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Abstract In this study, we solve the equations (x+y+1)2 = 5xy, (x+y−1)2 = 5xy,

and (x−y+1)2 = 5xy. We find all positive integer solutions of these equations in terms
of Fibonacci and Lucas sequences. By using the solutions of these equations we give all
positive integer solutions of the equations x

2 +y
2
−3xy+x = 0, x

2 +y
2
−3xy−x = 0,

and x
2+y

2
−7xy−x = 0. Moreover, it is shown that the equation x

2+y
2
−7xy+x = 0

has no positive integer solutions.
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1 Introduction

The Fibonacci sequence (Fn) is defined by F0 = 0, F1 = F2 = 1 and Fn = Fn−1 + Fn−2 for
n ≥ 2. Fn is called the nth Fibonacci number. Fibonacci numbers for negative subscripts
are defined as F

−n = (−1)n+1Fn for n ≥ 1. The Lucas sequence (Ln) is defined by L0 = 2,
L1 = 1 and Ln = Ln−1 + Ln−2 for n ≥ 2. Ln is called the nth Lucas number. Lucas
numbers for negative subscripts are defined as L

−n = (−1)nLn. For more information
about Fibonacci and Lucas sequences one can consult [1].

2 Preliminaries

It is well known that Fn = (αn − βn) /
√

5 and Ln = αn + βn for every n ∈ Z where
α =

(

1 +
√

5
)

/2 and β =
(

1 −
√

5
)

/2 are the roots of the polynomial x2 −x− 1. These are
known as Binet’s Formula. By using Binet’s Formula, we can prove the following identities.

L2
n
− 5F 2

n
= 4(−1)n (1)

Ln−1 + Ln+1 = 5Fn,

(L2
2n

+ 5F 2
2n+1 + 1)2 = 25L2

2n
F 2

2n+1, (2)

(L2
2n+2 + 5F 2

2n+1 + 1)2 = 25L2
2n+2F

2
2n+1, (3)

(L2
2n+1 + 5F2n − 1)2 = 25L2

2n+1F
2
2n

, (4)

(L2
2n−1 + 5F2n − 1)2 = 5L2

2n−1F
2
2n

, (5)

(F 2
2n+1 + F 2

2n+2 + 1)2 = F 2
2n+1(5F 2

2n+2 + 4), (6)

(F 2
2n+1 + F 2

2n
+ 1)2 = F 2

2n+1(5F 2
2n

+ 4), (7)

(F 2
2n

+ F 2
2n+1 − 1)2 = F 2

2n
(5F 2

2n+1 − 4), (8)
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(F 2
2n

+ F 2
2n−1 − 1)2 = F 2

2n
(5F 2

2n−1 − 4), (9)

and
3 | Fn ⇔ 4 | n. (10)

Now we give the following theorems from [2].

Theorem 1 All positive integer solutions of the equation x2−5y2 = 4 are given by (x, y) =
(L2n, F2n) with n ≥ 1.

Theorem 2 All positive integer solutions of the equation x2 − 5y2 = −4 are given by

(x, y) = (L2n+1, F2n+1) with n ≥ 1.

3 Main Theorems

Theorem 3 All positive integer solutions of the equation (x + y + 1)2 = 5xy are given by

(x, y) = (L2
2n

, 5F 2
2n+1) or (L2

2n+2, 5F 2
2n+1) with n ≥ 1.

Proof Let (x+y+1)2 = 5xy for some positive integers x and y. It can be seen that x and
y are relatively prime integers. The equation (x + y + 1)2 = 5xy is symmetric with respect
to x and y. So, if (x, y) is a solution of the equation, then (y, x) is also a solution of the
equation. Therefore, without loss of generality we may suppose that x = a2 and y = 5b2

for some positive integers a and b. This implies that (a2 + 5b2 + 1)2 = 25a2b2. Thus we
get a2 + 5b2 − 5ab = −1. Multiplying both side of the equation by 4 and completing the
square, we get (2a − 5b)2 − 5b2 = −4. Then by Theorem 2, we obtain |2a − 5b| = L2n+1

and b = F2n+1 for some n ≥ 1. If 2a − 5b = L2n+1, then we have

a =
(L2n+1 + 5b)

2
=

(L2n+1 + 5F2n+1)

2
=

(L2n + L2n+2 + L2n+1)

2
= L2n+2.

Similarly, if 2a−5b = −L2n+1, then we get a = L2n. Thus it follows that (x, y) = (a2, 5b2) =
(L2

2n
, 5F 2

2n+1) or (L2
2n+2, 5F 2

2n+1).
Conversely, if (x, y) = (L2

2n
, 5F 2

2n+1) or (L2
2n+2, 5F 2

2n+1), then we obtain (x + y + 1)2 =
5xy by (2) and (3). 2

Corollary 1 All positive integer solutions of the equations x2 + y2 − 3xy +x = 0 are given

by (x, y) = (F 2
2n+1, F

2
2n+2 + 1) or (F 2

2n+1, F
2
2n

+ 1) with n ≥ 1.

Proof Assume that x2 + y2 − 3xy + x = 0 for some positive integers x and y. Then we
have (x + y)2 = x(5y − 1), which implies that (5x + 5y − 1 + 1)2 = 5(5x(5y − 1)). Since
5 - Ln by (1), it follows that (5y − 1, 5x) = (L2

2n
, 5F 2

2n+1) or (L2
2n+2, 5F 2

2n+1) for some
n ≥ 1 by Theorem 3. Let (5y − 1, 5x) = (L2

2n
, 5F 2

2n+1). Then we get x = F 2
2n+1 and

y = ( L2
2n

+ 1)/5 = (5F 2
2n

+ 4 + 1) = F 2
2n

+ 1 by (1). Thus (x, y) = (F 2
2n+1, F

2
2n

+ 1). If
(5y−1, 5x) = (L2

2n+2, 5F 2
2n+1), then in a similar way, we obtain (x, y) = (F 2

2n+1, F
2
2n+2+1).

Conversely, if (x, y) = (F 2
2n+1, F

2
2n+2 + 1) or (F 2

2n+1, F
2
2n

+ 1), then we have (x + y)2 =
x(5y − 1) by (6) and (7). 2

Theorem 4 All positive integers solutions of the equation (x + y − 1)2 = 5xy are given by

(x, y) = (L2
2n+1, 5F 2

2n
) or (L2

2n−1, 5F 2
2n

) with n ≥ 1.
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Proof Let (x + y − 1)2 = 5xy for some positive integers x and y. Similarly, it can be seen
that x and y are relatively prime integers . The equation (x + y − 1)2 = 5xy is symmetric
with respect to x and y. So, if (x, y) is a solution of the equation, then (y, x) is also a
solution of the equation. Therefore, without loss of generality we may suppose that x = a2

and y = 5b2 for some positive integers a and b. This implies that (a2 + 5b2 − 1)2 = 25a2b2.
Thus we get a2 +5b2 − 5ab = 1. Multiplying both side of the equation by 4 and completing
the square, we get (2a−5b)2−5b2 = 4. Then by Theorem 1, we obtain |2a − 5b| = L2n and
b = F2n for some n ≥ 1. If 2a−5b = L2n, then we have a = (L2n+5b)/2 = (L2n+5F2n)/2 =
(L2n + L2n−1 + L2n+1)/2 = L2n+1. Similarly, if 2a − 5b = −L2n, then we get a = L2n−1.
Thus it follows that (x, y) = (a2, 5b2) = (L2

2n−1, 5F 2
2n

) or (L2
2n+1, 5F 2

2n
). Conversely if

(x, y) = (L2
2n−1, 5F 2

2n
) or (L2

2n+1, 5F 2
2n

), then we obtain (x + y − 1)2 = 5xy by (4) and
(5). 2

By using the above theorem and the identities (8) and (9), we can give the following
corollary easily.

Corollary 2 All positive integer solutions of the equation x2 + y2 − 3xy − x = 0 are given

by (x, y) = (F 2
2n

, F 2
2n+1 − 1) or (F 2

2n
, F 2

2n−1 − 1) with n ≥ 1.

Since the proofs of the following theorem and corollary can be done similarly, we omit
their proofs. The identity (10) will be used in the proof of the theorem.

Theorem 5 All positive integer solutions of the equation (x − y + 1)2 = 5xy are given by

(x, y) = (5F 2
4n

/9, L2
4n+2/9) or (5F 2

4n
/9, L2

4n−2/9) with n ≥ 1.

Corollary 3 All positive integer solutions of the equation x2 + y2 − 7xy − x = 0 are given

by (x, y) = (F 2
4n

/9, (F 2
4n+2 − 1)/9) or (F 2

4n
/9, (F 2

4n−2 − 1)/9) with n ≥ 1

Corollary 4 The equation x2 + y2 − 7xy + x = 0 has no positive integer solutions.

Proof Assume that x2 + y2 − 7xy + x = 0 for some positive integer x and y. Then
(y − x)2 = x(5y − 1), which implies that (5y − 1 − 5x + 1)2 = 5(5x(5y − 1)). Then by
Theorem 5, we get 5y − 1 = 5F 2

4n
/9 for some n ≥ 1, which is impossible. 2

4 Conclusion

In this study, we give all positive integer solutions of the equations (x + y + 1)2 = 5xy,
(x + y − 1)2 = 5xy, and (x− y + 1)2 = 5xy in terms of the Fibonacci and Lucas sequences.
Moreover, we solve some other diophantine equations. We think that the Diophantine
equations (x + y + 1)2 = 10xy, (x + y − 1)2 = 10xy, and (x− y + 1)2 = 10xy can be solved
in a similar argument.
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