CI can provide some advantages when the task is 

moved  into  several  partitions. The  random  structure  of  the  arrival tasks in the system  

 

Procedure Cluster_Insertion() 

     begin 

          Candidates LPRQ ; 

          while (status=1) do 

               for 1t   to maxt t  do 

                    
, : the arrival of task  at time ;

ai t aa i t   

                    
, : the release date of task  at time ;

bi t br i t   

                    if (
, ,a bi t i ta r ) then 

                         for 1k   to k   do 

            Extract candidate from LPRQ  and assign to cluster; 

            :listQ   perform cadidates for LIQ ; 

                         endfor 

                    else 

              Processor_Selection(); 

                    endif 

               endfor 

 

Figure 3:  Pseudo-algorithm for Cluster Insertion procedure 
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could be simply managed. Therefore, the randomization issue in FCFS local priority rule 

can be partly solved by CI and completely solved in the LCI phase that we will discuss in 

the next section. 

Obviously, in order for the movement to be accepted, firstly, the task i has to be in the 

QLPR i.e  Ji ∈ QLPR. Secondly, the release date of the task must be greater than 

the arrival time. Otherwise the mapping won't succeed. Notice that this system is 

continuous and idle time between two tasks is unaccepted. More specifically, for the 

P|online,ri|Cmax  problem, the CI procedure consists of dividing tasks in QLPR and insert 

them into particular 𝜁 slots. This insertion procedure is essentially repeated for n times. 

All mapped tasks are deleted from QLPR and inserted into a new list denoted as QCI. Figure 

3 shows a clear description of this procedure of CI. 

 

3.1.3 Local Cluster Interchange (LCI) 

 

The LCI method is a permutation process specifically employed in the multi-step 

method loop after CI is adopted. In this process, the clusters that have been constructed in 

QCI will have mutation process to produce a new Qlist named QLCI. The mutation technique 

works by swapping the tasks within the local cluster in order to control the structure of 

the system. The task swapping process in cluster A will apply a simple and fast list 

scheduling (LS) algorithm to produce permutation cluster A’. This step is applied until all 

clusters are done. To initiate the permutation process, the first cluster in QCI is chosen and 

stored as ζ1. Then, the procedure continues for the second cluster in the list. The second 

cluster is stored as ζ2. This step is then applied for all clusters in QCI. Once this stage is 

accomplished, the local cluster interchange operation begins. 

For a QLCI to be obtained, only one LS algorithm can be applied for the whole Qlist. 

In this proposed heuristic, we opt for the two well known LS algorithms for the 

interchange process. More specifically, the LS for the problem P|online,ri|Cmax  are 

Longest Processing Time (LPT) and Shortest Processing Time (SPT) algorithms. For 

every cluster, we evaluate the processing time according to the selected LS method. Then, 

after the LS procedure, all the tasks in the cluster are ready in their own positions. If the 

task ahead is already assigned, the position is empty. The next task is able to replace and 

transfer to the empty position and the process continues for all remaining tasks in the 

QLCI . 

An initial task for a cluster is chosen by LPT algorithm where the longest processing 

time among the task i.e p1 ≥ p2 ≥ ⋯ ≥ pi is selected. The same procedure is repeated 

until the last cluster is reached. Similarly, the SPT also has to define the starting task and 

continue until the final task in a cluster but by using the shortest processing time 

approach where p1 ≤ p2 ≤ ⋯ ≤ pi  is applied. This procedure is to form QLCI. The 

owner of the first position in QLCI is the first task which will be picked up for the next 

procedure. The pseudo-algorithm for LCI procedure is shown in Figure 4. 

 

 

LPRi QJ 
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Procedure Local_Cluster_Interchange() 

     begin 

          Candidates CIQ ; 

          while (status=1) do 

               for 1   to max   do 

                    store the cluster accordingly as 1 2 max, ,...,   ;   

                    for 1i   to maxi J  do 

                         for 1k   to k   do 

            swap the tasks and sort according to the LS algorithm; 

            :listQ   perform cadidates for LCIQ ; 

                         endfor 

                    endfor 

     

Figure 4:  Pseudo-algorithm for Local Cluster Interchange procedure 

 

3.2    Processor Selection Scheme 

 

We now present a processor selection algorithm after multi-step loop in the task 

selection process. We have a list of candidates that are ready to get served. In online 

scheduling, the random processor selection is not the wisest approach. Therefore, the best 

way of choosing which processor to be assigned once a task has been selected is by the 

greedy way. We develop our heuristics with a simple and fast rule; and also can produce 

good results in this dynamic environment. The algorithm that we apply is a search 

method for the earliest idle processor to compose the selected task. The status of the 

processor will be updated for each time slot. During the tracking, if an available 

processor is found at the time slot, the status of the processor will be 0, otherwise 1. The 

selected task is accepted to be assigned to the first processor with status 0 only. However, 

there might be more that one processor with status 0 at same time t. In this case, the task 

can choose the processor with the smaller index. In brief, the algorithm can be stated as 

follows: 

 

Step 1: Define the status of the processors. If the processor is busy, the status is 1 

otherwise it is 0 for idle. 

 

Step 2: At time t = 0, initialize the status of all processors with 0. This means that, all 

processors are idle and there are no tasks in the system. 
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Step 3: At time t ≥0, check the status of the processor at each time slot from the lowest 

index to the highest index label. Select the first processor with status 0 and assign 

to the task. Discard other processors with status 1. 

 

Step 4: If there is no processor available at that time slot, discard all processors and 

continue checking the status for the next time slot. Repeat the process for all 

processors at each time slot until all tasks have been assigned. 

 

 The final step of the heuristic is the status update phase. The status of the system 

must be updated to reflect the new changes. The system will stop when all tasks are 

assigned to the processors. 

  

4 Computational Experiment 
 

In this section we present a computational experiment on the proposed algorithm 

for solving the P|online,ri|Cmax. The implementation is performed to evaluate the 

effectiveness of the proposed algorithm. For this purpose, we present three 

implementations of the algorithms and test their performances. We evaluate these 

heuristics and present the best heuristic. We also reveal the gaps with the optimum value 

from the MILP model obtained by Funk et al. [11]. The following are the three heuristics 

that we use in the computational testing: 

 

HA 1: The HA 1 algorithm implements LPR, CI and LCI in the task selection process. In 

LCI, each of the ζ1, ζ2, … , ζmax contains a random list scheduling with no specific 

sequence order to form QLCI. 

 

HA 2: This algorithm puts together the multi-step method in the overall algorithm in 

Figure 1 with LPR, CI and LCI for the task selection phase. It has to be noted that 

in LCI, HA 2 applies LPT to form the formation in the interchange procedure. The 

final Qlist obtain by HA 2 is QLCI before they get transferred to processor selection 

stage. 

 

HA 3: As HA1 and HA 2, HA 3 also carry out the procedure in this order: LPR, CI and 

LCI. The final Qlist of the task selection multi-step in HA 3 is QLCI. We also have to 

note that in LCI of HA 3, we implement SPT in the interchange procedure before 

proceed to the next level which is processor selection. 

 

We implement our HA 1, HA 2 and HA 3 using Microsoft Visual C++ 6.0 on a 

personal computer with Intel Core 2 2.66 GHz 1.95 GB RAM. The algorithms are in a 

dynamic environment where the task information can only be known during the 

execution over time. We generate optimum solution using AIMMS 3.10 software 

package. The simulation data for the problem P|online,ri|Cmax is generated as follows: 
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1. The number of independent tasks are n={200, 400, 600, 800,1000}. 

 

2. For every set of tasks, we have ζ={10, 20, 30, 40, 50}. 

 

3. For every combination of n and ζ, we have m = 3 and m = 5. 

 

4. The processing time for the instances is assumed to follow a discrete uniform 

distribution between 1 to 60 i.e. distribution U[1,60]. 

 

5. We generate 20 instances for every combination. Therefore, in this experiment, 

we have n x ζ x m = 5 x 5 x 2 = 50 combinations that produced 50 x 20 = 1000 

instances. 

 

4.1 Computational Results 

 

We now present our performance results of the HA 1, HA 2 and HA 3 algorithms 

compared with the optimal solutions. We report the solutions for the objective function 

(i.e. makespan) for every instance, I. The average percentage deviation from the optimum, 

Gapa, are examined and can be calculated as follows: 

 

100
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where Cmax(I) is the makespan obtained by the heuristic for instance I and Cmax
* (I) is 

the makespan of the optimum solution for instance I. 

The maximum gap, Gapw, of the instances for every combination was also 

observed using the following formulation: 
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4.1.1 Performance of the best heuristics 

 

In this section, we present the computational results obtained from the computational 

experiment of HA 1, HA 2 and HA 3 algorithms. We will discuss the results delivered by 

the best heuristics. Tables 1 and 2 give for each heuristic algorithm the average value for 

the gap compared with the optimum solutions as a function of the problem size (m, ζ, n). 

We also evaluate the algorithms with each other by reporting the number of instances in 

which the heuristic becomes the best heuristic denoted as NBH. If there is more than one 

heuristic that obtained the same best solution for a certain instance, those particular 

algorithms can be declared as the best heuristic for that instance. We also reported the 

Gapw for every combination from the 20 instances to observe the worse performance by 
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the algorithms. It is observed that all instances in the problem shown in Tables 1 and 2 

can be solved within 1 second on average. 

The tables already give us clear observation that the algorithms of HA 1, HA 2 and 

HA 3 achieved a very good performance, where the average gap is less than 6.13% from 

the optimum for all size combinations. The best heuristic is HA 2, which is very 

outstanding, where the maximum Gapa is only 1.099% for the case m = 5,   = 50 and n = 

200. As can clearly be seen from the result in Table 1 and 2, HA 2 always obtain the 

lowest Gapa for all different size of problems. From the NBH, HA 2 is the best heuristic 

with 95.4% from 1000 generated test problems. The HA 1 and HA 3 also produced good 

results with 2% and 6% of the maximum Gapa respectively for the same case m = 5,   = 

10 and n = 200. 

 

5 Conclusion  

 

In this paper, we introduced one of the additional features in parallel processing system 

that we explored in our study which is online scheduling with release date in minimizing 

the makespan. This feature is dynamic and therefore, we applied a multi-step method to 

reduce the non-determinism in the online scheduling. We partition the scheduling process 

into three phases: (1) local priority rule; (2) cluster insertion; and (3) local cluster 

interchange. 

 

Table 1: Performance comparison of the heuristic algorithm with the optimum solution 

for m = 3 
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Table 2: Performance comparison of the heuristic algorithm with the optimum solution 

for m = 5. 

 

 
 

The different phases in the multi-step are the improvement for the next step in the 

algorithm. We developed these algorithms by their simplicity and practical usage in real 

practice. All the three algorithms are very efficient and produced a very good quality 

result with very small average gap. HA 2 is reported as the best heuristic with the 

smallest average gap and always be the best heuristics with a large number of NBH. 
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