
MATEMATIKA, 2014, Volume 30, Number 1a, 71-84

©Department of Mathematical Sciences, UTM.

Online scheduling in Minimizing Makespan on Identical Parallel Processor

with Release Date

1Syarifah Zyurina Nordin and 2Lou Caccetta

1Department of Mathematical Science, Faculty of Science, Universiti Teknologi Malaysia,

81310 UTM Johor Bahru, Johor, Malaysia
2Western Australian Centre of Excellence in Industrial Optimization (WACEIO), Department of

Mathematics and Statistics, Curtin University of Technology, GPO BOX U1987, Perth 6845,

Western Australia, Australia

e-mail: 1szyurina@utm.my, 2L.Caccetta@exchange.curtin.edu.au

Abstract. In this paper, we address a non-preemptive task scheduling

problem with an objective function of minimizing the makespan. We

consider online scheduling with release date on identical parallel processing

system with centralized and no splitting structure. Multi-steps heuristic

algorithms are proposed to solve this non-deterministic scheduling problem.

A computational experiment is conducted to examine the effectiveness of

the proposed multi-steps method in different size problem. The

computational results show that all the proposed heuristics obtain good

results with the gap between optimal solutions are less than 10% even for a

large date set. The experiment is performed using Microsoft Visual C++

programming software in windows environment.

Keywords Online scheduling; Minimizing makespan; Identical parallel

processor; Release date.

2010 Mathematics Subject Classification 68M20, 90B36, 90C27.

1 Introduction

This paper studies the non-deterministic aspect in identical parallel processor systems. An

added feature is considered to the standard task characteristic, which is the online

scheduling with different task release dates. Online scheduling refers to the availability of

task information. All the problem instances can only be known during the course of

scheduling. Online scheduling is in contrast to offline scheduling where all the

information of the tasks are ready and known before the execution starts. Heuristic

algorithms are developed as the optimum solution for the problem can only be obtained

mailto:suhailasj@utm.my

2 Syarifah & Lou

for the offline model. Our proposed heuristics for online scheduling problem are based on

the multi-step algorithm and will be applied in the task selection phase.

For a literature review survey about online scheduling, Sgall [1] presented a

comparative results analysis for different types of online paradigms. He mentioned in one

theorem that for any variant of online scheduling of job arrival over time, there exist a 2-

competitive algorithm with respect to makespan. Lee et al. [2] provided a survey for

online scheduling specifically in minimizing the makespan subject to machine eligibility.

They proceed with the results for online over list and online over time. There are review

focussed on the competitive analysis of the online algorithms by Albers [3].

Different algorithms have been developed for solving online scheduling. For

example, Hurink and Paulus [4] showed the use of a greedy algorithm, where the online

over list problems have a competitive ratio strictly not less than 2. Fu et al. [5] considered

an online over time problem on unbounded batch machine to minimize makespan with

limited restart. They provided an algorithm with a competitive ratio of 3/2. Tian et al. [6]

proposed an online over time algorithm with a competitive ratio no greater than √2. They

showed the bound is tight for the problem on two parallel batch machines with the

objective of minimizing the makespan.

Some researchers also considered online scheduling with other task characteristics.

For example, Epstein [7] addressed online scheduling with precedence constraints. The

lower bound is proved to be 2 −
1

𝑚

on the competitive ratio of any deterministic

algorithm and 2 −
2

1−𝑚
 on any randomized algorithm. Both results are applied to (1−m)

preemptive or non-preemptive cases. Huo et al. [8] also considered precedence

constraints and also other features with a set of equal-processing time with the objective

of minimizing the makespan.

Our work focuses on online scheduling with a different task release date in

minimizing the makespan. This problem also has many applications in industry. For

example, identical parallel machine scheduling systems can be found in real-world

manufacturing environment such as in the integrated-circuit packing manufacturing

particularly in wirebonding workstation [9]. The wirebonding operations also deal with

online job arrival case and minimizing the makespan as the objective. Online scheduling

on identical parallel processors also can be applied in another application involving high

tech equipment on operating rooms in health care industry [10]. A utilization schedule

needs to be prepared daily as well as monthly to fit the room with patients' cases (as

many as possible) and facilities needed for each. The room scheduler will consider the

operating room as the identical machine and the cases represent the jobs. The room

utilization or the makespan is very critical to profitability.

2 Problem Description

The parallel processor system can be stated as follows: We are given a set of n tasks, Ji =

J1, J2, …, Jn, that are to be processed on a set of m parallel processors, Mj = M1, M2, …,

Mm. The tasks are independent in that there are no precedence relations among them. The

Online scheduling in Minimizing Makespan on Identical Parallel Processor 3

processors are said to be identical, when the processing time pij = pi for all tasks i and

processor j with the same processor speed. The performance criterion of interest is the

makespan, Cmax of the system. In real-time systems, it is important to minimize the

makespan, which is the maximum of total tasks execution times for every processor, to

balance the capacity utilization among parallel processors.

We are concerned with scheduling policies in parallel processing systems with

centralized and no splitting system structure. In such systems, there are m > 1 identical

processors. A set of sequence of tasks arrives in the system at random points in time with

arbitrarily distributed inter-arrival times. When a task arrives into the system, it is

immediately queued up in order and centralized (the queue is common for all the m

processors). Each task requires an amount of random service time. The scheduling of

tasks on the processors has no splitting structure since the entire set of tasks are

scheduled to run sequentially on the same processor once the task are scheduled.

In this scheduling problem, we assume that all processors are available to serve at

time zero and can process not more than one task at a time. Each processor is

continuously available and there is no idle time between the execution of a pair of tasks.

Each task has a processing requirement with positive processing time units. Each arrival

tasks will be assigned to one processor only, inferring that the task migration between

processors is prohibited. The processing of any operation may not be interrupted. Every

task execution must be completely done before another task is assigned to the same

processor and each task must be successfully assigned to only one processor. Moreover,

each task i has a non-negative integer release date, ri, at which time it becomes available

for processing.

We consider the scheduling with online characteristic where all information is not

known in advance. The scheduling decision by the scheduler has to be made at execution

time and in this model, the operation is irrevocable. All previous decisions to assign and

schedule a task also may not be revoked. In online scheduling, there are several

classifications of possibilities on the arrival tasks. The most attention on online model

systems has been focused on online over list and online over time scheduling. Online

over list systems do not notice the existence of the arrival task until all its predecessors

have already been scheduled while online over time systems know the existence of the

tasks at their release date. In our problem, the way of task characteristics information

received is the model of scheduling online over time. Note that, for the multiprocessor

systems, there are no online scheduling algorithms that can be optimal in most cases [11].

It is due to the lack of global information on the instances [12]. The optimum value for

online scheduling with task release dates can only be obtained when the scheduling is

performed offline.

From all these descriptions and assumptions, our task scheduling problem can

specifically be denoted based on the established three-filed notation as P|online,ri|Cmax, i.e.

the task scheduling problem for minimizing the makespan on identical parallel processors

with the model requires scheduling to be online over time where the availability of each

task is restricted by release date. We have added a substantial degree of difficulty to the

classical problems P||Cmax which is already strongly NP-hard [13].

4 Syarifah & Lou

3 Proposed Heuristics Algorithm for Online Scheduling

In this section, we consider three heuristic algorithms that required less

arrangement time for solving P|online,ri|Cmax which are simple and fast. The fast

arrangement time is needed as for the online scheduling, we have to compete with the

running time. The proposed algorithms that we are going to introduce share a common

structure. First, task selection phase is obtained with a loop of multi-step procedures. The

proposed heuristics design a slot for a refinement step during the running time in the loop

and produce new Qlist for each refinement step. At the first step of the loop, we apply

priority rule for the whole system until the solution is obtained. Along with this step, two

subsequent modification methods are applied but still in the priority rule loop. This

modification steps are based on a Cluster Insertion (CI) and a Local Cluster Interchange

(LCI) methods. After obtaining a list of candidate in the task selection phase, the

procedure is continued with processor selection phase until the system is terminated. The

overall structure of the proposed heuristics is given in Figure 1.

Figure 1: Pseudo-algorithm for proposed heuristic

3.1 Task Selection Scheme

3.1.1 Local Priority Rule

A priority rule in task scheduling is a policy in assigning an available task to an

idle processor with a specific sequencing decision [14]. An available task refers to a

waiting task that is ready to be assigned. The goal of applying a priority based rule is to

select the task which has to be scheduled next, so that the system correctly allocates the

resource. The rule also gives acceptable results with a reasonable computational time and

is easy to implement [15]. The task selection is important to predict the outcome

expressed by the objective function. The priority rules can be classified into two types

[14]: local and global. The distinction between the local and global rules is in term of the

information status rule. In local rule, the information on the waiting jobs at the machine is

Online scheduling in Minimizing Makespan on Identical Parallel Processor 5

for a current time only. A global rule requires information on the jobs beyond the

corresponding queue. The local information of the queue can be applied to our parallel

processing system with centralized and no splitting structure. In local priority rule, the

information is also more specific to the workstation. The local rules are widely used

because they are robust against disruption [16]. Our local rule has time independent

priority computation. Obviously, the processing time does not change over time once

they have been computed in a queue.

In the parallel processing system, ready tasks share a single waiting list. In multi-

step method, First-Come-First-Serve (FCFS) priority rule is computed at the first stage of

the method and produces a local priority rule (LPR) scheduling list, QLPR. Figure 2

depicts the process of the LPR. FCFS is a random attribute in the local queue and a

simple task priority rule which can often be found in real-systems but is usually

considered inadequate by others. Note that, a FCFS discipline implies that services begin

in the same order as arrival, but that tasks may have a different order because of

different-length service time. The multi-step scheduler serves the unscheduled tasks in

the waiting list using a specific task selection process that will be discussed in the next

subsection.

Procedure Local_Priority_Rule()

 begin

 for 1t  to maxt t do

 if 1 2 maxt t t  do

 for 1i  to n do

 : perform candidates for list LPRQ Q

 endfor

 endif

 endfor

 end

Figure 2: Pseudo-algorithm for Local Priority Rule

FCFS policies have been seen to be optimal in terms of the number of tasks and

the throughput (i.e. the number of activities that run to completion within the given

amount of time) [17]. There are cases where FCFS also exhibit a nice property regarding

response time and smaller vectors of transient response time for all tasks. However,

sometimes the optimality properties of FCFS fail to hold when tasks entering the system

have such a random structure. The multi-step method can be effectively employed to

improve the system. In order to escape from this randomization problem, we propose the

following two modification procedures in the multi-step method loop: Cluster Insertion

(CI) and Local Cluster Interchange (LCI).

6 Syarifah & Lou

3.1.2 Cluster Insertion (CI)

We define an insertion for the P|online,ri|Cmax problem in the tasks sequence

where one task is moved from a current Qlist to an improved Qlist . The CI procedure is a

build up phase for refinement purpose in the local priority rule loop. In this phase, the

tasks are extracted from QLPR and inserted one by one to a build up phase that constructs a

cluster. We employ this CI idea from clustering method in proposed heuristic algorithm

in the literature for the general clustering problem. Most of them consider the clustering

problem in offline scheduling. In more detail, clustering is a method of gathering tasks

together and mapping them in the same group. Formally, the clustering method is either

based on linear clustering or non-linear clustering. Linear clustering is a situation where

the tasks gather in the same cluster and dependent to each other as they have precedence

relations among them. The CI process can be considered as non-linear clustering. The

step involves two or more tasks in a cluster where the tasks are independent. These

independent tasks can be easily distributed to parallel processors since there is no

interference among the processors and other tasks. Therefore, there is no restriction in

partitioning the tasks in CI process. CI can provide some advantages when the task is

moved into several partitions. The random structure of the arrival tasks in the system

Procedure Cluster_Insertion()

 begin

 Candidates LPRQ ;

 while (status=1) do

 for 1t  to maxt t do

, : the arrival of task at time ;

ai t aa i t

, : the release date of task at time ;

bi t br i t

 if (
, ,a bi t i ta r) then

 for 1k  to k  do

 Extract candidate from LPRQ and assign to cluster;

 :listQ  perform cadidates for LIQ ;

 endfor

 else

 Processor_Selection();

 endif

 endfor

Figure 3: Pseudo-algorithm for Cluster Insertion procedure

Online scheduling in Minimizing Makespan on Identical Parallel Processor 7

could be simply managed. Therefore, the randomization issue in FCFS local priority rule

can be partly solved by CI and completely solved in the LCI phase that we will discuss in

the next section.

Obviously, in order for the movement to be accepted, firstly, the task i has to be in the

QLPR i.e Ji ∈ QLPR. Secondly, the release date of the task must be greater than

the arrival time. Otherwise the mapping won't succeed. Notice that this system is

continuous and idle time between two tasks is unaccepted. More specifically, for the

P|online,ri|Cmax problem, the CI procedure consists of dividing tasks in QLPR and insert

them into particular 𝜁 slots. This insertion procedure is essentially repeated for n times.

All mapped tasks are deleted from QLPR and inserted into a new list denoted as QCI. Figure

3 shows a clear description of this procedure of CI.

3.1.3 Local Cluster Interchange (LCI)

The LCI method is a permutation process specifically employed in the multi-step

method loop after CI is adopted. In this process, the clusters that have been constructed in

QCI will have mutation process to produce a new Qlist named QLCI. The mutation technique

works by swapping the tasks within the local cluster in order to control the structure of

the system. The task swapping process in cluster A will apply a simple and fast list

scheduling (LS) algorithm to produce permutation cluster A’. This step is applied until all

clusters are done. To initiate the permutation process, the first cluster in QCI is chosen and

stored as ζ1. Then, the procedure continues for the second cluster in the list. The second

cluster is stored as ζ2. This step is then applied for all clusters in QCI. Once this stage is

accomplished, the local cluster interchange operation begins.

For a QLCI to be obtained, only one LS algorithm can be applied for the whole Qlist.

In this proposed heuristic, we opt for the two well known LS algorithms for the

interchange process. More specifically, the LS for the problem P|online,ri|Cmax are

Longest Processing Time (LPT) and Shortest Processing Time (SPT) algorithms. For

every cluster, we evaluate the processing time according to the selected LS method. Then,

after the LS procedure, all the tasks in the cluster are ready in their own positions. If the

task ahead is already assigned, the position is empty. The next task is able to replace and

transfer to the empty position and the process continues for all remaining tasks in the

QLCI .

An initial task for a cluster is chosen by LPT algorithm where the longest processing

time among the task i.e p1 ≥ p2 ≥ ⋯ ≥ pi is selected. The same procedure is repeated

until the last cluster is reached. Similarly, the SPT also has to define the starting task and

continue until the final task in a cluster but by using the shortest processing time

approach where p1 ≤ p2 ≤ ⋯ ≤ pi is applied. This procedure is to form QLCI. The

owner of the first position in QLCI is the first task which will be picked up for the next

procedure. The pseudo-algorithm for LCI procedure is shown in Figure 4.

LPRi QJ 

8 Syarifah & Lou

Procedure Local_Cluster_Interchange()

 begin

 Candidates CIQ ;

 while (status=1) do

 for 1  to max  do

 store the cluster accordingly as 1 2 max, ,...,   ;

 for 1i  to maxi J do

 for 1k  to k  do

 swap the tasks and sort according to the LS algorithm;

 :listQ  perform cadidates for LCIQ ;

 endfor

 endfor

Figure 4: Pseudo-algorithm for Local Cluster Interchange procedure

3.2 Processor Selection Scheme

We now present a processor selection algorithm after multi-step loop in the task

selection process. We have a list of candidates that are ready to get served. In online

scheduling, the random processor selection is not the wisest approach. Therefore, the best

way of choosing which processor to be assigned once a task has been selected is by the

greedy way. We develop our heuristics with a simple and fast rule; and also can produce

good results in this dynamic environment. The algorithm that we apply is a search

method for the earliest idle processor to compose the selected task. The status of the

processor will be updated for each time slot. During the tracking, if an available

processor is found at the time slot, the status of the processor will be 0, otherwise 1. The

selected task is accepted to be assigned to the first processor with status 0 only. However,

there might be more that one processor with status 0 at same time t. In this case, the task

can choose the processor with the smaller index. In brief, the algorithm can be stated as

follows:

Step 1: Define the status of the processors. If the processor is busy, the status is 1

otherwise it is 0 for idle.

Step 2: At time t = 0, initialize the status of all processors with 0. This means that, all

processors are idle and there are no tasks in the system.

Online scheduling in Minimizing Makespan on Identical Parallel Processor 9

Step 3: At time t ≥0, check the status of the processor at each time slot from the lowest

index to the highest index label. Select the first processor with status 0 and assign

to the task. Discard other processors with status 1.

Step 4: If there is no processor available at that time slot, discard all processors and

continue checking the status for the next time slot. Repeat the process for all

processors at each time slot until all tasks have been assigned.

 The final step of the heuristic is the status update phase. The status of the system

must be updated to reflect the new changes. The system will stop when all tasks are

assigned to the processors.

4 Computational Experiment

In this section we present a computational experiment on the proposed algorithm

for solving the P|online,ri|Cmax. The implementation is performed to evaluate the

effectiveness of the proposed algorithm. For this purpose, we present three

implementations of the algorithms and test their performances. We evaluate these

heuristics and present the best heuristic. We also reveal the gaps with the optimum value

from the MILP model obtained by Funk et al. [11]. The following are the three heuristics

that we use in the computational testing:

HA 1: The HA 1 algorithm implements LPR, CI and LCI in the task selection process. In

LCI, each of the ζ1, ζ2, … , ζmax contains a random list scheduling with no specific

sequence order to form QLCI.

HA 2: This algorithm puts together the multi-step method in the overall algorithm in

Figure 1 with LPR, CI and LCI for the task selection phase. It has to be noted that

in LCI, HA 2 applies LPT to form the formation in the interchange procedure. The

final Qlist obtain by HA 2 is QLCI before they get transferred to processor selection

stage.

HA 3: As HA1 and HA 2, HA 3 also carry out the procedure in this order: LPR, CI and

LCI. The final Qlist of the task selection multi-step in HA 3 is QLCI. We also have to

note that in LCI of HA 3, we implement SPT in the interchange procedure before

proceed to the next level which is processor selection.

We implement our HA 1, HA 2 and HA 3 using Microsoft Visual C++ 6.0 on a

personal computer with Intel Core 2 2.66 GHz 1.95 GB RAM. The algorithms are in a

dynamic environment where the task information can only be known during the

execution over time. We generate optimum solution using AIMMS 3.10 software

package. The simulation data for the problem P|online,ri|Cmax is generated as follows:

10 Syarifah & Lou

1. The number of independent tasks are n={200, 400, 600, 800,1000}.

2. For every set of tasks, we have ζ={10, 20, 30, 40, 50}.

3. For every combination of n and ζ, we have m = 3 and m = 5.

4. The processing time for the instances is assumed to follow a discrete uniform

distribution between 1 to 60 i.e. distribution U[1,60].

5. We generate 20 instances for every combination. Therefore, in this experiment,

we have n x ζ x m = 5 x 5 x 2 = 50 combinations that produced 50 x 20 = 1000

instances.

4.1 Computational Results

We now present our performance results of the HA 1, HA 2 and HA 3 algorithms

compared with the optimal solutions. We report the solutions for the objective function

(i.e. makespan) for every instance, I. The average percentage deviation from the optimum,

Gapa, are examined and can be calculated as follows:

100
)(*

)(*)(

20

1
(%)

20

1 max

maxmax 


 
I

a
IC

ICIC
Gap

where Cmax(I) is the makespan obtained by the heuristic for instance I and Cmax
* (I) is

the makespan of the optimum solution for instance I.

The maximum gap, Gapw, of the instances for every combination was also

observed using the following formulation:












 20,...,2,1100
)(*

)(*)(
max(%)

max

maxmax I
IC

ICIC
Gapw

4.1.1 Performance of the best heuristics

In this section, we present the computational results obtained from the computational

experiment of HA 1, HA 2 and HA 3 algorithms. We will discuss the results delivered by

the best heuristics. Tables 1 and 2 give for each heuristic algorithm the average value for

the gap compared with the optimum solutions as a function of the problem size (m, ζ, n).

We also evaluate the algorithms with each other by reporting the number of instances in

which the heuristic becomes the best heuristic denoted as NBH. If there is more than one

heuristic that obtained the same best solution for a certain instance, those particular

algorithms can be declared as the best heuristic for that instance. We also reported the

Gapw for every combination from the 20 instances to observe the worse performance by

Online scheduling in Minimizing Makespan on Identical Parallel Processor 11

the algorithms. It is observed that all instances in the problem shown in Tables 1 and 2

can be solved within 1 second on average.

The tables already give us clear observation that the algorithms of HA 1, HA 2 and

HA 3 achieved a very good performance, where the average gap is less than 6.13% from

the optimum for all size combinations. The best heuristic is HA 2, which is very

outstanding, where the maximum Gapa is only 1.099% for the case m = 5,  = 50 and n =

200. As can clearly be seen from the result in Table 1 and 2, HA 2 always obtain the

lowest Gapa for all different size of problems. From the NBH, HA 2 is the best heuristic

with 95.4% from 1000 generated test problems. The HA 1 and HA 3 also produced good

results with 2% and 6% of the maximum Gapa respectively for the same case m = 5,  =

10 and n = 200.

5 Conclusion

In this paper, we introduced one of the additional features in parallel processing system

that we explored in our study which is online scheduling with release date in minimizing

the makespan. This feature is dynamic and therefore, we applied a multi-step method to

reduce the non-determinism in the online scheduling. We partition the scheduling process

into three phases: (1) local priority rule; (2) cluster insertion; and (3) local cluster

interchange.

Table 1: Performance comparison of the heuristic algorithm with the optimum solution

for m = 3

12 Syarifah & Lou

Table 2: Performance comparison of the heuristic algorithm with the optimum solution

for m = 5.

The different phases in the multi-step are the improvement for the next step in the

algorithm. We developed these algorithms by their simplicity and practical usage in real

practice. All the three algorithms are very efficient and produced a very good quality

result with very small average gap. HA 2 is reported as the best heuristic with the

smallest average gap and always be the best heuristics with a large number of NBH.

Acknowledgements

The authors would like to thank MOHE, Universiti Teknologi Malaysia (UTM) and RUG

vote number 08J11 for funding the project.

References

[1] Sgall, J. On-line scheduling. Berlin: Springer. 1998.

[2] Lee, K., Leung, J. Y. T. and Pinedo, M. L. On-line scheduling with machine

eligibility. A Quarterly Journal of Operations Research. 2010. 8: 331–364.

[3] Albers, S. On-line algorithms: a survey. Mathematical Programming. 2003. 97: 3-

Online scheduling in Minimizing Makespan on Identical Parallel Processor 13

26.

[4] Hurink, J. and Paulus, J. Online scheduling of parallel jobs on two machines is 2-

competitive. Operations Research Letters. 2008. 36: 51–56.

[5] Tian, J. F. R., Yuan, J. and He, C. On-line scheduling on a batch machine to

minimize makespan with limited restarts. Operations Research Letters. 2008. 36:

255–258.

[6] Tian, J. F. R. and Yuan, J. A best online algorithm for scheduling on two parallel

batch machines. Theoretical Computer Science. 2009. 410: 2291–2294.

[7] Epstein, L. A note on-line scheduling with precedence constraints on identical

machines. Information Processing Letters. 2000. 76: 149–153.

[8] Huo, Y., Leuong, J. Y. T. and Wang, X. On-line scheduling of equal-processing time

task systems. Theoretical Computer Science. 2008. 401: 85–95.

[9] Yang, T. An evolutionary simulation-optimization approach in solving parallel-

machine scheduling problems – a case study. Computers & Industrial Engineering.

2009. 56: 1126-1136.

[10] Vairaktarakis, G. L. and Cai, X. The value of processing flexibility in multipurpose

machines, IIE Transactions. 2003. 35: 763-774.

[11] Funk, S., Goossens, J. and Baruah, S. On-line scheduling on uniform multiprocessor.

22nd IEEE Proceeding of Real-time Systems Symposium. 2001. 183-192.

[12] Tao, J., Chao, Z. and Xi, Y. A semi-online algorithm and its competitive analysis for

a single machine scheduling problem with bounded processing times. Journal of

Industrial and Management Optimization. 2010. 6: 269-282.

[13] Du, D. Z. and Pardalos, P. Handbook of Combinatorial Optimization. Kluwer

Academic Publishers. 1998.

[14] Haupt, R. A survey of priority rule-based scheduling. OR Spektrum. 1989. 11: 3-16.

[15] Klein, R. Bidirectional planning: Improving priority rule-based heuristic for

scheduling resource-constraint projects. European Journal of Operations Research.

2000. 127: 619-638.

14 Syarifah & Lou

[16] Hartmann, W., Fischer, A. and Nyhuis, P. The impact of priority rules on logistic

objectives: modeling with logistic operating curve. Proceedings of the World

Congress on Engineering and Computer Science. 2004. 2.

[17] Baccelli, F., Liu, Z. and Towsley, D. Extremal scheduling of parallel processing

with and without real-time constraints. Journal of Association for Computing

Machinery. 1993. 40: 1209-1237.

