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Abstract In this paper, four new implicit Runge-Kutta methods which based on 7-
point Gauss-Kronrod-Lobatto quadrature formula were developed. The resulting im-
plicit methods were 7-stage tenth order Gauss-Kronrod-Lobatto III (GKLM(7,10)-III),
7-stage tenth order Gauss-Kronrod-Lobatto IIIA (GKLM(7,10)-IIIA), 7-stage tenth or-
der Gauss-Kronrod-Lobatto IIIB (GKLM(7,10)-IIIB) and 7-stage tenth order Gauss-
Kronrod-Lobatto IIIC (GKLM(7,10)-IIIC). Each of these methods required 7 function
of evaluations at each integration step and gave accuracy of order 10. Theoretical anal-
yses showed that the stage order for GKLM(7,10)-III, GKLM(7,10)-IIIA, GKLM(7,10)-
IIIB and GKLM(7,10)-IIIC are 6, 7, 3 and 4, respectively. GKLM(7,10)-IIIC possessed
the strongest stability condition i.e. L-stability, followed by GKLM(7,10)-IIIA and
GKLM(7,10)-IIIB which both possessed A-stability, and lastly GKLM(7,10)-III hav-
ing finite region of absolute stability. Numerical experiments compared the accuracy
of these four implicit methods and the classical 5-stage tenth order Gauss-Legendre
method in solving some test problems. Numerical results revealed that, GKLM(7,10)-
IIIA was the most accurate method in solving a scalar stiff problem. All the proposed
methods were found to have comparable accuracy and more accurate than the 5-stage
tenth order Gauss-Legendre method in solving a two-dimensional stiff problem. Last
but not least, all the proposed methods were implemented to solve two real-world
problems i.e. the Van der Pol oscillator and the Brusselator. The numerical solu-
tions which generated by the proposed methods were found to be comparable to the
numerical solutions found in the existing literature.
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1 Introduction

The numerical solution of first order initial value problem of the form

y′ = f (x, y) , y (a) = η,

y, f (x, y) ∈ R, x ∈ [a, b] ⊂ R,
(1)

using one-step Runge-Kutta method is always a popular practice in science and engineering.
The general form of Runge-Kutta method is given by

yn+1 = yn + h

s∑

i=1

bif (xn + cih, Yi), (2)
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Yi = yn + h

s∑

j=1

aijf (xn + cjh, Yj), i = 1, . . . , s. (3)

From formula (2), the numbers b1, b2, . . . , bs and c1, c2, . . . , cs are independent of the
function f , and they are called the quadrature weights and nodes, respectively. The function
Yi is the stage value and also the approximations to y (xn + cjh) computed by formula (3)
on the interval [xn, xn + cjh].

If aij = 0, j ≥ i, i = 1(1)s, then Yi is said to be defined explicitly so that formuale
(2) and (3) form an explicit Runge-Kutta method. In most cases, explicit Runge-Kutta
method is preferable because it allows explicit stage-by-stage implementation which is very
easy to program using computer. However, numerical analysts also aware that the compu-
tational costs involving function evaluations increases rapidly as higher order requirements
are imposed, [1]. Another disadvantage of explicit Runge-Kutta method is that it has rel-
atively small interval of absolute stability renders them unsuitable for stiff initial value
problems, [2]. In view of this, we are thus taking interest in implicit Runge-Kutta methods.

Implicit Runge-Kutta method is defined by the formulae (2) and (3) where Yi are defined
by a set of s implicit equations. In an implicit Runge-Kutta method, the explicit stage-by-
stage implementation scheme enjoyed by explicit Runge-Kutta method is no longer available
and needs to be replaced by an iterative computation, [3]. Other than this computational
difficulty, implicit Runge-Kutta method is an appealing method where higher accuracy can
be obtained with fewer function evaluations, and it has relatively bigger interval of absolute
stability. For excellent surveys and various perspectives of implicit Runge-Kutta method,
see, for examples, Hall and Watt [1], Fatunla [2], Butcher [3–5], Dekker and Verwer [6],
Jain [7], Lambert [8], Hairer et al. [9, 10] and Iserles [11].

According to Butcher [3, 4], Dekker and Verwer [6], Jain [7], Lambert [8], Hairer et
al. [9], Iserles [11] and many others, there are three special classes of implicit Runge-
Kutta methods which based on three different Gauss-Legendre type quadrature formu-
lae, namely Gauss-Legendre quadrature formulae, Gauss-Radau quadrature formulae and
Gauss-Lobatto quadrature formulae. It has been shown in the literatures that Gauss-
Legendre type implicit Runge-Kutta methods have high order of accuracy and highly sta-
ble, [3]. These particular types of implicit Runge-Kutta methods also hinted the possibility
to search for implicit Runge-Kutta methods that are based on other types of quadrature
formulae. In conjunction to this, Teh and Yaacob [12] had developed two 5-stage eighth or-
der Gauss-Kronrod methods that are based on 5-point Gauss-Kronrod quadrature formula.
After that, four implicit Runge-Kutta methods that are based on Gauss-Kronrod-Radau
quadrature formuale were reported in Teh and Yaacob [13].

In this paper, we have considered the Gauss-Kronrod-Lobatto quadrature formula to
construct four Kronrod type implicit Runge-Kutta methods. These new methods will serve
as counterparts of the classical Lobatto III methods developed by Butcher and Ehle. This
paper is organized as follows. Section 2 presents the basic information of Gauss-Kronrod-
Lobatto quadrature formula. Section 3 is divided into four sub-sections, with each sub-
section presents the development of a new Kronrod-Lobatto type Runge-Kutta method.
Numerical comparisons among these new Runge-Kutta methods and the classical 5-stage
tenth order Gauss-Legendre method are presented in Section 4. Lastly, some conclusions
are given in Section 5.
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2 Gauss-Kronrod-Lobatto Quadrature Formula

A n-point Gauss-Lobatto quadrature formula for the integral

= (f) =

∫ b

a

f (x) dx, (4)

is a formula of the form

Gn (f) =

n∑

k=1

wkf (xk), (5)

with the nodes a = x1 < x2 < x3 < · · · < xn = b and positive weights wk are chosen so
that

Gn (f) = = (f) , ∀f ∈ P2n−3, (6)

where P2n−3 denotes the set of polynomials of degree at most 2n−3, [14,15]. The associated
Gauss-Kronrod-Lobatto quadrature formula is given by

K2n−1 (f) =

n∑

k=1

ŵkf (x̂k) +

n−1∑

k=1

w̃kf (x̃k), (7)

where {x̂k = xk}, k = 1 (1)n are precisely the one used in (5), while all the other 3n − 2
parameters {ŵk}, {w̃k} and {x̃k} are chosen in such a way that

K2n−1 (f) = = (f) , ∀f ∈ P3n−2, (8)

where P3n−2 denotes the set of polynomials of degree at most 3n − 2, [16]. According to
Calvetti et al. [16], the nodes in the Gauss-Kronrod-Lobatto quadrature formula are ordered
so that the following interlacing property is satisfied:

a = x̂1 < x̃1 < x̂2 < x̃2 < x̂3 < x̃3 < · · · < x̂n−1 < x̃n−1 < x̂n = b.

3 7-stage Implicit Runge-Kutta Methods based on 7-point Gauss-

Kronrod-Lobatto Quadrature Formula

In this section, we have developed four implicit Runge-Kutta methods which based on
7-point Gauss-Kronrod-Lobatto quadrature formula for the numerical solution of (1). A 7-
point Gauss-Kronrod-Lobatto quadrature formula is a 7-point formula which consists of four
fixed nodes from the 4-point Gauss-Lobatto quadrature formula, and 3 additional points.

The first step is to obtain the quadrature nodes with respect to a 4-point Gauss-Lobatto
quadrature formula and suppose that f (x) is a polynomial of degree 5 given by

f (x) = a0 + a1x + a2x
2 + a3x

3 + a4x
4 + a5x

5. (9)

On substituting (4), (5) and (9) into (6) with a = 0, b = 1, then we obtained the following
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result:

∫ 1

0

(
a0 + a1x + a2x

2 + a3x
3 + a4x

4 + a5x
5
)
dx

=
4∑

k=1

wkf (xk)

= w1f (x1) + w2f (x2) + w3f (x3) + w4f (x4)
= w1

(
a0 + a1x1 + a2x

2
1 + a3x

3
1 + a4x

4
1 + a5x

5
1

)

+w2

(
a0 + a1x2 + a2x

2
2 + a3x

3
2 + a4x

4
2 + a5x

5
2

)

+w3

(
a0 + a1x3 + a2x

2
3 + a3x

3
3 + a4x

4
3 + a5x

5
3

)

+w4

(
a0 + a1x4 + a2x

2
4 + a3x

3
4 + a4x

4
4 + a5x

5
4

)
.

(10)

The integration of integral of (10) yields the following result:

∫ 1

0

(
a0 + a1x + a2x

2 + a4x
4 + a5x

5
)
dx = a0 +

a1

2
+

a2

3
+

a3

4
+

a4

5
+

a5

6
. (11)

On substituting the result in (11) and the preassigned Gauss-Lobatto quadrature nodes,
x1 = 0 and x4 = 1 into (10) and rearrange in terms of ai for i = 0(1)5, we obtained the
following equation

(w1 + w2 + w3 + w4) a0 + (w1 (0) + w2x2 + w3x3 + w4 (1)) a1

+
(
w1 (0)

2
+ w2x

2
2 + w3x

2
3 + w4 (1)

2
)

a2 +
(
w1 (0)

3
+ w2x

3
2 + w3x

3
3 + w4 (1)

3
)

a3

+
(
w1 (0)

4
+ w2x

4
2 + w3x

4
3 + w4 (1)

4
)

a4 +
(
w1 (0)

5
+ w2x

5
2 + w3x

5
3 + w4 (1)

5
)

a5

= a0 + a1

2 + a2

3 + a3

4 + a4

5 + a5

6 .

(12)

On matching the coefficients of a0, a1, a2, a3, a4 and a5 in (12), we arrived to a system of
6 equations. On solving these 6 equations simultaneously using MATHEMATICA 5.0, we
obtained the following weights and quadrature nodes of a 4-point Gauss-Lobatto quadrature
formula as shown below:

{
w1 =

1

12
, w2 =

5

12
, w3 =

5

12
, w4 =

1

12
, x1 = 0, x2 =

5 −
√

5

10
, x3 =

5 +
√

5

10
, x4 = 1

}
.

(13)

The weights of a 4-point Gauss-Lobatto quadrature formula will not be reused when con-
structing a 7-point Gauss-Kronrod-Lobatto quadrature formula, therefore, only the quadra-
ture nodes are of importance. Now, the second step is to derive the 7-point Gauss-Kronrod-
Lobatto quadrature formula and suppose that f (x) is a polynomial of degree 9 given by

f (x) = a0 + a1x + a2x
2 + a3x

3 + a4x
4 + a5x

5 + a6x
6 + a7x

7 + a8x
8 + a9x

9. (14)

On substituting (4), (7) and (14) into (8) with a = 0, b = 1, then we obtained the following
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result:

∫ 1

0

(
a0 + a1x + a2x

2 + a3x
3 + a4x

4 + a5x
5 + a6x

6 + a7x
7 + a8x

8 + a9x
9
)
dx

=
4∑

k=1

ŵkf (x̂k) +
3∑

k=1

w̃kf (x̃k)

= ŵ1f (x̂1) + w̃1f (x̃1) + ŵ2f (x̂2) + w̃2f (x̃2) + ŵ3f (x̂3) + w̃3f (x̃3) + ŵ4f (x̂4)
= ŵ1

(
a0 + a1x̂1 + a2x̂

2
1 + a3x̂

3
1 + a4x̂

4
1 + a5x̂

5
1 + a6x̂

6
1 + a7x̂

7
1 + a8x̂

8
1 + a9x̂

9
1

)

+ w̃1

(
a0 + a1x̃1 + a2x̃

2
1 + a3x̃

3
1 + a4x̃

4
1 + a5x̃

5
1 + a6x̃

6
1 + a7x̃

7
1 + a8x̃

8
1 + a9x̃

9
1

)

+ ŵ2

(
a0 + a1x̂2 + a2x̂

2
2 + a3x̂

3
2 + a4x̂

4
2 + a5x̂

5
2 + a6x̂

6
2 + a7x̂

7
2 + a8x̂

8
2 + a9x̂

9
2

)

+ w̃2

(
a0 + a1x̃2 + a2x̃

2
2 + a3x̃

3
2 + a4x̃

4
2 + a5x̃

5
2 + a6x̃

6
2 + a7x̃

7
2 + a8x̃

8
2 + a9x̃

9
2

)

+ ŵ3

(
a0 + a1x̂3 + a2x̂

2
3 + a3x̂

3
3 + a4x̂

4
3 + a5x̂

5
3 + a6x̂

6
3 + a7x̂

7
3 + a8x̂

8
3 + a9x̂

9
3

)

+ w̃3

(
a0 + a1x̃3 + a2x̃

2
3 + a3x̃

3
3 + a4x̃

4
3 + a5x̃

5
3 + a6x̃

6
3 + a7x̃

7
3 + a8x̃

8
3 + a9x̃

9
3

)

+ ŵ4

(
a0 + a1x̂4 + a2x̂

2
4 + a3x̂

3
4 + a4x̂

4
4 + a5x̂

5
4 + a6x̂

6
4 + a7x̂

7
4 + a8x̂

8
4 + a9x̂

9
4

)
.

(15)

The integration of integral of (15) yields the following result:

∫ 1

0

(
a0 + a1x + a2x

2 + a3x
3 + a4x

4 + a5x
5 + a6x

6 + a7x
7 + a8x

8 + a9x
9
)
dx

= a0 + a1

2 + a2

3 + a3

4 + a4

5 + a5

6 + a6

7 + a7

8 + a8

9 + a9

10 .

(16)

On substituting the result in (16) and

{
x̂1 = x1 = 0, x̂2 = x2 =

5 −
√

5

10
, x̂3 = x3 =

5 +
√

5

10
, x̂4 = x4 = 1

}

into (15) and rearrange in terms of ai for i = 0(1)9, we obtained the following equation

(ŵ1 + w̃1 + ŵ2 + w̃2 + ŵ3 + w̃3 + ŵ4) a0

+
(
ŵ1 (0) + w̃1x̃1 + ŵ2

(
5−

√
5

10

)
+ w̃2x̃2 + ŵ3

(
5+

√
5

10

)
+ w̃3x̃3 + ŵ4 (1)

)
a1

+

(
ŵ1 (0)2 + w̃1x̃

2
1 + ŵ2

(
5−

√
5

10

)2

+ w̃2x̃
2
2 + ŵ3

(
5+

√
5

10

)2

+ w̃3x̃
2
3 + ŵ4 (1)2

)
a2

+

(
ŵ1 (0)

3
+ w̃1x̃

3
1 + ŵ2

(
5−

√
5

10

)3

+ w̃2x̃
3
2 + ŵ3

(
5+

√
5

10

)3

+ w̃3x̃
3
3 + ŵ4 (1)

3

)
a3

+

(
ŵ1 (0)

4
+ w̃1x̃

4
1 + ŵ2

(
5−

√
5

10

)4

+ w̃2x̃
4
2 + ŵ3

(
5+

√
5

10

)4

+ w̃3x̃
3
3 + ŵ4 (1)

4

)
a4

+

(
ŵ1 (0)

5
+ w̃1x̃

3
1 + ŵ2

(
5−

√
5

10

)5

+ w̃2x̃
5
2 + ŵ3

(
5+

√
5

10

)5

+ w̃3x̃
3
3 + ŵ4 (1)

5

)
a5

+

(
ŵ1 (0)

6
+ w̃1x̃

6
1 + ŵ2

(
5−

√
5

10

)6

+ w̃2x̃
6
2 + ŵ3

(
5+

√
5

10

)6

+ w̃3x̃
6
3 + ŵ4 (1)

6

)
a6

+

(
ŵ1 (0)

7
+ w̃1x̃

7
1 + ŵ2

(
5−

√
5

10

)7

+ w̃2x̃
7
2 + ŵ3

(
5+

√
5

10

)7

+ w̃3x̃
7
3 + ŵ4 (1)

7

)
a7

+

(
ŵ1 (0)

8
+ w̃1x̃

8
1 + ŵ2

(
5−

√
5

10

)8

+ w̃2x̃
8
2 + ŵ3

(
5+

√
5

10

)8

+ w̃3x̃
8
3 + ŵ4 (1)

8

)
a8

+

(
ŵ1 (0)

9
+ w̃1x̃

9
1 + ŵ2

(
5−

√
5

10

)9

+ w̃2x̃
3
2 + ŵ3

(
5+

√
5

10

)9

+ w̃3x̃
9
3 + ŵ4 (1)

9

)
a9

= a0 + a1

2 + a2

3 + a3

4 + a4

5 + a5

6 + a6

7 + a7

8 + a8

9 + a9

10 .

(17)
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On matching the coefficients of a0, a1, a2, a3, a4, a5, a6, a7, a8 and a9, we arrived to a system
of 10 equations. On solving these 10 equations simultaneously using MATHEMATICA
5.0, we obtained the following weights and quadrature nodes of a 7-point Gauss-Kronrod-
Lobatto quadrature formula as shown below:

{
ŵ1 = 11

420 , w̃1 = 36
245 , ŵ2 = 125

588 , w̃2 = 8
35 , ŵ3 = 125

588 , w̃3 = 36
245 , ŵ4 = 11

420 ,

x̂1 = 0, x̃1 = 3−
√

6
6

, x̂2 = 5−
√

5
10

, x̃2 = 1
2
, x̂3 = 5+

√
5

10
, x̃3 = 3+

√
6

6
, x̂4 = 1

}
.

(18)

The direct substitution of (18) in the sense of the weights and abscissas of an implicit
Runge-Kutta method is

{
b1 = 11

420
, b2 = 36

245
, b3 = 125

588
, b4 = 8

35
, b5 = 125

588
, b6 = 36

245
, b7 = 11

420
,

c1 = 0, c2 = 3−
√

6
6 , c3 = 5−

√
5

10 , c4 = 1
2 , c5 = 5+

√
5

10 c6 = 3+
√

6
6 , c7 = 1

}
.

(19)

Before moving on with our developments, we would like to mention about the technique
to derive the order conditions for a Runge-Kutta method. The technique for deriving the
order conditions is to match the expansion of the solution generated by the Runge-Kutta
method with the Taylor expansion of the exact solution, [8]. However, as the order being
sought increases, the number of conditions rises rapidly and becomes unmanageable, [3].
Therefore, the following definitions and results on the simplified order conditions which
relates the parameters aij , ci and bi of a Runge-Kutta method will be found useful, [3, 9]:

B (p) :
s∑

i=1

bic
k−1
i =

1

k
, k = 1, . . . , p, (20)

C (η) :

s∑

j=1

aijc
k−1
j =

ck
i

k
, i = 1, . . . , s, k = 1, . . . , η, (21)

D (ζ) :
s∑

i=1

bic
k−1
i aij =

bj

k

(
1 − ck

j

)
, j = 1, . . . , s, k = 1, . . . , ζ. (22)

We note that the simplifying assumptions shown in (20)–(22) are very useful in developing
our new implicit methods and also facilitate some of our discussions later.

3.1 7-stage Tenth Order Gauss-Kronrod-Lobatto III Method

In order to complete the development of the 7-stage tenth order Gauss-Kronrod-Lobatto
III method, the choice of aij, i, j = 1(1)7 is to satisfy all the 42 order conditions of

C (6) :

7∑

j=1

aijc
k−1
j =

ck
i

k
, i = 1, . . . , 7, k = 1, . . . , 6. (23)

On substituting the abscissas in (19) into (23), assuming a17 = a27 = a37 = a47 = a57 =
a67 = a77 = 0 and solve these 42 equations simultaneously using MATHEMATICA 5.0,
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yield the solution of the parameters aij, i, j = 1(1)7 as shown below:
{
a11 = 0, a12 = 0, a13 = 0, a14 = 0, a15 = 0, a16 = 0, a17 = 0, a21 = 31

864 ,

a22 = 123+2
√

6
2016 , a23 =

5(299−5
√

5−128
√

6)
12096 , a24 = 41−16

√
6

432 , a25 =
5(299+5

√
5−128

√
6)

12096 ,

a26 = 123−50
√

6
2016

, a27 = 0, a31 = 1
50

, a32 =
3(95+

√
5+40

√
6)

3500
, a33 = 50+

√
5

525
,

a34 = 95−47
√

5
750 , a35 = 2

21 − 43
210

√
5
, a36 =

3(95+
√

5−40
√

6)
3500 a37 = 0, a41 = 1

32 ,

a42 =
3(5+2

√
6)

224
, a43 =

5(31+15
√

5)
1344

, a44 = 5
48

, a45 =
5(31−15

√
5)

1344
, a46 =

3(5−2
√

6)
224

,

a47 = 0, a51 = 1
50 , a52 =

3(95−
√

5+40
√

6)
3500 , a53 = 2

21 + 43
210

√
5
, a54 = 95+47

√
5

750 ,

a55 = 50−
√

5
525 , a56 =

3(95−
√

5−40
√

6)
3500 , a57 = 0, a61 = 31

864 , a62 = 123+50
√

6
2016 ,

a63 =
5(299−5

√
5+128

√
6)

12096 , a64 = 41+16
√

6
432 , a65 =

5(299+5
√

5+128
√

6)
12096 , a66 = 123−2

√
6

2016 ,

a67 = 0, a71 = 0, a72 = 3
14

, a73 = 5
42

, a74 = 1
3
, a75 = 5

42
, a76 = 3

14
, a77 = 0

}
.

(24)

On substituting the values in (19) and (24) with s = 7 into (2) and (3), we obtained
the 7-stage tenth order Gauss-Kronrod-Lobatto III method, or in brief as GKLM(7,10)-III.
GKLM(7,10)-III has proved to possess tenth order of accuracy because the values in (19)
satisfy all the order conditions in

B (10) :
7∑

i=1

bic
k−1
i =

1

k
, k = 1, . . . , 10.

In addition, the values in (19) and (24) also satisfy the order conditions in

D (4) :

7∑

i=1

bic
k−1
i aij =

bj

k

(
1 − ck

j

)
, j = 1, . . . , 7, k = 1, . . . , 4.

Since GKLM(7,10)-III satisfies C(6), then we can claim that GKLM(7,10)-III has stage
order 6.

The stability function of a Runge-Kutta method can be easily obtained by using the
following formula, [8]

R (z) =
det

[
I − zA + ebT

]

det [I− zA]
, (25)

where in the case of a 7-stage Runge-Kutta method, I is a 7 × 7 identity matrix, A is a

matrix containing the elements aij for i, j = 1(1)7, e =
(

1 1 1 1 1 1 1
)T

, b is a
row vector containing the elements bi for i = 1(1)7. On substituting the values from (19)
and (24) into (25), the stability function for GKLM(7,10)-III is given by

R (z)GKLM(7,10)−III = 36288000+21168000z+5785920z2+970200z3+109200z4+8400z5+420z6+11z7

36288000−15120000z+2761920z2−279720z3+15960z4−420z5 .

(26)
A Runge-Kutta method is said to be absolute stable if |R (z)| ≤ 1 holds. The region

S of the complex z-plane for which |R (z)| ≤ 1 holds is the region of absolute stability of
the Runge-Kutta method. Figure 1 is the plot of the stability function (26). The shaded
region in Figure 1 is the region of absolute stability of GKLM(7,10)-III. We have observed
that the region of absolute stability of GKLM(7,10)-III is a bounded region in the left-half
complex plane, which suggest that GKLM(7,10)-III is not A-stable.
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Figure 1: Stability Region of GKLM(7,10)-III

3.2 7-stage Tenth Order Gauss-Kronrod-Lobatto IIIC Method

As for the 7-stage tenth order Gauss-Kronrod-Lobatto IIIC method, the choice of aij,
i, j = 1(1)7 is to satisfy all the 42 order conditions of

D (6) :
7∑

i=1

bic
k−1
i aij =

bj

k

(
1 − ck

j

)
, j = 1, . . . , 7, k = 1, . . . , 6. (27)

On substituting the weights and abscissas in (19) into (27), assuming a71 = a77 = 11
420 ,

a72 = a76 = 36
245 , a73 = a75 = 125

588 , a74 = 8
35 and solve these 42 equations simultaneously

using MATHEMATICA 5.0, yield the solution of the parameters aij, i, j = 1(1)7 as shown
below:

{
a11 = 11

420
, a12 = − 293

5390
, a13 = 325

6468
, a14 = − 17

385
, a15 = 325

6468
, a16 = − 293

5390
,

a17 = 11
420 , a21 = 11

420 , a22 = 6063−70
√

6
70560 , a23 =

5(535−7
√

5−280
√

6)
28224 , a24 = 209−70

√
6

1680 ,

a25 =
5(535+7

√
5−280

√
6)

28224 , a26 = 6063−1750
√

6
70560 , a27 = − 121

10080, a31 = 11
420 ,

a32 = 1507+35
√

5+896
√

6
24500

, a33 = 23
196

− 1
105

√
5
, a34 =

3(61−35
√

5)
1750

, a35 = 23
196

− 43
210

√
5
,

a36 = 1507+35
√

5−896
√

6
24500

, a37 = 121
10500

, a41 = 11
420

, a42 = 2021
23520

+ 1
7
√

6
,

a43 =
5(535+329

√
5)

28224 , a44 = 209
1680 , a45 =

5(535−329
√

5)
28224 , a46 = 2021

23520 − 1
7
√

6
,

a47 = − 121
10080 , a51 = 11

420 , a52 = 1507−35
√

5+896
√

6
24500 , a53 = 23

196 + 43
210

√
5
,

a54 =
3(61+35

√
5)

1750 , a55 = 23
196 + 1

105
√

5
, a56 = 1507−35

√
5−896

√
6

24500 , a57 = 121
10500 ,

a61 = 11
420 , a62 = 6063+1750

√
6

70560 , a63 =
5(535−7

√
5+280

√
6)

28224 , a64 = 209+70
√

6
1680 ,

a65 =
5(535+7

√
5+280

√
6)

28224
, a66 = 6063+70

√
6

70560
, a67 = − 121

10080
, a71 = 11

420
, a72 = 36

245
,

a73 = 125
588 , a74 = 8

35 , a75 = 125
588 , a76 = 36

245 , a77 = 11
420

}
.

(28)

On substituting the values in (19) and (28) with s = 7 into (2) and (3), we obtained the
7-stage tenth order Gauss-Kronrod-Lobatto IIIC method, or in brief as GKLM(7,10)-IIIC.
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GKLM(7,10)-IIIC has proved to possess tenth order of accuracy because the values in (19)
satisfy all the order conditions in B(10). In addition, the values in (19) and (28) also satisfy
the order conditions in

C (4) :

7∑

j=1

aijc
k−1
j =

ck
i

k
, i = 1, . . . , 7, k = 1, . . . , 4.

Since GKLM(7,10)-IIIC satisfies C(4), then we can claim that GKLM(7,10)-IIIC has stage
order 4.

The stability function for GKLM(7,10)-IIIC can be easily obtained by substituting the
values in (19) and (28) into (25). Upon these substitutions, the stability function for
GKLM(7,10)-IIIC is given by

R (z)GKLM(7,10)−IIIC = 36288000+15120000z+2761920z2+279720z3+15960z4+420z5

36288000−21168000z+5785920z2−970200z3+109200z4−8400z5+420z6−11z7 .

(29)
Figure 2 is the plot of the stability function (29). The shaded region in Figure 2 is the
region of absolute stability of GKLM(7,10)-IIIC. We have observed that the region of

Figure 2: Stability Region of GKLM(7,10)-IIIC

absolute stability of GKLM(7,10)-IIIC contains the whole left-half complex plane, which
suggest that GKLM(7,10)-IIIC is A-stable. In addition, (29) also satisfies the condition:∣∣∣R (z)GKLM(7,10)−IIIC

∣∣∣ → 0 as Re (z) → −∞. Therefore, GKLM(7,10)-IIIC is L-stable.

3.3 7-stage Tenth Order Gauss-Kronrod-Lobatto IIIA Method

As for the third implicit Runge-Kutta method, we choose the aij , i, j = 1(1)7 to satisfy all
the 49 order conditions of

C (7) :

7∑

j=1

aijc
k−1
j =

ck
i

k
, i = 1, . . . , 7, k = 1, . . . , 7. (30)
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On substituting the abscissas in (19) into (30) and solve these 49 equations simultaneously
using MATHEMATICA 5.0, yield the solution of the parameters aij, i, j = 1(1)7 as shown
below:

{
a11 = 0, a12 = 0, a13 = 0, a14 = 0, a15 = 0, a16 = 0, a17 = 0, a21 = 1877+96

√
6

60480 ,

a22 = 2592−109
√

6
35280

, a23 =
25

„

360−
q

5(30769+448
√

30)
«

84672
, a24 = 108−41

√
6

945
,

a25 =
25

„

360−
q

5(30769−448
√

30)
«

84672 , a26 = 2592−1019
√

6
35280 , a27 = −293+96

√
6

60480 ,

a31 = 2425−61
√

5
105000

, a32 =
6

„

375+
q

30(6149+140
√

30)
«

30625
, a33 = 625−

√
5

5880
, a34 = 4

35
− 264

875
√

5
,

a35 = 625−253
√

5
5880 , a36 =

6

„

−375+
q

30(6149−140
√

30)
«

30625 , a37 = 325−61
√

5
105000 , a41 = 193

6720 ,

a42 =
3(96+35

√
6)

3920 , a43 =
25(40+21

√
5)

9408 , a44 = 4
35 , a45 =

25(40−21
√

5)
9408 ,

a46 =
3(96−35

√
6)

3920 , a47 = − 17
6720 , a51 = 2425+61

√
5

105000 , a52 =
6

„

375+
q

30(6149−140
√

30)
«

30625 ,

a53 = 625+253
√

5
5800 , a54 =

4(125+66
√

5)
4375 , a55 = 625+

√
5

5880 ,

a56 =
6

„

375−
q

30(6149+140
√

30)
«

30625
, a57 = 325+61

√
5

105000
, a61 = 1877−96

√
6

60480
,

a62 = 2592+1019
√

6
35280 , a63 =

25

„

360+
q

5(30769−448
√

30)
«

84672 , a64 = 108+41
√

6
945 ,

a65 =
25

„

360+
q

5(30769+448
√

30)
«

84672 , a66 = 2592+109
√

6
35280 , a67 = −293−96

√
6

60480 , a71 = 11
420 ,

a72 = 36
245 , a73 = 125

588 , a74 = 8
35 , a75 = 125

588 , a76 = 36
245 , a77 = 11

420

}
.

(31)

On substituting the values in (19) and (31) with s = 7 into (2) and (3), we obtained the
7-stage tenth order Gauss-Kronrod-Lobatto IIIA method, or in brief as GKLM(7,10)-IIIA.
GKLM(7,10)-IIIA has proved to possess tenth order of accuracy because the values in (19)
satisfy all the order conditions in B(10). In addition, the values in (19) and (31) also satisfy
the order conditions in

D (3) :

7∑

i=1

bic
k−1
i aij =

bj

k

(
1 − ck

j

)
, j = 1, . . . , 7, k = 1, . . . , 3.

Since GKLM(7,10)-IIIA satisfies C(7), then we can claim that GKLM(7,10)-IIIA has stage
order 7.

On substituting the values in (19) and (31) into (25), the stability function for GKLM(7,10)-
IIIA is given by

R (z)GKLM(7,10)−IIIA =
604800 + 302400z + 68880z2 + 9240z3 + 780z4 + 40z5 + z6

604800− 302400z + 68880z2 − 9240z3 + 780z4 − 40z5 + z6
. (32)

Figure 3 is the plot of the stability function (32). The shaded region in Figure 3 is the region
of absolute stability of GKLM(7,10)-IIIA. We have observed that the region of absolute
stability of GKLM(7,10)-IIIA contains the whole left-half complex plane, which suggest that

GKLM(7,10)-IIIA is A-stable. However, it is not L-stable since
∣∣∣R (z)GKLM(7,10)−IIIA

∣∣∣ → 1

as Re (z) → −∞.
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Figure 3: Stability Region of GKLM(7,10)-IIIA

3.4 7-stage Tenth Order Gauss-Kronrod-Lobatto IIIB Method

In order to complete the development of the last implicit Runge-Kutta method, we choose
the aij, i, j = 1(1)7 to satisfy all the 49 order conditions of

D (7) :
7∑

i=1

bic
k−1
i aij =

bj

k

(
1 − ck

j

)
, j = 1, . . . , 7, k = 1, . . . , 7. (33)

On substituting the weights and abscissas in (19) into (33) and solve these 49 equations
simultaneously using MATHEMATICA 5.0, yield the solution of the parameters aij, i, j =
1(1)7 as shown below:

{
a11 = 11

420 , a12 = −293−96
√

6
10780 , a13 = 325+61

√
5

12936 , a14 = − 17
770 , a15 = 325−61

√
5

12936 ,

a16 = −293+96
√

6
10780 , a17 = 0, a21 = 11

420 , a22 = 2592+109
√

6
35280 ,

a23 =
375−

q

30(6149+140
√

30)
3528 , a24 = 4

35 − 1
4
√

6
, a25 =

375−
q

30(6149−140
√

30)
3528 ,

a26 = 2592−1019
√

6
35280 , a27 = 0, a31 = 11

420 , a32 =
360+

q

5(30769+448
√

30)
4900 , a33 = 625+

√
5

5880 ,

a34 = 4
35

− 3
10

√
5
, a35 = 625−253

√
5

5880
, a36 =

360−
q

5(30769−448
√

30)
4900

, a37 = 0, a41 = 11
420

,

a42 = 108+41
√

6
1470

, a43 = 125+66
√

5
1176

, a44 = 4
35

, a45 = 125−66
√

5
1176

, a46 = 108−41
√

6
1470

,

a47 = 0, a51 = 11
420 , a52 =

360+
q

5(30769−448
√

30)
4900 , a53 = 625+253

√
5

5800 , a54 = 4
35 + 3

10
√

5
,

a55 = 625−
√

5
5880 , a56 =

360−
q

5(30769+448
√

30)
4900 , a57 = 0, a61 = 11

420 , a62 = 2592+1019
√

6
35280 ,

a63 =
375+

q

30(6149−140
√

30)
3528

, a64 = 4
35

+ 1
4
√

6
, a65 =

375+
q

30(6149+140
√

30)
3528

,

a66 = 2592−109
√

6
35280

, a67 = 0, a71 = 11
420

, a72 = 1877−96
√

6
10780

, a73 = 2425+61
√

5
12936

, a74 = 193
770

,

a75 = 2425−61
√

5
12936 , a76 = 1877+96

√
6

10780 , a77 = 0
}

.

(34)
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On substituting the values in (19) and (34) with s = 7 into (2) and (3), we obtained the
7-stage tenth order Gauss-Kronrod-Lobatto IIIB method, or in brief as GKLM(7,10)-IIIB.
GKLM(7,10)-IIIB has proved to possess tenth order of accuracy because the values in (19)
satisfy all the order conditions in B(10). In addition, the values in (19) and (34) also satisfy
the order conditions in

C (3) :

7∑

j=1

aijc
k−1
j =

ck
i

k
, i = 1, . . . , 7, k = 1, . . . , 3.

Since GKLM(7,10)-IIIB satisfies C(3), then we can claim that GKLM(7,10)-IIIB has stage
order 3.

On substituting the values in (19) and (34) into (25), the stability function for GKLM(7,10)-
IIIB is given by

R (z)GKLM(7,10)−IIIB =
604800 + 302400z + 68880z2 + 9240z3 + 780z4 + 40z5 + z6

604800− 302400z + 68880z2 − 9240z3 + 780z4 − 40z5 + z6
. (35)

We note that both GKLM(7,10)-IIIA and GKLM(7,10)-IIIB possess the same stability
function (as in (32) and (35)). Therefore, Figure 3 also represents the plot of stability
function (35). It follows that the shaded region in Figure 3 is the region of absolute stability
of GKLM(7,10)-IIIB and the method is found to be A-stable but not L-stable.

4 Numerical Experiments and Comparisons

In the first half of this section, some test problems are used to check the performance of
GKLM(7,10)-III, GKLM(7,10)-IIIA, GKLM(7,10)-IIIB and GKLM(7,10)-IIIC using differ-
ent numbers of integration steps. We presented the maximum absolute errors over the
integration interval given by max

0≤n≤N
{|y (xn) − yn|} where N is the number of integration

steps. We note that y (xn) and yn represent the exact solution and numerical solution
of a test problem at point xn, respectively. The numerical results obtained from these
Kronrod-Lobatto methods are compared with the numerical results obtained from the clas-
sical 5-stage tenth order Gauss-Legendre method.

Problem 1 [17]

y′ (x) = −100y (x) + 99e2x, y (0) = 0, x ∈ [0, 10] .

The exact solution is given by y (x) = 33
34

(
e2x − e−100x

)
.

Problem 2 [18]

y′′ (x) + 101y′ (x) + 100y (x) = 0, y (0) = 1.01, y′ (0) = −2, x ∈ [0, 10] .

The exact solution is given by y (x) = 0.01e−100x + e−x. Problem 2 can also be written as
a system, i.e.

y′1 (x) = y2 (x) , y1 (0) = 1.01, x ∈ [0, 10] ;

y′2 (x) = −100y1 (x) − 101y2 (x) , y2 (0) = −2, x ∈ [0, 10] .
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The exact solutions of this system are given by y1 (x) = y (x) = 0.01e−100x + e−x and
y2 (x) = y′ (x) = −e−100x − e−x.

From Table 1, we could see that GKLM(7,10)-IIIA with stage order 7 generated the
smallest absolute errors for N = 160 when solving Problem 1. For N = 320, GKLM(7,10)-
III and GKLM(7,10)-IIIA are found to have comparable accuracy, and more accurate than
GKLM(7,10)-IIIB, GKLM(7,10)-IIIC and the classical 5-stage tenth order Gauss-Legendre
method. For N = 640, all methods in comparison are found to have comparable accuracy.
For N = 160 and N = 320, GKLM(7,10)-IIIB was the least accurate method because its
stage order is the lowest (i.e. 3) among the methods in comparison. From here, we have
observed that, if the stage order was significantly lower than the order of the Runge-Kutta
method, then the values Yi from (3) were much less accurate due to lower stage order, and
affecting the accuracy of the final results computed via formula (2).

Table 1: Maximum Absolute Errors for Various Tenth Order Methods with Respect to
Number of Steps (Problem 1 )

N 5-stage tenth
order Gauss-
Legendre
method

GKLM(7,10)-
III

GKLM(7,10)-
IIIA

GKLM(7,10)-
IIIB

GKLM(7,10)-
IIIC

160 2.54095(-04) 1.69611(-04) 3.97925(-05) 7.55789(-02) 1.27208(-03)

320 1.47579(-06) 4.92589(-07) 1.78814(-07) 1.38760(-04) 3.03984(-06)
640 1.19209(-07) 2.38419(-07) 2.38419(-07) 3.57628(-07) 2.38419(-07)

From Table 2, the effects of stage order were not apparent, but all four Kronrod-Lobatto
methods were more accurate than the classical 5-stage tenth order Gauss-Legendre method.
Problem 2 could be expressed in the form of y′ = λy, Re (λ) < 0, which is exactly the
Dahlquist’s test equation. All stability functions for Runge-Kutta methods could be derived
from the application of the Dahlquist’s test equation to the Runge-Kutta methods. Since
the stability functions for GKLM(7,10)-IIIA and GKLM(7,10)-IIIB were identical (as in
(32) and (35)), therefore the numerical results generated by these two methods were found
to be identical.

Table 2: Maximum absolute errors for various tenth order methods with respect to number
of steps (Problem 2 )

N 5-stage tenth
order Gauss-
Legendre
method

GKLM(7,10)-
III

GKLM(7,10)-
IIIA

GKLM(7,10)-
IIIB

GKLM(7,10)-
IIIC

160 2.61795(-06) 1.74751(-06) 4.09984(-07) 4.09984(-07) 2.14734(-07)

320 1.52051(-08) 5.07516(-09) 1.75659(-09) 1.75659(-09) 1.66448(-09)
640 2.99030(-11) 7.11864(-12) 3.10929(-12) 3.10929(-12) 4.03089(-12)
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For the second half of this section, we have considered the numerical solutions of two
real-world problems i.e. the Van der Pol oscillator and the Brusselator.

Problem 3 [9]
The Van der Pol oscillator is used to model a nonlinear diode oscillator in electrical circuit.
The oscillator is given by

y′1 (x) = y2 (x) , y1 (0) = 2, x ∈ [0, 2.5] ;

y′2 (x) =

(
1 − y1 (x)

2
)

y2 (x) − y1 (x)

ε
, ε > 0, y2 (0) = 0, x ∈ [0, 2.5] .

In this study, we have chosen ε = 0.003.

Problem 4 [10]
The Brusselator is used to describe the laws of chemical kinetics for certain types of multi-
molecular reactions. The Brusselator considered in this study is given by

y′1 (x) = 1 + y1 (x)
2
y2 (x) − 4y1 (x) , y1 (0) = 1.5, x ∈ [0, 20] ;

y′2 (x) = 3y1 (x) − y1 (x)
2
y2 (x) , y2 (0) = 3, x ∈ [0, 20] .

We note that both Problem 3 and Problem 4 possess no analytical solutions, and hence
only approximate solutions can be obtained. Figure 4 showed the numerical solution of
Problem 3 generated by GKLM(7,10)-IIIA using 1000 fixed steps over the interval 0 ≤ x ≤
2.5. The other three Kronrod-Lobatto methods also generated exactly the same result as
depicted in Figure 4.

0.5 1.0 1.5 2.0 2.5

-2

-1

1

2

Figure 4: Numerical Solution of Problem 3 using GKLM(7,10)-IIIA

Most importantly, Figure 4 is found to be comparable to the numerical solution graphed
on page 25 of Hairer et al. [9]. On the other hand, Figure 5 and Figure 6 showed the
numerical solutions of Problem 4 generated by GKLM(7,10)-IIIC using 1000 fixed steps
over the interval 0 ≤ x ≤ 20.
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The other three Kronrod-Lobatto methods also generated exactly the same result as
depicted in Figure 5 and Figure 6. Figure 5 and Figure 6 are valid because they are found
to be comparable to the numerical solutions graphed on page 170 of Hairer et al. [10].

5 10 15 20

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Figure 5: Numerical Solution of y1 (x) of Problem 4 using GKLM(7,10)-IIIC

5 10 15 20

1

2

3

4

Figure 6: Numerical Solution of y2 (x) of Problem 4 using GKLM(7,10)-IIIC

5 Conclusions

In this paper, we have constructed four 7-stage tenth order implicit Runge-Kutta meth-
ods that are based on 7-point Gauss-Kronrod-Lobatto quadrature formula. The resulting
implicit methods are 7-stage tenth order Gauss-Kronrod-Lobatto III method (GKLM(7,10)-
III), 7-stage tenth order Gauss-Kronrod-Lobatto IIIA method (GKLM(7,10)-IIIA), 7-stage
tenth order Gauss-Kronrod-Lobatto IIIB method (GKLM(7,10)-IIIB) and 7-stage tenth
order Gauss-Kronrod-Lobatto IIIC method (GKLM(7,10)-IIIC).

Theoretical analyses showed that the stage order for GKLM(7,10)-III, GKLM(7,10)-
IIIA, GKLM(7,10)-IIIB and GKLM(7,10)-IIIC are 6, 7, 3 and 4, respectively. In terms of
absolute stability analyses, GKLM(7,10)-III is not an A-stable method and GKLM(7,10)-
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IIIC is a L-stable method. On the other hand, GKLM(7,10)-IIIA and GKLM(7,10)-IIIB
shared the same stability function and they are found to be A-stable only.

Numerical experiments and comparisons in Section 4 showed that implicit Runge-Kutta
methods based on Gauss-Kronrod-Lobatto quadrature formula worked well for the numeri-
cal solution of first order initial value problem (1). We noticed that Kronrod-Lobatto type
implicit Runge-Kutta methods with higher stage order give more accurate numerical so-
lutions. In addition, all the proposed methods are promising in solving two examples of
real-world problems i.e. the Van der Pol oscillator and the Brusselator. Future study will
start to investigate the non-linear stability properties for the implicit Runge-Kutta methods
proposed in this paper and those reported in Teh and Yaacob [12, 13].
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