Weak-FPI-rings

Fuad Ali Ahmed Almahdi
Department of Mathematics, Faculty of Science, King Khalid University,
P. O. Box. 9004, Abha 61413, Saudi Arabia
e-mail: fuadalialmahdy@hotmail.com

Abstract We define a particular case of a FPI-ring called a weak FPI-ring. We investigate the transfer of the weak FPI-ring to trivial ring extensions, pullbacks, subring retracts, amalgamated duplication of a ring along an ideal, and direct product of rings.

Keywords FPI-rings; weak FPI-rings; coherent rings; trivial ring extension; pullbacks; amalgamated duplication of a ring along an ideal; direct product of rings.

2010 Mathematics Subject Classification 13B02.

1 Introduction

We define a particular case of an FPI-ring called a weak FPI-ring. A ring R is called weak FPI-rings if, for every two ideals $I \subseteq J$ of R such that I is finitely generated flat, J is projective proper ideal, then J is projective (Definition 1).

In Proposition 1 the existence of a relationship between FPI-ring and weak FPI-ring is demonstrated. Meanwhile, in Proposition 2 we prove that every coherent ring is a weak FPI-ring. Naturally, every FPI-ring is a weak FPI-ring. In Theorem 1(i), the existence of a converse relationship FPI-ring and weak FPI-ring is supported by a sufficient condition, and in Theorem 1(ii), we show that if R is a local, then R is weak FPI-rings, and in Theorem 2 we study and validate the transfer of the weak FPI-ring to trivial ring extension.

In addition, a condition that let the descent of the weak FPI-ring holds in the extension of the ring in Proposition 3. Namely, if $R \subseteq T$ with T is a faithfully flat R-module, and T is a weak FPI-ring then that R is a weak FPI-ring. In Theorem 3, we study the notion of weak FPI-rings in direct products of rings. In Theorem 4 we study the transfer of the weak FPI-ring to pullbacks.

2 Main Results

Recall that a ring R is called a FPI-ring if every finitely generated flat ideal is projective. This paper investigates a generalization of FPI-ring as follows:

Definition 1 A ring R is called weak FPI-rings if, for every two ideals $I \subseteq J$ of R such that I is finitely generated flat, J projective proper ideal implies that I is projective.
The following proposition shows that the relationship between weak FPI-ring and weak-hereditary.

Proposition 1 Let R be a weak FPI-ring of $\text{wdim} \leq 1$. Then R is weak-hereditary.

Proof Let R be a weak FPI-ring with $\text{wdim}(R) \leq 1$ and let $I \subseteq J$ be two ideals of R such that I is finitely generated, J projective proper ideal. Then I is flat since $\text{wdim}(R) \leq 1$. So I is finitely projective since R is a weak FPI-ring. Therefore, R is weak weak-hereditary.

The following proposition shows that the every coherent ring is weak FPI-ring.

Proposition 2 Any coherent ring is a weak FPI-ring.

Proof Assume that R is a coherent ring. We must show that it is a weak FPI-ring. Let $I \subseteq J$ be two ideals of R such that I is finitely generated flat, J projective proper ideal. Then I is a finitely presented since R is coherent. Hence, I is projective.

Theorem 1 Let R be a ring. Then:

(i) If R contains a regular element, then R is a weak FPI-ring if and only if R is a FPI-ring.

(ii) If R is a local, then R is a weak FPI-ring.

Proof

(i) If R is a FPI-ring, then R weak FPI-ring. Conversely, suppose that J is finitely generated flat proper ideal of R. Let $x \in R$ regular element of R, so $xJ \subseteq xR$. On the other hand, xR proper ideal and $xR \cong R$, then xR is free implies projective. So xJ is projective ideal, since R is a weak FPI-ring. But $xJ \cong J$, then J is projective.

(ii) Let R be a local. We claim that R is a weak FPI-ring. Assume that $J_1 \subseteq J_2 \subseteq M$, where M is a maximal ideal of R, J_2 is a proper projective ideal and J_1 is finitely generated flat ideal of R. Then J_1 is free (since R is local), hence J_2 is a proper projective ideal of R. Then R is a weak FPI-ring.

The following example shows that the weak FPI-ring is not necessarily in general a coherent ring.

Example 1 Let T be a field and $A := T \times T^\infty$ be the trivial ring extension of T by T^∞. Then:

(i) By Theorem 1(ii), A is a weak FPI-ring (since A is local).

(ii) By [3, Theorem 2.1], A is not a coherent ring.

Example 2 Let (A, M) be any local ring with $M^2 = 0$. Since $A = Q(A)$ is local, then by Theorem 1(ii), A is weak FPI-ring.

Theorem 2 Let A be a domain which is not a field, $K = qf(A)$, E be a K-vector space and $R := A \times E$. Then, R is a weak FPI-ring.
Lemma 1 Let $T := K \alpha E$ be the trivial ring extension of a field K by a K-vector space E. Then there exists no proper flat ideal of T.

Proof Let $J := 0 \alpha \hat{E}$ be a proper ideal of T where $\hat{E}(\subseteq E)$ is a K-vector space. We claim that J is not flat. Deny. Let $\{f_i\}_{i \in I}$ be a basis of the K-vector space \hat{E} and consider the T-map $T^{(l)} \rightarrow J$ defined by $u((a_i, e_i)_{i \in I}) = (0, \sum_{i \in I} a_i f_i)$. Clearly, $\text{Ker}(u) = 0 \alpha E^{(l)} = (0 \alpha E)^{(l)}$. Hence, by [4, Lemma 2.5], we obtain $(0 \alpha E)^{(l)} = (0 \alpha E^{(l)}) \cap (0 \alpha E)T^{(l)} = (0 \alpha E)^{(l)}(0 \alpha E) = 0$, a contradiction. Hence, J is not flat. \hfill \Box

Proof of Theorem 2.

Let $J_1 \subseteq J_2$ be two ideals of R with J_2 is proper projective and J_1 is a finitely generated flat ideal. Set $T := K \alpha E$ which is a flat R-module since $T = S^{-1}R$, where $S = A - \{0\}$. Thus, $J_2 \otimes_R T = J_2 T$ is proper projective, and $J_1 \otimes R T = J_1 T$ is a finitely generated flat ideal since T is a flat R-module. Hence $J_1 T = K \alpha E$ by Lemma 1. On the other hand, we have $J_1 T \subseteq J_2 T$ since $J_1 \subseteq J_2$, then $J_1 T$ is projective since T is weak FPI-rings. Therefore, there exists $(a, e) \in J$ such that $a \neq 0$ which implies that $J_1 = I_1 \alpha E = I_1 \otimes_A R$ for some nonzero ideal I_1 of A. We claim that I_1 is a projective ideal of A. For any A-module N, we have by [5, p.118]

$$\text{Ext}_A(I_1, N \otimes A R) \cong \text{Ext}_R(I_1 \otimes A R, N \otimes A R) = 0.$$

On the other hand, N is a direct summand of $N \otimes_A R$ since A is a direct summand of R. Therefore, $\text{Ext}_D(I_1, N) = 0$ for all A-module N. This means that I_1 is a projective ideal of A. \hfill \Box

Corollary 1 Let A be a domain which is not a field, $K = qf(A)$, and $R := A \alpha K$ be the trivial ring extension of A by K. Then, R is a FPI-ring.

Proof By Theorem 2 R is a weak FPI-ring. Let $0 \neq a \in A$, then (a, e) is a regular element of R. Thus by Theorem 1, R is a FPI-ring. \hfill \Box

For two rings $A_1 \subseteq A_2$, we say that A_1 is a module retract of A_2 if there exists an A_1-module homomorphism $\phi : A_2 \rightarrow A_1$ such that $\phi|_{A_1} = id|_{A_1}$; ϕ is called a module retraction map. If such a map ϕ exists, A_2 contains A_1 as an A_1-module direct summand. See for instance ([2,6,7]).

Proposition 3 Let $A \rightarrow S$ be a faithfully flat ring homomorphism, such that each ideal I of A, $IS \neq S$. If S is a weak FPI-ring, then A is a weak FPI-ring.

Proof Assume that S is a weak FPI-ring. Let $I_1 \subseteq I_2$ be a two ideals of A with I_2 is proper projective, and I_1 is a finitely generated flat ideal. Since S is faithfully flat over A, $I_2 \otimes_A S = I_2 S$ is a proper projective ideal of S and $I_1 \otimes_A S = I_1 S$ is a finitely generated flat ideal of S. On the other hand, we have $I_1 S \subseteq I_2 S$ and S is a weak FPI-ring then, $I_1 S$
is projective. We claim that \(I_1 \) is a projective ideal of \(A \). Indeed, for any \(A \)-module \(L \), we have by [5, p.118],

\[
\text{Ext}_A(I_1, L \otimes_A S) \cong \text{Ext}_S(I_1 \otimes_A S, L \otimes_A S) = 0.
\]

On the other hand, \(L \) is a direct summand of \(L \otimes_A S \) since \(A \) is a direct summand of \(S \). Therefore, \(\text{Ext}_A(I_1, L) = 0 \) for every \(A \)-module \(L \). This means that \(I_1 \) is a projective ideal of \(A \), as desired.

Now we study the notion of weak FPI-rings in direct products of rings.

Theorem 3 Let \((R_i)_{i=1,2,...,n}\) be a family of rings and let \(R := \prod_{i=1}^n R_i \). If \(R \) is a weak FPI-ring, then so is \(R_i \) for each \(i = 1, \ldots, n \).

We need the following lemma before proving Theorem 3.

Lemma 2 [8, Lemma 2.5] Let \((R_i)_{i=1,2}\) be a family of rings and let \(E_i \) be an \(R_i \)-module for \(i = 1, 2 \). Then:

(i) \(N_1 \prod N_2 \) is a finitely generated \(A_1 \prod A_2 \)-module if and only if \(N_i \) is a finitely generated \(A_i \)-module for \(i = 1, 2 \).

(ii) \(N_1 \prod N_2 \) is a flat \(A_1 \prod A_2 \)-module if and only if \(N_i \) is a flat \(A_i \)-module for \(i = 1, 2 \).

(iii) \(N_1 \prod N_2 \) is a projective \(A_1 \prod A_2 \)-module if and only if \(N_i \) is a projective \(A_i \)-module for \(i = 1, 2 \).

Proof of Theorem 3 We prove the result for \(i = 1, 2 \), and the Theorem will be established by induction on \(n \).

Assume that \((A_1 \times A_2)\) is a weak FPI-ring. We wish to show that \(A_1 \) and \(A_2 \) are weak FPI-rings. Let \(I_1 \) and \(J_1 \) be two ideals of \(A_1 \) and let \(I_1 \subseteq J_1 \) with \(J_1 \) is a projective proper ideal and \(I_1 \) is a finitely generated flat ideal. Then \(I_1 \times A_2 \) is a finitely generated flat ideal of \((A_1 \times A_2)\) and \(J_1 \times A_2 \) is a projective proper ideal of \((A_1 \times R_2)\). Since \((A_1 \times A_2)\) is a weak FPI-ring and \(I_1 \times A_2 \subseteq J_1 \times A_2 \), then \(I_1 \times A_2 \) is a projective ideal. Then \(I_1 \) is a projective ideal.

Theorem 4 Let \(A \subseteq B(=S^{-1}A) \) be an extension of rings, where \(S \) is a multiplicative subset of \(A \), and \(Q \) is an ideal of both \(A \) and \(B \). Assume that \(B \) is a local weak FPI-ring. Then \(A \) is a weak FPI-ring provided \(A/Q \) is a weak FPI-ring.

We need the following lemma before proving Theorem 4.

Lemma 3 [9, Lemma 2.7] Let \(A, B, S \) and \(Q \) be as in Theorem 4. Assume that \(B \) is a local ring and let \(I \) be any finitely generated flat ideal of \(A \). Then there exists \(0 \neq x \in B \) and an ideal \(I' \supseteq Q \) of \(A \) such that \(I \otimes A/Q \cong I'/Q \) as \(A/Q \)-modules and \(I = xI' \cong I' \) as \(A \)-modules.
Proof of Theorem 4 Let $A \subseteq B := S^{-1}A$ be an extension of rings, where S is a multiplicative subset of A, let also Q is an ideal of both A and B and B is a local weak FPI-ring. Assume that A/Q is an FPI-ring and let $I \subseteq J$ two ideals of A such that I is finitely generated flat and J is a projective proper. Then $I \otimes_A B := IB$ is a finitely generated flat and $I \otimes_A (A/Q) \cong I'/Q$ is a finitely generated flat ideal of A/Q. On the other hand, $J \otimes_A B := JB$ is a projective proper and $J \otimes_A (A/Q) \cong J'/Q$ is a projective proper ideal of A/Q. Now we have $I \otimes_A B := IB \subseteq J \otimes_A B := JB$. Then $I \otimes_A B := IB$ is projective since B is a weak FPI-ring. Since A/Q is a weak FPI-ring and $I \otimes_A (A/Q) \cong I'/Q \subseteq J \otimes_A (A/Q) \cong J'/Q$, then $I \otimes_A (A/Q) \cong I'/Q$ is projective. Therefore, I is a projective ideal.

Theorem 4 enriches the literature with new examples of weak FPI-rings.

Example 3 Let D be a non-local integral domain, $K := qf(D)$, $T := K[X]/(X^n) = K + M$, where X is an indeterminate over K, n is a positive integer, $M = XT$ is a maximal ideal of a local ring T and $R = D + M$. Then:

(i) R is a weak FPI-ring.
(ii) R is not local since D is not local.
(iii) R is not Noetherian since D is not Noetherian and R is a faithfully flat D-module.

References