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Abstract This paper aims to explore the efficiency for estimating the parameters
of Gumbel simulated data using Multiple-try Metropolis algorithm (MTM). Several
goodness-of-fit tests are used to compare the performance of MTM and the former,
Metropolis-Hastings algorithm (MH). Concerning for a fair comparison, this study
uses the equivalent starting point, the similar number of iterations and also the same
length of burn-in periods. The numerical studies show that the MTM method per-
forms slightly better than MH method after 5000 iterations to meet the stationary
distribution. More candidates in the proposals lead to a higher accuracy of MTM
estimation.
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1 Introduction

The Multiple-try Metropolis algorithm (MTM) and the Metropolis-Hastings algorithm
(MH) are developed based on the foundation of Markov chain Monte Carlo (MCMC) simu-
lation technique. The idea of Bayesian MCMC arise when the target distribution, say π(x)
is complex such that it is difficult to sample from it directly. A series of samples generated
from π(x) will construct an aperiodic and irreducible Markov chain with state space E,
and stationary to π(x). The simulated values from the long enough chains can be treated
as a dependent samples from the target distribution and used as a basis for summarizing
the important features of π(x) (Brooks [1]). A common feature of methods for simulating
from π(x) is their reliance on cumulative evolutions of small, albeit random changes. A
fundamental construction that enables such ”local-search” methods is a Markov transition
function of the MH (Liu et al. [2]).

Bayesian Markov chain has gained its popularity in statistical analysis for the inferences
of posterior distributions as well as to predict the future probability and used in decision
making. MH algorithm (Metropolis et al. [3], Hastings [4]) and Gibbs sampling (Geman and
Geman [5]) are very famous and most practical MCMC for simulation studies. MH used
to obtain a sequence of random samples from a probability distribution for which direct
sampling is difficult. This sequence can be used to approximate the required distribution.
Chib and Greenberg [6] and Gamerman and Lopes [7] provide a comprehensive preliminary
details as well as an intensive development and applications of MCMC specifically on MH
techniques. MH is a fundamental algorithm for many Markov chain simulation approaches
while the Gibbs sampling is a good alternative if the full conditional distributions for each
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parameter are known. Gibbs sampler move aimed at updating the parameters of the current
model sampling from the full conditional distribution. The Gibbs sampler is facing the
difficulty to deal with the required conditional distributions. If the posterior doesn’t look like
any distribution or having no conjugacy, then MH is the suitable method to use to generate
random samples from a target distribution π(x) for which direct sampling is cumbersome.

MH is constantly preferable for handling complex computational problems. However, to
speed up the convergence and reduce the ”burn-in ” period, several extensions have been
proposed in the literatures. For instance, the MTM scheme introduced by Liu et al. [2]
in which the next state of the Markov chain is selected from a set of independent samples
drawn from a generic proposal density according to certain weights. The main advantage of
MTM is that it can explore a larger portion of the sample space without a decrease in the
acceptance rate. The MTM method consists of proposing at each step, a fixed number of
moves and then selecting one of them with a certain probability to increase the exploration
sample space and for better mixing. Martino and Read [8] explore the flexibility of the
MTM and confirmed the detailed balance condition is satisfied for MTM. Recent work on
MTM can be found in Bedard et al. [9], Casarin [10] and Pandolfi et al. [11] with some
luminous additional information. Currently there is a wide variety of MCMC algorithms
developed and practiced. But it is important to understand that each idea have its own
distinct advantages and drawbacks between one another. MCMC methods offer a great
statistical tool and have been explored in diverse area. The execution of these approaches
requires deep understanding and skill and this paper hopefully give a little knowledge for
those who work in the same field. This study works on a simulation study of Gumbel
distribution using Inversion method with the MH and MTM approaches are used for fitting
the model. The interesting issue to discuss is about how long chains should be considered
to be run and how the number of proposal in the MTM scheme could improve the MH
algorithm.

2 Methodology

In general, the Bayesian concept consists of transferring the initial belief about the pa-
rameter, θ represented by the prior distribution f(θ) into a posterior distribution f(θ|x)
that consist of the additional information provided by the data x in the likelihood function
L(x|θ). Then the posterior density for θ by Bayes’ rule is obtained up to a proportionality
constant by multiplying the prior density to the likelihood function,

f (θ|x) ∝ f (θ) L (x|θ) .

Coles and Tawn [12] illustrate the usefulness of prior in data analysis. The proper elicitations
of prior using expert information complement the data and lead to improve estimate of
extreme data.

The explosion of interest in Bayesian methods over the last ten to twenty years has been
the result of the convergence of modern computing power and efficient MCMC algorithms
for sampling from the posterior distribution (Carlin and Louis [13]). The main Monte carlo
procedure is about drawing the random samples from the target probability density func-
tion (pdf) while the MCMC generates a Markov chain such that its stationary distribution
coincides with the target pdf (Martino and Read [8]). The advantage of MCMC to sample
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directly from the posterior distribution and construct sample estimates could avoid the diffi-
culties to evaluate the complex integrate function which is extremely important in Bayesian
statistics, see Brooks [1] for details.

2.1 Metropolis Hastings algorithm

MH routine is capable to simulate a series from an arbitrary density as a basis for summa-
rizing features of the equilibrium distribution which is a Bayesian posterior distribution for
unknown parameter θ (Smith and Roberts [14]). The simple steps of MH algorithm can be
summarized as follows.

(i) Set the initial values for (µ0, σ0).

(ii) Given that the chain is currently at (µj , σj) :
Draw a candidate value µcan ∼ N(µj , υµ) and σcan ∼ N(σj , υσ) for some suitably
chosen variance υµ, υσ and take

µ(j+1) =

{

µcan with probability p,

µj with probability 1 − p

where p is the acceptance probability,

p = min

{

1,
π

(

µcan|σj
)

π (µj |σj)

}

.

and π(µ|σ) is the conditional posterior distribution for µ. This is implemented by
drawing u ∼ Unif(0, 1) and taking θ(j+1) = θ(can) if and only if u < p.

(iii) Iterate the updating procedure.

The variance of the candidate value, υ is typically chosen by trial and error and aiming
the acceptance probability to be roughly around 30%. The time it takes for the chains to
converge is varies depending on the starting point. Usually a certain number of the first
draws are thrown or also known as the burn-in period. This is to make the draws closer
to the stationary distribution and less dependent on the starting point. The local moves
in the MH algorithm is causing low converging algorithms while increasing the searching
region of each MH step characterized by the Markov transition function will decrease the
MH ratio and therefore not an effective algorithm. MTM algorithm tackles this problem
by proposing multiple trial points from the transition function for a larger searching region
(Liu et al. [2]).

2.2 Multiple-try Metropolis algorithm

Basically, MH used to sample from a posterior distribution which is complicated to sample
from directly. MH always works for any arbitrary distribution but it can be very slow.
Therefore Liu et al. [2] came out with the new ideas for improving this algorithm. MTM
modified the standard MH by replacing the single proposal y with a set of k independent
and identically distributed (iid) proposals y1, . . . , yk from the proposal distribution, q(y|x)
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in order to make larger step-size jumps, without lowering the acceptance rate. Based on
Pandolfi et al. [15], suppose that q(y|x) > 0 if and only if q(x|y) > 0 and λ(x|y) be a
nonnegative symmetric function, define

w(x, y) = π(x)q(y|x)λ(x|y)

then the MTM algorithm can be simplified as the following:

(i) Draw k iid proposals y1, . . . , yk from q(y|x), and compute wi = w(θi, x) for i =
1, . . . , k.

(ii) Select y = yj from y1, . . . , yk with probability proportional to wi.

(iii) Draw x1, . . . , xk−1 from q(.|y) and set x∗

k = x and compute w∗

i = w(x∗

i , y).

(iv) Accept y with probability:

a = min

{

1,
w1 + . . . + wk

w∗

1 + . . . + w∗

k

}

.

In order to attain the detailed balance condition, MTM used selection probabilities which
are proportional to the product of the target, the proposal, and a λ function which has to
be non-negative and symmetric function in x and y which can be chosen by the user. Liu et

al. [2] listed some of the possible function for λ(x|y). It can be proven that MTM satisfied
the detailed balance condition and therefore produces a reversible Markov chain with π(x)
as the stationary distribution. It is sufficient to prove that π(xt)P (xt, y) = π(y)P (y, xt)
where P (xt, y) is the transition probability of the Markov chain from state xt to y. The
proof is as follow:

π(xt)P (xt, y) = kπ(xt)T (xt, y)py

∫

. . .

∫

T (xt, y1) . . . T (xt, yk−1)min

{

1,
π(y)T (y, xt)pxt

π(xt)T (xt, y)py

}

× T (y, x∗

1) . . . T (y, x∗

k−1)dy1 . . . dyk−1dx∗

1 . . . dx∗

k−1

= k

∫

. . .

∫

T (xt, y1) . . . T (xt, yk−1)min{π(xt)T (xt, y)py , π(y)T (y, xt)pxt
}

× T (y, x∗

1) . . . T (y, x∗

k−1)dy1 . . . dyk−1dx∗

1 . . . dx∗

k−1

= kπ(y)T (y, xt)pxt

∫

. . .

∫

T (xt, y1) . . . T (xt, yk−1)min

{

1,
π(xt)T (xt, y)py

π(y)T (y, xt)pxt

}

× T (y, x∗

1) . . . T (y, x∗

k−1)dy1 . . . dyk−1dx∗

1 . . . dx∗

k−1

= π(y)P (y, xt).

MTM is efficiently expanding the proposal region to improve convergence performance
by generating a larger number of candidates and therefore improving exploration of f near
x(t) (Givens and Hoeting [16]). These techniques have witnessed a recent surge of interest
because they lend themselves easily to parallel implementations. In this work, the R code
is developed to implement the MH and MTM algorithms for the inferences of Gumbel
distribution (R, [17]). For both algorithm, Normal distribution, M(xt, σ2) is used as a
proposal distribution centered on the current value, xt. The variance σ2 plays an important
role for the method to converge to the stationary distribution although undoubtedly the
progress can be exceedingly slow. Too large σ2 will cause almost every steps of the algorithm
will be rejected while if too small, almost every steps will be accepted.
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2.3 Goodness-of-Fit Tests

The goodness-of-fit tests perform an essential role for determining the best fitted model
of the observed data. This study proposes the goodness-of-fit tests for Gumbel distribu-
tion simulated data using Anderson-Darling (AD), Cramer-von Mises (CVM), Kolmogorov-
Smirnov (KS) test and the Root Mean Square Error (RMSE). The smaller value of the
goodness-of-fit test reflects the better fit of the data. Some brief definitions of those tests
are listed as follow.

2.3.1 Anderson-Darling

Let x1 < x2 < . . . < xn be order statistics for the observations with size n. The computa-
tional formula of the AD statistic is

AD = −

n
∑

i=1

{ln[G(xi)] + ln[1 − G(xn+1−i)]} − n

where G(.) is the cdf of Gumbel distribution.

2.3.2 Kolmogorov-Smirnov

The KS statistic is based on the value of D given by

D = max
i=1,...,n

[δi]

where

δi = max

[

i

n
− G(xi), G(xi) −

i − 1

n

]

.

2.3.3 Cramer-von Mises

Similar to the AD conditions, the computational formula of the CVM statistic is

CVM =
1

12n
+

n
∑

i=1

[

G(xi) −
2i − 1

2n

]2

.

2.3.4 Root Mean Square Error

The theoretical formulation of RMSE is given by the following equation

RMSE =

√

√

√

√

1

n

n
∑

i=1

(Xi − X∗

i )2

where Xi and X∗

i are the sample data and the estimated values of ith observations given
by Gumbel distribution. The quantile of Gumbel distribution is given by

x = µ − σ (log (− log (Ui,n)))
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where U is the hypothetical distribution function (Abidin et al. [18]). There are many types
of hypothetical distribution function. The common choice is Ui,n = i−0.5

n
and the rank Ui,n,

of ith order statistics from sample size of n is uniformly distributed U(0, 1) (Balakrishnan
et al. [19]).

3 Simulation Data

An essential characteristic of statistical modeling is the connections between proximity to
the real world and might be magnificently managed with simulation methods. Gumbel
distribution is often used to model the distribution of the maximum (or the minimum) level
of a process which is practical and relevant for predicting the future extreme events such
as flood, earthquake, air and water pollutions or other natural disaster. In extreme value
theory, Gumbel distribution is a special case of the generalized extreme value distribution
in which the shape paremeter, ξ is equal to zero. There are two parameters in Gumbel
distribution, location, µ and scale, σ parameter. The distribution function for Gumbel
distribution is given by equation (1).

G(z) = exp

{

−exp

[

−

(

z − µ

σ

)]}

, −∞ < µ < ∞, σ > 0 (1)

and differentiating equation (1) to have the density function as in equation (2).

g(z) =
1

σ
exp

{

−exp

[

−

(

z − µ

σ

)]

−

(

z − µ

σ

)}

. (2)

There are several techniques for simulating data from a specified distribution. Very common
approaches are using the inversion method and the rejection method. The basic inversion
method works as the following steps.

(i) Let U have a uniform distribution on the interval from 0 to 1.

(ii) Generate random numbers from U, u1, . . . , un.

(iii) For each j from 1 to n, let xj = F−1(uj). For Gumbel distribution, let u = G(z) and
therefore

x =µ − σ log(− log(u)).

Generate a sequence of iid random samples, xj for j = 1, . . . , n from Gumbel distribution,
G(z). Figure 1 displays the histogram and the density plot of the simulated data with length
100. The generated series for a distribution will not give precisely the values of parameter
of interest, but at least very close to it. A classical frequentist approach based on maximum
likelihood estimation is used as a benchmark value for estimating the parameters before
proceed to the MCMC approach. In addition, this benchmark values will be used as an
initial values of the iterations for both MH and MTM as suggested in Brooks [1].
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Figure 1: Histogram and Density Plot of Gumbel(100, 10) Simulated Data

3.1 Inference for Gumbel Distribution

Many techniques have been proposed to estimate the parameters of extreme value models.
These include graphical techniques based on versions of probability plots, moment-based
techniques, maximum likelihood estimator and the Bayesian approach. Each technique has
its pros and cons. This paper focuses on the Bayesian MCMC approaches based on MTM
and MH algorithms for the efficiency of estimating the parameters. At present, literatures
on Bayesian methodology in Malaysia is still on the early stage that make the expert
information is not yet available to supply prior information on certain issues. Therefore
non-informative prior is always preferable for the analysis. The combination of Gumbel
and Rayleigh pair of priors for Gumbel parameters have been assumed for posterior analysis
based on Rostami and Adam [20]. The likelihood function is given by

L(θ|x) =
1

σn
exp

{

−

n
∑

i=1

exp

[

−

(

z − µ

σ

)]

−

n
∑

i=1

(

z − µ

σ

)

}

.

Thus we have two parameter model with parameters µ and σ. Define the prior for both
parameter, π(θ), then we have

π(µ) ∝ exp

{

−

(

µ − µ0

K0

)

− exp

(

−
µ − µ0

K0

)}

,

π(σ) ∝ σ exp

{

−
σ2

2λ2
0

}

.

The posterior distribution of π(µ, σ|x) is given by

π(µ, σ|x)

= σ1−n exp

{

−

n
∑

i=1

exp

[

−

(

z − µ

σ

)]

−

n
∑

i=1

(

z − µ

σ

)

−

(

µ − µ0

K0

)

−exp

(

−
µ − µ0

K0

)

−
σ2

2λ2
0

}

.
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The conditional posterior distribution, π(θ|x) for the parameters are obtained by ignoring
all the terms that does not involved parameter µ and σ respectively. Then

π(µ|x) = exp

{

−

n
∑

i=1

exp

[

−

(

z − µ

σ

)]

−

n
∑

i=1

(

z − µ

σ

)

−

(

µ − µ0

K0

)

− exp

(

−
µ − µ0

K0

)

}

,

π(σ|x) = σ1−n exp

{

−

n
∑

i=1

exp

[

−

(

z − µ

σ

)]

−

n
∑

i=1

(

z − µ

σ

)

−
σ2

2λ2
0

}

.

Since it is difficult to recognize the pattern of the distribution, Gibbs sampler is dis-
carded and Metropolis Hasting approach is employed for the posterior inference. Given the
updating condition for parameter θ as below,

θ(j+1) =

{

θcan if u < p,

θ(j) otherwise,

in which p is the acceptance probability,

p = min

{

1,
π (θcan|x)

π (θ|x)

}

.

It is more convenient to take the logarithm of p. Therefore log(p1) and log(p2) as in equation
(3) and equation (4) represent the acceptance probability for parameter µ and σ with Z is
given as Z = (z − µ)/σ:

log p1 =
n

σ
(µcan − µ) +

(µ − µcan)

κ0
+

n
∑

i=1

{

exp (−Z) − exp

(

−
z − µcan

σ

)}

+ exp(−
µ − µ0

κ0
) − exp(−

µcan − µ0

κ0
), (3)

and

log p2 = (1 − n)(log σcan − log σ) +
1

2λ2
0

(σ2 − (σcan)2) +

n
∑

i=1

[

(z − µ)

(

1

σ
−

1

σcan

)]

+

n
∑

i=1

[

exp (−Z) − exp

(

−
z − µ

σcan

)]

. (4)

The MH and MTM algorithms were performed with the initial values (µ0, σ0) are the
maximum likelihood estimates. For MTM algorithm, we set λ (x, y) = 1 and the proposals
were drawn from normal distribution. The goodness-of-fit tests are used to compare the
estimated parameters.

4 Results and Discussions

In MCMC simulations, the initial values, number of iterations and the burn-in periods are
the issues that should be considered. The burn-in periods is the initial ’warm-up’ periods
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that have to be discarded to avoid the bias caused by the chosen starting point. Therefore
determining the duration of the necessary burn-in period is important since the rates of
convergence of different algorithms on different target distributions may vary considerably
(Brooks, [1]). The first 500 iterations have to be discarded since the plot roughly before
500th iterations for MH algorithm are not converge to the stable values. For comparison
with MTM, the same iterations and burn-in periods are taken. The statistics of 10 runs
with 2000, 5000 and 10 000 iterations for each single run are estimated using both MTM
and MH algorithms.

The estimated values for both methods are very close to each other and comparable with
the reference parameters. The goodness-of-fit tests are applied to compare the posterior
summaries for MTM and MH for 2000, 5000 and 10 000 iterations. From the goodness-of-fit
values in Table 1, we can conclude that after 5000 and 10000 iterations, MTM gives better
performance than MH. There are not much differences of the goodness-of-fit values between
estimates of 5000 and 10000 iterations for both methods since they have met the stationary
condition. Table 1 also shows that the goodness-of-fit for 2000 iterations does not provides
the stability of estimations for both methods. Therefore the subsequent results will be based
on 5000 iterations.

Table 1: Goodness-of-fit Tests for MH and MTM with Different Number of Iterations

AD KS CVM RMSE

2000 iterations, 500 burn-in periods

MTM 0.2818 0.0577 8.3776 1.3740
MH 0.2818 0.0575 8.3780 1.3715

5000 iterations, 500 burn-in periods

MTM 0.2787 0.0570 8.3772 1.3644

MH 0.2801 0.0573 8.3776 1.3677

10000 iterations, 500 burn-in periods

MTM 0.2791 0.0571 8.3772 1.3659

MH 0.2808 0.0574 8.3777 1.3698

The summary of the posterior draws are stated as in Table 2. The trace plots for µ and
σ using MTM and MH algorithms were displayed in Figure 2 and Figure 3 indicates that
convergence states have been achieved. The number of proposal in MTM method is the
major difference between MTM and MH algorithm. Results in Table 3 depicts the higher
number of proposals provides a more accurate estimate, with longer computational time.

5 Conclusions

Basically, MH is used to sample from a posterior distribution that is difficult to sample
from directly. MH is always works for any arbitrary distributions but it can be very slow.
Hence, MTM come out with the new ideas for improving MH algorithm by demonstrating
that by generating a set of proposals will speed up the convergence instead of only depend
on one proposal. MTM is the extension of MH algorithm wherein the subsequent state of
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the Markov chains is chooses from a set of proposals. The chosen value is based on the
corresponding weight determined by the posterior distribution. It is crucial to decide on
how long the MCMC simulations need to be run for any application problems since the
generated values is commonly used as a foundation for the inferences. Longer iterations
and more complex functions require more computation time and storage space.

Table 2: Parameter Estimation Using MTM and MH for 5,000 Iterations

µ σ

MTM 100.107(0.761) 9.9642(0.7867)
(98.776,101.715) (8.5506,11.6211)

MH 100.100(0.725) 9.9515(0.7711)
(98.823,101.677) (8.6126,11.6194)

Table 3: Parameter Estimation Using MTM with Different Number of Proposals

k µ σ AD KS CVM RMSE

3 100.1748 10.0238 0.2944 0.0599 8.3786 1.4124
5 100.1200 9.9646 0.2811 0.0576 8.3774 1.3722
7 100.1184 9.9544 0.2796 0.0573 8.3772 1.3679
10 100.1188 9.9506 0.2791 0.0572 8.3771 1.3666

Figure 2: Trace Plot of MTM Run for Gumbel Fit

This study found out that the output for 5000 iterations are slightly equivalent with
the output for 10 000 iterations after 500 burn-in periods. Therefore longer iterations are
not required. To make sure the persistence, the average values of the output of 10 runs
are taken for comparison. From the result, there are not much differences between the
parameter estimation using MTM and MH. However, all goodness-of-fit tests performed
suggest the better fit of MTM algorithm compared to MH. The trace plots visualize the more
accurate plot using MTM than MH. For MTM analysis, the higher number of proposals
k give better estimation but it need longer time for computations. MTM improves the
convergence performance by increasing both the step size and the acceptance rate. This
new method assured the efficient estimation scheme for modeling extreme data in term of
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Figure 3: Trace Plot of MH Run for Gumbel Fit

the speed of convergence and small burn-in periods. The reason of MTM appears faster
than MH is the additional computation in the iterations than MH does.
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