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Abstract In this paper, a general frame work for the development of compact schemes
in particular for time harmonic wave equation is presented. The salient features this
frame work offers are (a) exact values of numerical solutions at the nodes of the spatial
grid irrespective of one or higher dimensions are obtained; (b) compact schemes pre-
serves same stencil structure as that of the standard finite difference and finite element
schemes; (c) requirement of fine mesh size to enjoy desired level of accuracy is removed
which is real trouble in the case of high wave numbers.
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1 Introduction

In present era of science and technology human race is enjoying diverse range of devices
such as mobile phones, microwave oven, radars, ultrasound scans etc. Therefore, impor-
tance of sound understanding of waves and its propagation is evident from given examples.
Mathematically complex nature of this phenomenon resulted into untiring efforts of many
physicists, engineers and mathematicians to find analytical solutions which are not mostly
possible. Therefore, a greater interest and investment of numerical analysts for efficient and
reliable numerical solutions for such problems is natural and we find tremendous amount
of work done by many [1–8] in this regard. It is widely known in the literature of wave
propagations [2–4, 9] that using discretization schemes such as finite difference and finite
elements, numerical dispersion and numerical dissipation are not avoidable. These issues
are real hard in the case of higher dimensions and demand the development of state of the
art numerical schemes. However, developed schemes work well for low order wave numbers
but fails completely in the case of high order wave numbers. We take up this challenge of
developing schemes which are less dispersive and dissipative even for high wave numbers
and perform optimal in higher dimensions and are compact at the same time.

2 General framework for the development of compact numerical

schemes

In order to motivate the idea of developing compact numerical schemes for high wave num-
bers, we consider one dimensional Helmholtz equation [4], given by

u′′(x) + k2u(x) = 0 for x ∈ R (1)

where k ∈ C is the wave number. In following sections, we present framework for both finite
difference and finite element schemes.



2 H. A. Wajid, M. Abid and A. Sohail

2.1 Framework for compact finite difference scheme

For the development of compact finite difference scheme, we replace second order derivative
present in equation (1) by standard second order central finite difference approximations at
the node xj = jh of the uniformly spaced grid hZ with h as the mesh size, given by

u′′

j =
uj−1 − 2uj + uj+1

h2
+

h2

12
u4

j(x) + · · · ,

and we obtain
uj−1 + ((kh)2 − 2)uj + uj+1 = 0. (2)

Inserting, a non-trivial solutions of the form uj = eijk̃h into equation (2) with k̃ as the
discrete wave number and writing above as a series in kh, we get

k̃h − kh = +
(kh)3

24
+ · · · . (3)

Equation (3) has already been obtained by many [1,3,5]. Interestingly, it is evident from
above expression that to enjoy dispersion free propagations for all wave range of wave
numbers, one requires k̃ = k, which is possible only when kh → 0. Therefore, for finite
difference schemes, we make use Bloch wave property [10] given by

uj+n = eikhnuj ∀n ∈ Z. (4)

Using property given in equation (4), we get compact scheme in the case of finite differences
given by

uj−1 − 2 cos(kh)uj + uj+1 = 0 (5)

which leads back to standard finite difference scheme on Taylor series expansion of the
middle node coefficients −2 cos(kh). Now, inserting a non-trivial solutions of the form

uj = eijk̃h into equation (5) and performing simplifications give k̃ = k.

2.2 Framework for compact finite element scheme

For finite element setting, we start with the variational formulation of equation (1), given
by: Find u ∈ H1(R) such that

B(u, v) = (u′, v′) − k2 (u, v) = 0 (6)

holds for all v ∈ H1(R) where (·, ·) denotes the L2-inner product on R and H1(R) is the
usual Sobolev space [10]. Let Vh ⊂ H1(R) denote the set of continuous piecewise linear
polynomials relative to the grid Gh = {nh, n = 0,±1,±2 . . .}. We now seek an approximate
solution uh ∈ Vh

uh(x) =
∑

i∈Z

Uiθi(x), x ∈ R

where Ui are unknowns to be determined that satisfy

∑

i∈Z

((

θ′i, θ
′

j

)

− k2 (θi, θj)
)

= 0 for all j ∈ Z
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k = 10 k = 10000 |k̃ − k|

N k̃ N k̃

F.E. Scheme 1450 9.99998 6 ∗ 107 9999.99998 0.00001
F.D. Scheme 1450 10.00001 6 ∗ 107 10000.00001 0.00001

Table 1: Analysis of the number of elements for a dispersion error of |k̃ − k| = 10−4.

and has the following matrix form
(

K− k2M
)

U = 0

with
Kij =

(

θ′i, θ
′

j

)

and Mij = (θi, θj) for i, j ∈ Z. (7)

Moreover, for a single physical element (0, h), the stifness and mass matrices given in
equation (7) takes the form

K =
2

h

[

1 −1
−1 1

]

and M =
h

6

[

2 1
1 2

]

. (8)

The assembling of matrices given in equation (8) lead to a system and picking up the j-th
row, we get

(

1 +
(kh)2

6
(1 − τ )

)

(Uj−1 + Uj+1) − 2

(

1 −
(kh)2

6
(2 + τ )

)

Uj = 0. (9)

Substituting, again a plane wave solution of the form Uj = eijk̃h in equation (9) with k̃ as
the discrete wave number, we obtain the following expression

k̃ − k = −
k3h2

24
+ · · ·

which is widely known in the literature of finite elements [1-6]. It is clear from Table 1
that the discrete wave number k̃ is overestimated in the case of finite difference scheme
where as underestimated for finite element scheme which results into phase lag and phase
lead a major cause of numerical dispersion. Now, to have dispersion free propagation, one
requires that both exact wave and wave obtained using numerical approximations propagate
with the exact wave number i.e, k̃ = k, and for case of finite element scheme, we propose
following modification to bilinear form

Bα(u, v) = (u′, v′) − αk2 (u, v) = 0

with matrix form given by
(

K− k2M
α
)

U = 0 with M
α = αM.

Now we want to find a value of the unknown α such that the modified bilinear form provides
the exact solution at the nodes of the spatial grid irrespective of low or high wave numbers.
This means that k̃ = k and the value of α is given by

α =
6(1 − cos kh)

k2h2 (2 + cos kh)
= 1 +

(kh)2

12
+ · · ·
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Scheme kh = 0.01 kh = 1 kh = 100 kh = 10000

Compact F.D. 3.1 ∗ 10−14 1.3 ∗ 10−14 9.1 ∗ 10−13 1.1 ∗ 10−10

Standard F.D. 1.0 ∗ 10−6 2.8621 9.9 ∗ 10−1 9.9 ∗ 10−1

Compact F.E. 1.9 ∗ 10−13 1.5 ∗ 10−14 9.1 ∗ 10−13 1.1 ∗ 10−10

Standard F.E. 1.0 ∗ 10−6 2.7210 1.1305 9.9 ∗ 10−1

Table 2: Comparison of `∞ errors for both standard and compact schemes with fixed
h = 10−2 and varying wave numbers in the case of Dirichlet boundary conditions (10).

which is consistent with standard scheme as α → 0.

3 Results and discussion

In order to present the superiority of compat schemes over standard schemes, we solve (1)
on Ω = (0, 1) ⊂ R with Dirichlet boundary conditions applied at both ends given by

u(0) = 1 and u(1) = eik. (10)

Numerical error is measured using the discrete `∞ norm, defined by `∞ = maxj|uj −
u(xj)|, j = 0, 1, 2, . . . , N with u(xj) representing the analytical solution and uj the computed
numerical solution. Moreover, N denotes the number of elements in a uniformly spaced grid.

In Table 2, dispersion errors with fixed h = 10−2 are given. It is evident that in the
case of standard schemes, dispersion error is less when kh � 0 and gets worse for all
kh > 1. This means that dispersion error depends upon the non-dimensional wave number
kh where as for compact schemes, Table 2 is representing entirely different picture reflecting
that dispersion error stays low irrespective of low kh = 10−2 and high kh = 104.

4 Conclusion

The proposed general frame work for the development of compact schemes in particular
for time harmonic wave equation offers following advantages over standard schemes (a)
dispersion and dissipation less numerical solutions at the nodes of the spatial grid for one
and higher dimensions are obtained; (b) Tri-diagonal banded matrices are obtained even
for compact schemes.
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