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Abstract Skew distributions are reasonable models for describing claims in property-
liability insurance. We consider two well-known datasets from actuarial science and
fit skew-normal and skew-logistic distributions to these dataset. We find that the
skew-logistic distribution is reasonably competitive compared to skew-normal in the
literature when describing insurance data. The value at risk and tail value at risk are
estimated for the dataset under consideration. Also, we compare the skew distributions
via Kolmogorov-Smirnov goodness-of-fit test, log-likelihood criteria and AIC.
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1 Introduction

Fitting an adequate distribution to real data sets is a relevant problem and not an easy
task in actuarial literature, mainly due to the nature of the data, which shows several fea-
tures to be accounted for. Eling [1] showed that the skew-normal and the skew-Student
t distributions are reasonably competitive compared to some models when describing in-
surance data. Bolance et al. [2] provided strong empirical evidence in favor of the use of
the skew-normal, and log-skew-normal distributions to model bivariate claims data from
the Spanish motor insurance industry. Ahn et al. [3] used the log-phase-type distribution
as a parametric alternative in fitting heavy tailed data. In the study of Burnecki et al. [4]
usually claims distributions showed the presence of small, medium and large size claims,
characteristics that are hardly compatible with the choice of fitting a single parametric
analytical distribution.

In this paper, we compare skew-normal and skew-logistic distributions as reasonably
good models for describing insurance claims. We consider two dataset widely used in liter-
ature and fit the skew-normal and skew-logistic distributions to these data. We find that
the skew-logistic distribution is compared to skew-normal for two datasets. For this, the
value at risk and tail value at risk are estimated for the dataset under consideration and
two distributions are compared via Kolmogorov-Smirnov goodness-of-fit test, log-likelihood
criteria and AIC.

2 Risk measures

Risk measures and their properties have been widely studied in the literature (see [5-7]
and references therein). Most of those contributions and applications in risk management
usually assume a parametric distribution for the loss random variable.
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The value at risk, or VaR risk measure was actually used by management long before
it was reinvented for investment banking. In actuarial contexts it is known as the quantile
risk measure or quantile premium principle. VaR is always specified with a given confidence
level v. In broad terms, the v-VaR represents the loss that, with probability v will not be
exceeded. Since that may not define a unique value, for example if there is a probability
mass around the value, we define the v-VaR more specifically, for 0 <y <1, as

VaR, (X) = inf{e, Fx(x) >4} = Fx'(3). 1)

where X is a random variable with probability density function (pdf) fx, and cumulative
distribution function (cdf) Fx. The value at risk is widely used in applications [8].

The quantile risk measure assesses the worst case loss, where worst case is defined as the
event with a 1 —+ probability. One problem with the quantile risk measure is that it does not
take into consideration what the loss will be if that 1 — « worst case event actually occurs.
The loss distribution above the quantile does not affect the risk measure. The conditional
tail expectation (or CTE) was chosen to address some of the problems with the quantile risk
measure. It was proposed more or less simultaneously by several research groups, so it has
a number of names, including tail value at risk (or Tail-VaR), tail conditional expectation
(or TCE) and expected shortfall [9]. Like the quantile risk measure, the CTE is defined
using some confidence level v, 0 < v < 1. In words, the CTE is the expected loss given that
the loss falls in the worst (1 — «) part of the loss distribution. The worst (1 — ) part of
the loss distribution is the part above the y-quantile, Q. If @ falls in a continuous part
of the loss distribution (that is, not in a probability mass) then we can interpret the CTE
at confidence level v, given the y-quantile risk measure @, as

CTE,(X) =E(X|X > Q). (2)

3 Skew Distribution

Skewed distributions have played an important role in the statistical literature since the
pioneering work of Azzalini [10]. He has provided a methodology to introduce skewness in
a normal distribution. Since then a number of papers appeared in this area. He showed
if f(.) is any symmetric density function defined on (—o0, +00) and F(.) is its distribution
function, then for any a € (—o0, +00),

2f (@) F(ax)l(—oc,400) (), 3)

is a proper density function and it is skewed if o« # 0. This property has been studied
extensively in the literature to study skew-t and skew-Cauchy distributions [11].

3.1 Skew-normal Distribution

The normal distribution is the most popular distribution used for modeling in economics
and finance. The insurance risks have skewed distributions, which is why in many cases
the normal distribution is not an appropriate model for insurance risks or losses (see [12]
and [13]). Besides skewness, some insurance risks also exhibit extreme tails [14].

The skew-normal distribution as well as other distributions from the skew-elliptical class
might be promising alternatives to the normal distribution since they preserve advantages
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of the normal distribution with the additional benefit of flexibility with regards to skewness
and kurtosis.

A random variable Z has a skew-normal (SN) distribution with parameter «, denoted
by SN (0,1, &) and can be written as SN («), if its density is given by

f(z,0) = 2¢(2)@(@2)l(— o0, 00) (), (4)

where ® and ¢ are the standard normal cdf and the standard normalpdf, respectively, and
z and « are real numbers. Some basic properties of the SN (a) distribution given in [10]
are:

1) SN(0) = N(0,1),

2) if Z ~ SN(a), then —Z ~ SN(—a),

3) as a — %00, then SN () tends to the half-normal distribution, i.e., the distribution of
£/X|, when X ~ N(0, 1),

4) if Z ~ SN(«a), then Z2 ~ x3,

5) the moment generating function Mz(t) of the r.v. Z is

2

My (t) = E[e'?] = 2exp (%) ®(5t),

where § = 7oz and thus
2
E(Z) = —
(2) = /=5,
52
Var(Z) = 1-2—.
T
Also the measure of skewness and kurtosis are
4 —7 o? 3/2
Z) = ——si
5(2) 5 signla) (w/2 T (/2 — 1)a2> ’

(0%

K@) = 269 (3 (w/22 = 1>a2>2'

In practice it is useful to consider random variable under an affine transformation ¥ =
4+ 0Z, where £ € Rand 0 > 0. If Z ~ SN(«), then the density of Y is

et 0,0 = 26 (1) @ (0l =) Tssm 0 )

g

with location parameter &, scale parameter o and shape parameter a. We denote this by
Y ~ SN(§, 0,a). Figure 1 illustrates skew-normal distribution for three different values of
shape parameter.

3.2 Skew-logistic Distribution

Using the same basic principle of [10], the skewness can be easily introduced to the logis-
tic distribution. It has location, scale and skewness parameters. The probability density
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Figure 1: Skew-normal Distribution for Three Different Values of Shape Parameter

function of the skew logistic distribution can have different shapes with both positive and
negative skewness depending on the skewness parameter (see Figure 2).

Although the probability density function of the skew logistic distribution is unimodal
and log-concave, but the distribution function, failure rate function and the different mo-
ments cannot be obtained in explicit forms. Moreover, even when the location and scale
parameters are known, the maximum likelihood estimator of the skewness parameter may
not always exist [11]. Due to this problem, it becomes difficult to use this distribution
for data analysis purposes. The logistic distribution [15] has been used in many different
fields, for detailed description of the various properties and applications [16]. The standard
logistic distribution has the pdf and the cdf specified by

67157’
flz) = —kngﬂ(foo,Jroo)(x)a neR, >0
6(1+67T)
and
1
F(r) = ———,
1+e 7

respectively. A random variable X is said to have skew-logistic distribution if its pdf is

x—n

2e” B
z—n\ 2 z—n
s =) (L)

where o € (—00, +00). Such X is said to follow a skew-logistic distribution with skewness
parameter a. We denote this by X ~ SL(n, 8, «). Therefore SL(0, 1, «) can be written as
SL(a)). From Figure 2 it is clear that SL(«) is positively skewed when « is positive. It
takes similar shapes on the negative side for @ < 0. Therefore, SL(«) can take positive

fSL(x;naﬁa O[) =

: (6)
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and negative skewness. As «a goes to Fo0o, it converges to the half logistic distribution.
Comparing with the shapes of the skew normal density function, it is clear that SL(«)
produces heavy tailed skewed distribution than the skew normal ones. For large values of
«a, the tail behaviors of the different members of the SL(a) family are very similar. It is
clear from Figure 2 that the tail behaviors of the different family members of SL(«) are
the same for large values of |a|. Some of the properties which are true for skew normal
distribution are also true for skew logistic distribution.
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Figure 2: Skew-logistic Distribution for Three Different Values of Shape Parameter

4 Data

In the following we consider two well-known datasets:

The US indemnity losses- The US indemnity losses used in Frees and Valdez [17].
The dataset consists of 1500 general liability claims, giving for each the indemnity payment
denoted in the data as “loss” and the allocated loss adjustment expense denoted in the data
as “alae”, both in USD. The latter is the additional expense associated with settlement of
the claim (e.g., claims investigation expenses and legal fees). We focus here on the pure loss
data and do not consider the expenses, but results taking these expenses into consideration
are available upon request. The dataset can be found in the R packages copula and evd,
and have been used in works of [18] and [19].

The Danish fire losses- The Danish fire losses was analyzed in [20]. These data
represents the Danish fire losses in million Danish Krones and were collected by a Danish
reinsurance company. The dataset contains individual losses above 1 million Danish Krones,
a total of 2167 individual losses, covering the period from January 3, 1980 to December 31,
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1990. The data is adjusted for inflation to reflect 1985 values. The dataset can be found in
the R packages fEcofin and fExtremes.

Table 1 presents descriptive statistics for the dataset. In addition to the number of
observations, indicators for the first four moments (mean, standard deviation, skewness,
excess kurtosis), and minimum and maximum values, we also present the 99% quantile and
the mean loss, if the loss is above 99%. The 99% quantile is the value at risk (at 99%
confidence level) and the mean loss exceeding the 99% quantile is the tail value at risk.
The descriptive statistics show the skewness and kurtosis for the data. Figure 3 presents
histogram and normal Q-Q plot for the dataset considered. Both histograms reveal a very
typical feature of insurance claims data: a large number of small losses and a lower number
of very large losses. The absolute values for the indemnity losses presented in the left
histogram are higher than the values presented in the right histogram, which is simply due
to scaling (TUSD on the left, million Danish Krones on the right).
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Figure 3: US Indemnity Losses (Left) and Danish Fire Losses (Right)
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Table 1: Descriptive Statistics for Data

US indemnity losses Danish fire losses

No.of observations 1500 2167

E(X) 41.21 3.39

St.Dev(X) 10.27 8.51

Skewness(X) 9.15 18.74
Kurtosis 141.98 482.20

Minimum 0.01 1.00
Maximum 2173.60 263.25
99%Quantile(value at risk) 475.06 26.04

E(X|X > value at risk) 739.62 58.59

5 Results

In this section, we estimate the parameters of the skew-normal and skew-logistic distribu-
tions and analyze their properties for the empirical dataset introduced in Section 4 based
on maximum likelihood estimation. A comparison of the distributions is made based on the
Akaikes information and log-likelihood criteria. Eling [1] showed that both the skew-normal
and skew-logistic are competitive compared to some distributions in widespread use. We
calculate value at risk and tail value at risk using the estimated parameters and compare the
estimation results with the empirical values for value at risk and tail value at risk. All tests
presented in this section were conducted with the R packages sn and glogis for skew-normal
and skew-logistic distributions, respectively.

Table 2 presents the estimated parameters for the skew-normal and skew-logistic distri-
butions. The model’s skewness values thus confirm the right skew of the empirical data, but
the skewness values the model can take are less extreme. This might be seen as a limitation
of the skew-normal model compared to other skewed distributions.

Table 3 presents a model comparison based on the log-likelihood criteria and AIC.
Considering AIC and log-likelihood criteria, we conclude that the skew-logistic distribution
is better in comparison with the skew-normal distribution for fitting to the dataset. We
recall that we can compare the results with the transformation kernel approach described
in [2]. Also, Table 4 reveals that the skew-logistic is better than skew-normal for describing
the two datasets. Overall, the test results are thus highly correlated with the AIC results
and confirm the ability of the skew-logistic distribution to describe insurance claims for the
data at hand.

Finally, in Table 5 we use the model results to derive estimators for value at risk and
tail value at risk and compare them with the empirical data. In Table 5, only values for a
confidence level of 99% are presented.

6 Conclusion

The aim of this work is to fit two standard dataset of insurance claims to two skewed
distributions used in finance literature. The motivation for conducting this study is to
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Table 2: Estimated Parameters for the Skew-normal and Skew-logistic Distributions

Model US indemnity losses  Danish fire
skew-normal Location -0.18729 0.9721663
Scale 110.6819405 8.8584110
Shape 1533.7683374 1533.7683374
Skew-logistic Location -216.93770 -16.844338
Scale 31.17305 1.738632
Shape 1781.45321 50301.946727

Table 3: Log-likelihood and AIC for Distributions

Model R package Log-likelihood AlIC
US indemnity Danish fire US indemnity Danish fire
Skew-normal sn —8149.49 —6295.59 16304.98 12597.18
Skew-logistic glogis -7854 -5120 15714 10246

Table 4: Kolmogorov-Smirnov Goodness-of-fit for Distributions

Model US indemnity Danish fire
Skew-normal 0.5159 0.5798
Skew-logistic 0.2272 0.2212
Critical value 0.0351 0.0292

Table 5: Value at Risk and Tail Value at Risk at 99% Confidence Level (original data)

Model Value at risk  Tail value at risk
US indemnity data Skew-normal 285.31 320.32
Skew-logistic 159.86 191.04
Empirical 475.05 739.61
Danish fire data Skew-normal 23.78 26.62
Skew-logistic 9.98 11.70

Empirical 26.04 58.59
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discover whether these models are also appropriate for describing insurance claims data.
Claims data in non-life insurance are very skewed and exhibit high kurtosis. For this reason,
the skew-normal and skew-logistic might be promising candidates for both theoretical and
empirical work in actuarial science.

For both distributions, the value at risk and tail value at risk do not perform very
well when the original data are considered; the estimators derived using the theoretical
distributions are in general much lower than the empirical values. The results for value at
risk and tail value at risk look better when the log data are considered; the risk estimators
derived using the theoretical distributions are very close to the empirical values (see Table 6).
We see that the VaR and Tail-Var for skew-logistic distribution are closee to the empirical
values for two datasets.

Table 6: Value at Risk and Tail Value at Risk at 99% Confidence Level (log data)

Model Value at risk  Tail value at risk
log of US indemnity data Skew-normal 10.75 11.27
Skew-logistic 10.76 11.22
Empirical 10.77 11.10
log of Danish fire data Skew-normal 2.90 3.26
Skew-logistic 291 3.35
Empirical 3.26 3.82
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