A Note On Some Diophantine Equations

${ }^{1}$ Hilal Bașak Özdemir and ${ }^{2}$ Refik Keskin
${ }^{1,2}$ Mathematics Department, Sakarya University
Sakarya, Turkey
e-mail: ${ }^{1}$ hilal-basak@windowslive.com, ${ }^{2}$ rkeskin@sakarya.edu.tr

Abstract

In this study, we solve the equations $(x+y+1)^{2}=5 x y,(x+y-1)^{2}=5 x y$, and $(x-y+1)^{2}=5 x y$. We find all positive integer solutions of these equations in terms of Fibonacci and Lucas sequences. By using the solutions of these equations we give all positive integer solutions of the equations $x^{2}+y^{2}-3 x y+x=0, x^{2}+y^{2}-3 x y-x=0$, and $x^{2}+y^{2}-7 x y-x=0$. Moreover, it is shown that the equation $x^{2}+y^{2}-7 x y+x=0$ has no positive integer solutions.

Keywords Fibonacci numbers; Lucas numbers; Diophantine equation.
2010 Mathematics Subject Classification 11B37, 11B39, 40C05

1 Introduction

The Fibonacci sequence $\left(F_{n}\right)$ is defined by $F_{0}=0, F_{1}=F_{2}=1$ and $F_{n}=F_{n-1}+F_{n-2}$ for $n \geq 2 . F_{n}$ is called the nth Fibonacci number. Fibonacci numbers for negative subscripts are defined as $F_{-n}=(-1)^{n+1} F_{n}$ for $n \geq 1$. The Lucas sequence $\left(L_{n}\right)$ is defined by $L_{0}=2$, $L_{1}=1$ and $L_{n}=L_{n-1}+L_{n-2}$ for $n \geq 2 . L_{n}$ is called the nth Lucas number. Lucas numbers for negative subscripts are defined as $L_{-n}=(-1)^{n} L_{n}$. For more information about Fibonacci and Lucas sequences one can consult [1].

2 Preliminaries

It is well known that $F_{n}=\left(\alpha^{n}-\beta^{n}\right) / \sqrt{5}$ and $L_{n}=\alpha^{n}+\beta^{n}$ for every $n \in \mathbb{Z}$ where $\alpha=(1+\sqrt{5}) / 2$ and $\beta=(1-\sqrt{5}) / 2$ are the roots of the polynomial $x^{2}-x-1$. These are known as Binet's Formula. By using Binet's Formula, we can prove the following identities.

$$
\begin{gather*}
L_{n}^{2}-5 F_{n}^{2}=4(-1)^{n} \tag{1}\\
L_{n-1}+L_{n+1}=5 F_{n} \\
\left(L_{2 n}^{2}+5 F_{2 n+1}^{2}+1\right)^{2}=25 L_{2 n}^{2} F_{2 n+1}^{2}, \tag{2}\\
\left(L_{2 n+2}^{2}+5 F_{2 n+1}^{2}+1\right)^{2}=25 L_{2 n+2}^{2} F_{2 n+1}^{2}, \tag{3}\\
\left(L_{2 n+1}^{2}+5 F_{2 n}-1\right)^{2}=25 L_{2 n+1}^{2} F_{2 n}^{2}, \tag{4}\\
\left(L_{2 n-1}^{2}+5 F_{2 n}-1\right)^{2}=5 L_{2 n-1}^{2} F_{2 n}^{2} \tag{5}\\
\left(F_{2 n+1}^{2}+F_{2 n+2}^{2}+1\right)^{2}=F_{2 n+1}^{2}\left(5 F_{2 n+2}^{2}+4\right), \tag{6}\\
\left(F_{2 n+1}^{2}+F_{2 n}^{2}+1\right)^{2}=F_{2 n+1}^{2}\left(5 F_{2 n}^{2}+4\right), \tag{7}\\
\left(F_{2 n}^{2}+F_{2 n+1}^{2}-1\right)^{2}=F_{2 n}^{2}\left(5 F_{2 n+1}^{2}-4\right), \tag{8}
\end{gather*}
$$

$$
\begin{equation*}
\left(F_{2 n}^{2}+F_{2 n-1}^{2}-1\right)^{2}=F_{2 n}^{2}\left(5 F_{2 n-1}^{2}-4\right) \tag{9}
\end{equation*}
$$

and

$$
\begin{equation*}
3\left|F_{n} \Leftrightarrow 4\right| n . \tag{10}
\end{equation*}
$$

Now we give the following theorems from [2].
Theorem 1 All positive integer solutions of the equation $x^{2}-5 y^{2}=4$ are given by $(x, y)=$ $\left(L_{2 n}, F_{2 n}\right)$ with $n \geq 1$.

Theorem 2 All positive integer solutions of the equation $x^{2}-5 y^{2}=-4$ are given by $(x, y)=\left(L_{2 n+1}, F_{2 n+1}\right)$ with $n \geq 1$.

3 Main Theorems

Theorem 3 All positive integer solutions of the equation $(x+y+1)^{2}=5 x y$ are given by $(x, y)=\left(L_{2 n}^{2}, 5 F_{2 n+1}^{2}\right)$ or $\left(L_{2 n+2}^{2}, 5 F_{2 n+1}^{2}\right)$ with $n \geq 1$.

Proof Let $(x+y+1)^{2}=5 x y$ for some positive integers x and y. It can be seen that x and y are relatively prime integers. The equation $(x+y+1)^{2}=5 x y$ is symmetric with respect to x and y. So, if (x, y) is a solution of the equation, then (y, x) is also a solution of the equation. Therefore, without loss of generality we may suppose that $x=a^{2}$ and $y=5 b^{2}$ for some positive integers a and b. This implies that $\left(a^{2}+5 b^{2}+1\right)^{2}=25 a^{2} b^{2}$. Thus we get $a^{2}+5 b^{2}-5 a b=-1$. Multiplying both side of the equation by 4 and completing the square, we get $(2 a-5 b)^{2}-5 b^{2}=-4$. Then by Theorem 2, we obtain $|2 a-5 b|=L_{2 n+1}$ and $b=F_{2 n+1}$ for some $n \geq 1$. If $2 a-5 b=L_{2 n+1}$, then we have

$$
a=\frac{\left(L_{2 n+1}+5 b\right)}{2}=\frac{\left(L_{2 n+1}+5 F_{2 n+1}\right)}{2}=\frac{\left(L_{2 n}+L_{2 n+2}+L_{2 n+1}\right)}{2}=L_{2 n+2} .
$$

Similarly, if $2 a-5 b=-L_{2 n+1}$, then we get $a=L_{2 n}$. Thus it follows that $(x, y)=\left(a^{2}, 5 b^{2}\right)=$ $\left(L_{2 n}^{2}, 5 F_{2 n+1}^{2}\right)$ or $\left(L_{2 n+2}^{2}, 5 F_{2 n+1}^{2}\right)$.

Conversely, if $(x, y)=\left(L_{2 n}^{2}, 5 F_{2 n+1}^{2}\right)$ or $\left(L_{2 n+2}^{2}, 5 F_{2 n+1}^{2}\right)$, then we obtain $(x+y+1)^{2}=$ $5 x y$ by (2) and (3).

Corollary 1 All positive integer solutions of the equations $x^{2}+y^{2}-3 x y+x=0$ are given by $(x, y)=\left(F_{2 n+1}^{2}, F_{2 n+2}^{2}+1\right)$ or $\left(F_{2 n+1}^{2}, F_{2 n}^{2}+1\right)$ with $n \geq 1$.

Proof Assume that $x^{2}+y^{2}-3 x y+x=0$ for some positive integers x and y. Then we have $(x+y)^{2}=x(5 y-1)$, which implies that $(5 x+5 y-1+1)^{2}=5(5 x(5 y-1))$. Since $5 \nmid L_{n}$ by (1), it follows that $(5 y-1,5 x)=\left(L_{2 n}^{2}, 5 F_{2 n+1}^{2}\right)$ or $\left(L_{2 n+2}^{2}, 5 F_{2 n+1}^{2}\right)$ for some $n \geq 1$ by Theorem 3. Let $(5 y-1,5 x)=\left(L_{2 n}^{2}, 5 F_{2 n+1}^{2}\right)$. Then we get $x=F_{2 n+1}^{2}$ and $y=\left(L_{2 n}^{2}+1\right) / 5=\left(5 F_{2 n}^{2}+4+1\right)=F_{2 n}^{2}+1$ by (1). Thus $(x, y)=\left(F_{2 n+1}^{2}, F_{2 n}^{2}+1\right)$. If $(5 y-1,5 x)=\left(L_{2 n+2}^{2}, 5 F_{2 n+1}^{2}\right)$, then in a similar way, we obtain $(x, y)=\left(F_{2 n+1}^{2}, F_{2 n+2}^{2}+1\right)$.

Conversely, if $(x, y)=\left(F_{2 n+1}^{2}, F_{2 n+2}^{2}+1\right)$ or $\left(F_{2 n+1}^{2}, F_{2 n}^{2}+1\right)$, then we have $(x+y)^{2}=$ $x(5 y-1)$ by (6) and (7).

Theorem 4 All positive integers solutions of the equation $(x+y-1)^{2}=5 x y$ are given by $(x, y)=\left(L_{2 n+1}^{2}, 5 F_{2 n}^{2}\right)$ or $\left(L_{2 n-1}^{2}, 5 F_{2 n}^{2}\right)$ with $n \geq 1$.

Proof Let $(x+y-1)^{2}=5 x y$ for some positive integers x and y. Similarly, it can be seen that x and y are relatively prime integers. The equation $(x+y-1)^{2}=5 x y$ is symmetric with respect to x and y. So, if (x, y) is a solution of the equation, then (y, x) is also a solution of the equation. Therefore, without loss of generality we may suppose that $x=a^{2}$ and $y=5 b^{2}$ for some positive integers a and b. This implies that $\left(a^{2}+5 b^{2}-1\right)^{2}=25 a^{2} b^{2}$. Thus we get $a^{2}+5 b^{2}-5 a b=1$. Multiplying both side of the equation by 4 and completing the square, we get $(2 a-5 b)^{2}-5 b^{2}=4$. Then by Theorem 1 , we obtain $|2 a-5 b|=L_{2 n}$ and $b=F_{2 n}$ for some $n \geq 1$. If $2 a-5 b=L_{2 n}$, then we have $a=\left(L_{2 n}+5 b\right) / 2=\left(L_{2 n}+5 F_{2 n}\right) / 2=$ $\left(L_{2 n}+L_{2 n-1}+L_{2 n+1}\right) / 2=L_{2 n+1}$. Similarly, if $2 a-5 b=-L_{2 n}$, then we get $a=L_{2 n-1}$. Thus it follows that $(x, y)=\left(a^{2}, 5 b^{2}\right)=\left(L_{2 n-1}^{2}, 5 F_{2 n}^{2}\right)$ or $\left(L_{2 n+1}^{2}, 5 F_{2 n}^{2}\right)$. Conversely if $(x, y)=\left(L_{2 n-1}^{2}, 5 F_{2 n}^{2}\right)$ or $\left(L_{2 n+1}^{2}, 5 F_{2 n}^{2}\right)$, then we obtain $(x+y-1)^{2}=5 x y$ by (4) and (5).

By using the above theorem and the identities (8) and (9), we can give the following corollary easily.

Corollary 2 All positive integer solutions of the equation $x^{2}+y^{2}-3 x y-x=0$ are given by $(x, y)=\left(F_{2 n}^{2}, F_{2 n+1}^{2}-1\right)$ or $\left(F_{2 n}^{2}, F_{2 n-1}^{2}-1\right)$ with $n \geq 1$.

Since the proofs of the following theorem and corollary can be done similarly, we omit their proofs. The identity (10) will be used in the proof of the theorem.

Theorem 5 All positive integer solutions of the equation $(x-y+1)^{2}=5 x y$ are given by $(x, y)=\left(5 F_{4 n}^{2} / 9, L_{4 n+2}^{2} / 9\right)$ or $\left(5 F_{4 n}^{2} / 9, L_{4 n-2}^{2} / 9\right)$ with $n \geq 1$.

Corollary 3 All positive integer solutions of the equation $x^{2}+y^{2}-7 x y-x=0$ are given by $(x, y)=\left(F_{4 n}^{2} / 9,\left(F_{4 n+2}^{2}-1\right) / 9\right)$ or $\left(F_{4 n}^{2} / 9,\left(F_{4 n-2}^{2}-1\right) / 9\right)$ with $n \geq 1$

Corollary 4 The equation $x^{2}+y^{2}-7 x y+x=0$ has no positive integer solutions.
Proof Assume that $x^{2}+y^{2}-7 x y+x=0$ for some positive integer x and y. Then $(y-x)^{2}=x(5 y-1)$, which implies that $(5 y-1-5 x+1)^{2}=5(5 x(5 y-1))$. Then by Theorem 5, we get $5 y-1=5 F_{4 n}^{2} / 9$ for some $n \geq 1$, which is impossible.

4 Conclusion

In this study, we give all positive integer solutions of the equations $(x+y+1)^{2}=5 x y$, $(x+y-1)^{2}=5 x y$, and $(x-y+1)^{2}=5 x y$ in terms of the Fibonacci and Lucas sequences. Moreover, we solve some other diophantine equations. We think that the Diophantine equations $(x+y+1)^{2}=10 x y,(x+y-1)^{2}=10 x y$, and $(x-y+1)^{2}=10 x y$ can be solved in a similar argument.

References

[1] Koshy T., Fibonacci and Lucas Numbers with applications.New York: John Wiley and Sons. 2001.
[2] Demirtürk, B.; Keskin, R., Integer solutions of some Diophantine equations via Fibonacci and Lucas numbers, J. Integer Seq. 2009. 12(8): Article 09.8.7.

