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Abstract In this paper, we need to developed a numerical strategy by implement-
ing FORTRAN programming and OpenMP parallelization in Localized Differential
Quadrature method in boundary value problem. Localized Differential Quadrature
method is developed from the DQ method which used to improve the accuracy of
the results by increasing the number of grid points. In order to reduce the execution
time for sequential algorithm in solving boundary value problem using LDQ method,
parallel programming of shared memory architecture (OpenMP) is introduced. With
the introduction of share memory architecture, the computational time can be further
speed up using parallel approach.
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1 Introduction

The Differential Quadrature (DQ) method was first proposed by Bellman and his associates
[1, 2] in early 1970s. This method has been adopted in science and engineering fields.
According to C. Shu [3], DQ method is a highest order Finite Difference (FD) method,
which is the extension of the low order FD scheme. The low order numerical methods such
as FD, Finite Element (FE) and Finite Volume (FV) methods may be relatively easy to
use but limited to special cases, for example, need initial trial functions, or require large
amounts of computational effort and consequently high cost [4]. In order to overcome these
several undesirable limitations, Differential Quadrature (DQ) method has been developed
and discussed in this study. The basic idea to DQ method is to determine the weighting
coefficients for any order derivatives by using a weighted sum of functional values at a set
of selected grid points.

Although DQ method is a highly efficient method by using a small number of grid point,
but it is not efficient when the number of grid points is large and it is also sensitive to grid
point distribution [5-7]. To overcome the limitations for the applications of DQ method,
there are many researchers have given much efforts in developing and improving DQ method
use in more useful application. Quan and Chang [8, 9] developed a set of explicit formula to
obtain the weighting coefficients for first and second order derivatives using the Lagrange
interpolation polynomial for the distributed grid points in solving distributed system equa-
tion. Besides, Malik and Civan [10] introduced Differential Cubature (DC) method by
replacing quadrature rule with cubature rule can act as a competitive numerical technique
in solving multi-dimensional problems. Since the formulation of weighting coefficients can-
not be applied directly into an irregular domain, therefore, DC method is an alternative in
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treatment of irregular domain. These previous works have shown that the selection of grid
distribution has significant influence on the accuracy of DQ results.

In this paper, we propose Localized Differential Quadrature (LDQ) method in solving
partial differential equations (PDEs) with proper boundary conditions such as the diffusion
equation and wave equation. The diffusion equation is a partial differential equation which
describes density fluctuations in a material undergoing diffusion. It is an example of a
parabolic equation. Makbule [11] introduced Differential Quadrature (DQ) method for
solving time-dependent diffusion equation. Besides, we also discuss the wave equation
in this study. The wave equation is a second-order linear partial differential equation.
Zong and Lam [12, 13] had introduced Localized Differential Quadrature (LDQ) method by
approximating the derivatives of the weighted sum of the points in its neighbourhood for
solving wave equation.

In order to reduce the execution time for sequential algorithm in solving boundary
value problem using LDQ method, parallel programming of shared memory architecture
(OpenMP) is introduced. Parallel programming is a programming in a language that al-
lows you to explicitly indicate how portions of computation may be executed concurrently
by different processors [14]. Parallel computing has been considered to be “the high end
of computing”, and has been used to model difficult problems in many areas of sciences
and engineering. OpenMP is an implementation of multithreading, a method of paralleliz-
ing whereby a master thread (a series of instructions executed consecutively) forks a
specified number of slave threads and a task is divided among them. The threads then
run concurrently, with the runtime environment allocating threads to different processors.
According to Amdahl’s Law [14], the non-parallelized part of program can affect the scala-
bility of the program. Therefore, parallelization need to be done on the part of source code
where the majority of the execution time is spent on. In this paper, parallel programming
of shared memory architecture is introduced and used to reduce the execution time for
sequential algorithm in solving boundary value problem using LDQ method.

2 Numerical Methodology

In this paper, initially the problem is to be solved on a global grid point by using the LDQ
method. We generalize the LDQ method in two-dimensions. The two-dimensional domain
of interest is discretized by N × M regular grid points.

First, we consider the distance between any two points is denoted as the following:

rik = |xi − xk| , i, k = 1, 2, ... , N (1)

pjk = |yj − yk| , j, k = 1, 2, ... , M (2)

Through comparison, one can find the permutation s(1), s(2), ... , s(N) and q(1), q(2), ... ,
q(M) such that

ris(1) ≤ ris(2) ≤ ... ≤ ris(N) (3)

pjq(1) ≤ pjq(2) ≤ ... ≤ pjq(M). (4)

The number of points in neighbourhood is fixed at m (m ≤ N, M). Sij and Qij define the
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neighbourhood of the grid point of interest. Then the neighbourhood index set as

Sij = (s(1), s(2), ... , s(m)) , (5)

Qij = (q(1), q(2), ... , q(m)) , i = 1, 2, ... , N , j = 1, 2, ... , M (6)

where Sij and Qij define the neighbourhood of the grid point.
The DQ approximation is in this neighbourhood is in the form:

ux (xi, yj , t) =
∑

k∈Sij

aiku (xk, yj , t) ; uxx (xi, yj , t) =
∑

k∈Sij

biku (xk, yj, t) (7)

uy (xi, yj, t) =
∑

k∈Qij

ajku (xi, yk, t) ; uyy (xi, yjt) =
∑

k∈Qij

bjku (xi, yk, t) (8)

i = 1, 2, ... , N, j = 1, 2, ... , M where the weighting coefficients for the first-order
derivative are

aij =
1

xj − xi

∏

k∈Si,k 6=i,j

xj − xk

xj − xi

, j ∈ Si, j 6= i (9)

aii = −
∑

j∈Si,j 6=i

aij, i = 1, 2, ... , N. (10)

For the second-order derivative, the weighting coefficients are

bij = 2

(

aijaii −
aij

xi − xj

)

, i, j = 1, 2, ... , N , i 6= j, (11)

bii = −

N
∑

j 6=i

bij, i = 1, 2, ... , N . (12)

The formulation of weighting coefficients for the first- and second-order with respect to
the coordinate y is same with the formulation of weighting coefficients for the first- and
second-order with respect to the coordinate x.

In this paper, we consider discretization of the two-dimensional wave equation and
diffusion equation as follows:

∂2u

∂t2
=

∂2u

∂x2
+

∂2u

∂y2
,

∂u

∂t
=

∂2u

∂x2
+

∂2u

∂y2
.

(13)

From the equation (13), we discretize the value of u(x, y, t) on the grid point (xi, yj) as
uij(t), and its velocity is vij(t) .

Then rewrite equation (13) in the following form,

∂uij

∂t
= vij (14)

∂vij

∂t
=

∑

k∈Sij

biku(xk, yj, t) +
∑

k∈Qij

bjku(xi, yk, t). (15)
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From equations (14) and (15), the matrix form for uij(t) and vij(t) can be written as

w̃ =

[

uij

vij

]

=





















u11

...
uNM

v11

...
vNM





















, (16)

∂

∂t
[w̃] =

[

B(2ij)

]

[w̃] . (17)

Runge-Kutta method is used to numerically integrate the equation (17) in time direction.

3 Parallel Computing

In this section, the parallelization of the LDQ method will be executed by OpenMP compiler
based on the boundary value problem. Parallelism across space is used in this paper and it
is efficient when the systems have a regular structure as shown in Figure 1.

Figure 1: Computation Grid with Parallelism Across Space
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In order to analyze the convergence behavior of the proposed method, we first apply the
method to solve 2-D wave and diffusion equation with available analytical solution. We have
chosen Windows Vista Ultimate, Intel(R) Core(TM) i5 CPU M460 @ 2.53GHz, 4 GB RAM
and 32-bit operating system for studying the parallel performance of our implementation.
In this paper, the speedup of the model is calculated. The speedup, Sp is given by

S(p) = ts/tp

where t is the execution time of sequential algorithm and tp is the execution time of parallel
algorithm with p processors.

For ideal speedup, a multi-core computer with p processors can reduce the execution
time for parallel algorithm up to p times of the execution time for sequential algorithm.
Then, the efficiency of the parallel algorithm which is given by the following formulation
will be calculated:

Ep = S(p)/p, 0 ≤ E ≤ 1,

where p is the number of processors used with speedup, S(p). If the efficiency of p processors,
Ep = 1, then the parallel algorithm is a perfect algorithm with ideal speedup.

Example 1

We consider the two-dimensional wave equation

d2u

dt2
=

d2u

dx2
+

d2u

dy2

with the boundary conditions

u(0, y, t) = e(−y−
√

2t), u(1, y, t) = e(−1−y−
√

2t),

u(x, 0, t) = e(−x−
√

2t), u(x, 1, t) = e(−x−1−
√

2t).

and initial condition

u(x, y, 0) = e(−x−y)

The exact solution is given in this form,

u(x, y, t) = e(−x−y−
√

2t)

Example 2

We consider the two-dimensional diffusion equation with large localized gradient

du

dt
=

d2u

dx2
+

d2u

dy2

with the boundary conditions

u(0, y, t) = e−0.25α2

e−βt,

u(1, y, t) = 1 + e−0.25α2

e−βt,

u(x, 0, t) = x + e−α2(x−0.5)2e−βt,

u(x, 1, t) = x + e−α2(x−0.5)2e−βt.
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and initial condition

u(x, y, 0) = x + e−a2(x−0,5)2

.

The exact solution is given in the form:

u(x, y, t) = x + e−a2(x−0.52)e−βt

with α =100 and β =0.1.

4 Results and Analysis

The following table shows the time execution for both parallel and sequential algorithm
when compiling the program using multi-core computers with 4 processors. Then, the
speedup, S(p) and the efficiency Ep is calculated.

Table 1: Table of Speedup, S(p) and Efficiency, Ep for Different Number of Grid Points
(Example 1)

Total of number grid points tp(s) ts(s) S(p) Ep

25 0.0320 0.0470 1.4688 0.3672
49 0.1090 0.2972 2.7264 0.6816

100 0.2500 0.5783 2.3130 0.5783

Table 2: Table of Speedup, S(p) and Efficiency, Ep for Different Number of Grid Points
(Example 2).

Total of number grid points tp(s) ts(s) S(p) Ep

25 0.2175 0.2180 1.0023 0.2506
49 0.2960 0.4584 1.5486 0.3872

100 0.5610 0.9094 1.6210 0.4053

From our speedup results, the execution time for parallel algorithm is decrease compare
with the execution time for sequential algorithm. The efficiency of parallel algorithm in
Table 1 showing that our program contains less than 70 percent of parallelized part. The
efficiency of parallel algorithm in Table 2 showing that our program contains less than 40
percent of parallelized part. We found that the different boundary value problems are given
different efficiency of parallel algorithm.

5 Conclusions

In this paper, the LDQ method is used with the fourth order Runge-Kutta method for
solving boundary value problems. The Runge-Kutta method is used to numerically integrate
the equation in time direction. The shared memory architecture of parallel programming
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by using OpenMP is performed on the LDQ method in order to reduce the execution time
in simulating results.
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