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Abstract The constraint of two ordered extreme minima random variables when one
variable is consider to be stochastically smaller than the other one has been carried
out in this article. The quantile functions of the probability distribution have been
used to establish partial ordering between the two variables. Some extensions and
generalizations are given for the stochastic ordering using the important of sign of the
shape parameter.
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1 Introduction

When comparing the size of two random variables, X and Y, the simplest way is through
their means and variances. Sometimes the mean of X is smaller than that of Y, while the
standard deviation of Y is greater than than of X. This situation gives an unclear position
for ordering X and Y [1]. Furthermore, sometimes these features of distributions might not
exist in some cases.

A more informative method of comparing two variables is in terms of knowledge of the
underlying probability distributions i.e. quantile function etc. This will establish partial
ordering between the variables which is called stochastic ordering. Stochastic ordering is
an ordering of random variables and their distribution functions [1]. In this article, we
consider X to be stochastically smaller than Y, X <Y, if Fy(a) < Fx(a) for each a € R.
This definition leads to a tendency for X to have smaller values than Y. Further notes on
stochastic ordering are available in [2] and references therein.

The purpose of this research is to develop bivariate extremal models and associated
statistical procedures for vector observations whose components are subject to an order
relationship. We develop a theorem and corollary relating to the order constraint, Z, <
Z, where where Z, ~ GEVM(ug,04,&;) and Z, ~ GEVM(py, 0y,&,) where GEVM is
the notation for the Generalized Extreme Value for Minima distribution; and study the
implications for the parameters. The location, scale and shape parameters where represent
by u, o and £ respectively.

The joint structure of the extreme models for the ordered variables (Z,, Z,) is therefore
needed to extract the information for inference for the extremes data [3,4]. One approach
to the estimation would be to fit the bivariate extreme value, BEVM, distribution to the
observed pairs data, (Z5, Z,) where

(Zxa Zy) ~ BEVM(NIaﬂya Oz, Uyagxagya s = 1)
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where 0 < s <1 is the dependent scale with s = 1 is showing the absolute independent. In
this study we assume that Z, and Z, are independent of each other.

We use these results to develop an extension to the bivariate ordered extreme value cases
of the smoothing techniques discussed in another article [5].

In Section 2 we introduce Theorem 1 relating to the stochastic ordering constraint,
Zy < Zy, on the extreme values. Next, in the later section, we extended some conditions
in Theorem 1.

2 Ordered extremes

Let us assume that a block minima Z of independent variables follows GEVM(u, o, &) dis-
tribution whose parameters are to be estimated, then the distribution function for Z is

Pr(Z <2)=H(:) = 1_@m{_[1_§(z;#>]fﬁ} or 70

1—exp [—exp (u>] for £€=0.
o
and the density function is

N 1L G | B [ = | T

lexp(z_'u> exp [—exp (ﬂ>] for £€=0.
o o o

When we let H(z,) =1 —p for p € [0, 1], we get the quantiles of the GEVM distribution
which has the value

%_{u+gu—emw>ﬂﬂns¢o )

u~+ olog(—logp) for £=0.
Suppose we have two GEVM distribution functions, i.e.
Zy ~ GEVM(y,05,&,) and  Z, ~ GEVM(py, 0y, &)

with quantile functions x,, and ¥, respectively. If Z, < Z,, then Theorem 1 gives all possible
conditions for the GEVM parameters.

Theorem 1 Let Z, ~ GEVM(uy,04,&:) and Zy ~ GEVM(uy, 0y, &y) with the respective
quantile

O _ o _
T = i+ (1= (~logp) ] and y, = py + g—y[l — (= logp)~*] forp € [0,1].
T Y
If Z, and Z, are stochastically ordered with Z, < Z,, then the only possible conditions on

the GEVM parameters are as follows:

(i) For& =& =& >0 then oy > 0y and,ux—i-gxggy < fhy-
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Oz — Oy

§

(ii) For &y =& =& <0 then o, < oy and py + < fhy-
(iii) For&y =& =& =0 then o, =0y and py < fiy.
(iv) For &, <0< &, then

v &o Y
(v) Foré&, <0,& =0 then

u+@—u—2+210g<%>>0
T T & g '

Essentially these conditions come from the requirement that x, < ¥, for all p. In order
to prove Theorem 1, we need to look at all 13 possible relationships between £, and &,
namely:

§m:§y:0a gm:§y>0a gm:§y<0a
x> & >0, &y > & >0, &x <& <0,
&y <& <0, &y <0<, &x <0 <&y,
§&o=0,8 >0, & =0,8 <0,
£x<0,& =0, & >0,& =0.

Proof Case 1: {, =¢§, =¢ =0.

Let kj = log(—logp) then x), = p, + 0.ky and y, = py + oy ky;, and we require z, < y,
to hold for all p € [0,1]. Then when p | 0 = kf — ccand p 1 1 = kf — —oco. If
S(ky) = yp — xp, then

S(ky) = py + oyky — pa — ouky,. (4)

For kj = M with M T oo,

S(M) = py—pe +oyM —o0,M

M(oy—o0,) as M — oo,
we need S(M) >0 as M T oo then we get oy — 0, > 0. For kjy = —M with M T oo,

S(—M) = py— pg—oyM+o,M
M(oyz —0,) as M — oo,

we need S(—M) > 0 as M T oo then we get o, — 0y > 0.

As S(—M) >0 = 0, > gy and S(M) > 0 = o, < oy, the only possible solution is
0y = 0y. Then S(ky;) > 0 holds for all p when o, = 0, and p; < i,y as S(.) then does not
depend on p. O
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Proof Case 2: £, =&, =& > 0.
1
Let k, = E[l — (—logp)~¢] then z, = pi, + 0.k, and y, = p, + oyk,, and we require

1
xp<ypt0h01dforallpe[0,1].Thenwhenp:0:>k0:g>0andp—>1:>k1—>—oo.

If S(kp) = yp — xp, then
S(kp) = py + oykp — pg — ozkp. (5)

For k, = —M with M T oo,
S(—M) = py—pe—oyM+o,M

~ Moy —oy) as M — o0

1
we need S(—M) > 0 as M T oo then we get o, — o, > 0. For kg = £ then
1 o o
§ Y & ¢

we need S(%) > 0, then we get

Oy — O,

We do not need to check for 0 < p < 1 because S(kp) is linear in k, so its extreme value
over a range of k, occur at the endpoints of k. O

Proof Case 3: £, =&, =¢£ <0.

Let &k, = %[1 — (—logp)~¢] then x, = py + 04k, and y, = py + oyk,, and we require
zp < Yp to hold for all p € [0,1]. Then when p - 0=ky —occand p=1=k = % If
S(kp) = yp — xp, then using Equation (5), for k, = M with M T oo,

S(M) = py—pg +o,M —0,M

~ M(oy—0,) as M — oo,

we need S(M) >0 as M T co then we get 0, < o,. For ki = % then

1 o o
S<_> = p _,uac+_y__m

3 Y & ¢
we need S(%) > 0, then we get

Oy — O

As S(kp) = 0, is linear in k&, so its extreme value over a range of k, occur at the endpoints
of kp. O
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Proof Case 4: £, =0,&, > 0.

Let kg, = log(—logp) and k., = é[l — (—logp)~*] then z, = 1y + 0zksyp and y, =
ty + oyky.p, and we require z, < y, to hold for all p € [0, 1]. Then when p | 0 = kg0 — 00
and p=0= kyo = 1 > 0; and when p T 1 = kg1 — —o0 and ky;; — —oo.

y
If S(kyyp) = y(kayp) — x(kgyp), using the transformation —logp = exp(kq.p), then

S(kzp) = py + g[l — exp(—kazp&y)] — fe — Oukap. (6)
For k. = N with N T oo,
S(N) = —|—§—[1—exp( ny)]—,um—am]\]
y

5—[1 —exp(=N§)| — oz N
y

Q

Q

~ 2L exp(~N§,) — 0N | —os,
&

—-N
as & > 0 and exp(=NVE,) — 0. For kg, = —N with N T oo,

N
S(=N) = py+ 5_[1 —exp(+N§)] — pa + 0u N
Y
~ L1 —exp(+N&)] + 0N
fy
~ - eXp(—Fny) +o;N | —oo,
fy
N
as & > 0 and expg\]i&) — 00. These conditions (£, = 0 and &, > 0) are impossible to give
us S(kzyp) > 0 for all range of k., € (—00, 00). O

Proof Case 5: £, =0,§, <O0.
1
Let kg = log(—logp) and ky, = 5—[1 — (~logp)~®] then z, = py + 04ky, and

y
Yp = Hy + Oyky;p, and we require z, < y, to hold for all p € [0, 1].

Then when p | 0 = kz0 — oo and ky — oo, and p [ 1 = kg1 = —oo and when
1
p=1=ky1 = & If S(kz;p) = yp — xp, then we get Equation (6). For k,,, = N with
Yy
N T oo, we get
S(N) = —|—§—[1—exp( NEY)| — pro — 0N
Y

Q

TU[1 — exp(~Ng,)] - 0o N
y
~ —% exp(—N¢&y) —oN 1 oo,
y
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as GXMJ—\]iny) — 00. For km;p = —N with N T oo,
S(-N) = p,+ 5—[1 — exp(+N&)] = pz + 0xN
y
~ 5 —2[1— exp(+N¢&,)] + 0N
y

~ o,N 1oo.

To make sure S > 0 for all range of k., we check whether the S has minimum value in
the range k., € (—o0, 00),

S (kyp) = Uyexp(—kmﬁy)—am

When, S'(k*) = oy exp(—k*&,) — 0, =0 then k* = —5— log ( ) put inside S”(.) we get
Y Ty

) > 0. The S(.) function is having a minimum value.

W@ﬂ——%@(%

Y

O o o
S(k*) = {1—exp [10g( )]}—um—k—mlog (—m>
fy Oy &y Ty
Ox Ox Ox
= W + v (1——) —um+—1og(—>.
gy Ty &y Ty
. UI UI
In order to satisfy S(.) > 0 then p, + — (1 - —) — pip + — log (—) > 0. O
&y Ty &y
Proof Case 6: 0 <&, & =0.
1
Let ky, = log(—logp) and ki = §_m[1 — (=logp)~*] then y, = p, + oyk,, and
Tp = g +0zksp, and we require z, < yp to hold for all p € [0, 1]. Using a transformation of
—logp = exp(ky;p), we get zp, = pg+ {1 lexp(ky:p)]~ 921 Then whenp | 0 = ky0 — 00
and p 1 1= kyy — —oo. If S(k yp)—yp Zp, then

x

S(kyp) = py + oyky;p — po + %[1 —exp(—E€akyp)]- (7)

For ky.,, = M, M 7 oo,

S(M) = M+%M—M+§m—WM%wm
~ oyM — % exp(—&:M) 1 oo,

as exp(—&; M) — 0. For ky, = —M, M 1 oo,

aﬂﬂzzw—%M—M+%nww@Mn

¢

|
Q
<
<
0]
4
ko)
™~
8
=
—

I
3
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as exp({; M) — oo. The condition S(k,.,) > 0 is not covered for all range k., € (—00, 00).
O

Proof Case 7: £, <0, &, =0.
1
Let ky, = log(—logp) and kiyp = 5—[1 — (=logp)~*] then y, = p, + ok, and
Tp = g +0zks,p, and we require z, < y, to hold for all p € [0, 1]. Using a transformation of
—logp = exp(ky;p), we get zp = pz+ %{1 —[exp(kyp)] "¢ }. Then when p | 0 = kg — o0

and p T 1 = kyq — —oo. If S(kyyp) = yp — p, then it similar to Equation (7). For ky,, = N
with N T oo,

S(N)

x

fy + oy N = iz — %[1 — exp(—N&;)]

~ oyN — %[1 —exp(—N&,)]

Q

UyN+§ exp(—N§;) Too

as 0 > &, and LNN&’) — 0. For ky, = —N with N 1 oo,

Oz
S(=N) = py—oyN —pz — 5_[1 —exp(+N&;)]
~ —oyN —|— c, T exp(+N&) | —o0
N
as§y<0andeXp(N7§y)—>0.
The condition of S(ky.,) > 0 is not satisfied for all range of k,, € (—o0, 00). O

Proof Case 8: 0 < &, < &,.

1
Let km;p = 5_[1 - (_ 1ng)751] then Yp = py + %[1 - (1 - km'pgm)gy/gz]a and we require
T Y
xp < yp to hold for all p € [0,1]. Then when p =0 = kyo = §—>0ande1:>km1—>
—oo. If S(kyyp) = yp — p, then
S(kap) = py + 5_[1 -(1- kr;pfm)gy/gm] — [e — Ogkap. (8)
Yy

For kg, = —M with M 1 oo,

S(-M) = y T+ 5_[1 - (M§m>§y/§z] — pg + 0 M
Yy

_[1 - (Mgr)gy/gx] +o. M

&y
~ _U_yé'gy/fofy/fr + UmM l —0o0 as §_y S0
& 590

The result for S(—M) > 0 is not satisfied unless &, = ¢, which is covered in Cases 1-3. O

Q
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Proof Case 9: 0 < &, < &,.

Let 1 1
—[1— (—logp)~*] and k, = —[1 — (—logp)~*]
&y o

then y, = py +oyky,p and x, = pg +0zks,p, and we require z, < y, to hold for all p € [0, 1].

ky =

Then when p=0= ko= —>0and p1 1= k1 — —oo. If S(ky,) = yp — p, then get
Equation (8). For ks, = —M with M 71 oo,

S(-M) = py+ 20— (1 ME)S/S) = o+ 0uM

&y
&y /&
Ty &y/Ex &y M
——Z(1+ M&)*¥/'5 +0,M 1 o0 =2 <1
&y 3 M

— 0

Q

1y Oy 1 L yowe o4 L
S( ) o+ P = (1= &)

Ty
vg

Mo — 7
y 3

x

We need to check whether the S(k;,,) has a minimum value in the range k., € (—oo, gi)
We get

gy
S/(km;p) = oy(1- km;pgr)gil — Ox;

1 o\ So/ (€y—Ee)
suppose S’ (k}.,) = 0, we get kj = 5— 1— (—m> )

Oy

€,/(6y—€2) €a)(E4—Es)
ag. ag. ag.
( ’p) fy (Uy> ] a &z [ (Uy> ]
_ oy — 8 b/ (€—te) gt/ (€1 —60) (i _ i)
fy §u Y e &y
O 1 1
- - Mz +c| —— — ) 9
teh g (sm @) ®)
_ _ 1
where ¢ = o,fy/(fy &) yfz/(fy &) >0and — — — < 0.
§m &y
S'(key) = =o€y — ) (1 — ki &,) (Eu/ &) =2
&y — 26,

= —ay(ﬁy—ﬁm)< >§y S >0 as & <&
Ty

Although S(.) has a minimum value for all range of k., but the condition of S(kz,,) > 0 is
not fully satisfied, unless &, = &, which is covered in Cases 1-3. O
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Proof Case 10: &, < &, < 0.

1 1
Let kyp = 5_[1 — (—logp)~*] and ko = 5_[1 — (—logp)~*] then Yp = fy + 0ykyp
Yy x
and x, = py + 0gksp, and we require x, < y, to hold for all p € [0,1]. Then when
1 1
p |l 0= kyo — ooand ko — o0. V\/'henp:1:>l€yl—g—andkgcl—5 If

S(kzp) = yp — Tp, then S(ky,p) is similar to Equation (8). For k., = M, with M T oo,

S(M) ~ — 5y(1—M§)fy/5w—aM 1 0.

1
For kg = —,

1 o o
S - - +_y_ m__m,
(@) v, ~ M g

where S(kz;p) > 0 only if p, + g—z’ — pe — > 0.
We need to check whether the S(k;.,) has a positive minimum value in the range of k.
From Equation (9) calculating for the critical point, for the minimum value of the S(kz.p),

1 1 _ _

we found that ¢ (5— — 5—) < 0 where ¢ = Ugy/(gy &g oy &/(&=%) 5 0. The condition of
xSy

S(kzp) > 0 is not fully satisfied unless &, = &, which is covered in Cases 1-3. O

Proof Case 11: & < &, < 0.

Let kyyp = g[l — (—logp)~*] and ko = 5%[1 — (—logp) =] then y, = py + oyky;y
and x, = py + 0gksp, and we require z, < y, to hold for all p € [0,1]. Then when
1
pl 0= kyo — ooand kyo — oo. Whenp =1 = k1 = g—andkm;lz —. If
Y xT
S(kyp) = yp — Tp, then S(ky,) is similar to Equation (8). For ky., = M, M 1 0o
S(M) = py+ 5— [1 S (1= M&)E/E| — iy — oM
Y
~ (1 — M)/ & — g, M | —o0.
g
For kg = —
1 1
S(g) = mrP-0- e o
€a &y o
_ +@_u o
ey T &

The condition for S(ks,,) > 0 is not satisfied for kg, — oo. O
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Proof Case 12: £, <0 < &,.
1 1
Let k. = 5—[1 —(~logp)~*] and ky, = 5—[1 —(—logp) %] then x, = p, +0,ksp and
x Y
Yp = Ly + 0yky,p, and we require x, < y, to hold for all p € [0,1]. When p =0 = kyo =

1 1
5—>0andp10:>ky;0—>oo,andwhein1:>km;1—>—ooandp:1:>ky;1:—<0.

x é.y
If S(kzp) = yp — Tp, then we get Equation (8). For kg, = —M, M T oo, we get
o
S(_M) = Uy + _y[l - (1 + M§I>§y/§x] — Yo + oM
Yy
&y
&y
1
For kypp = g——fasﬁl(), we get,

i_ _ oy . . i_ ]éy/éz B . (i_)
s(g-¢) “y+§y{1 (g9 pe =g

= py+ z—j [1 - (fgm)gy/gm} — Mz — Iz + &0z

e
~ —Tehle (oo as €10, <.
&y §a
1
We need to check whether the S(.) has a minimum value in the range k;,, € (—oo, 5—) We

get,
S/(km;p) = o'y(l — km,pgm)(fyffx)/gx — 0y

o b1 o\ §o/ (Eu—ta)
Let S'(k}.,) = 0 we get kj , = = [1- (—) .

Z Then, we need to prove that
Y

k;;p € (—OO, é)

ki
1 o §x/(8y—&z) 1
i I I
o (Uy ) e

Ty

0

IN
|

IN
|

IN
—_

IN

o \ 6/ EE2)

oy '
1

We find that k* € (—o0, 5—) for 0 < p < 1. When

8" (kup) = 0y(Ey — Ea)(1 = kgply)Ev/&)72)
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put the k7., we get

Ox

S"(ky.,) = —0y(& — &) (—

Oy

(6y—282)/(6y—E2)
) >0 as & <&

which is a minima point exist in the range of k.., as S”(k},,) > 0. We check whether the

S(k}.,) has a positive value,
§y/(&y—Ea)
1-(2) ] (10)
Ty

—y — — _ =
§u Oy

Sk1) =yt

= py+ - M (11)
&y
05 4 (66 g6 /(6 —0) (i _ i)
m Y e &y
oy O 1 1
u+——um——+0(———>, 12)
s e tle g (
- 1 1
where CcC= giy/(fy*f:)o—yffz/(fyffz) > 0 If,UJy—F@—,UJm—U— > c (— —_ —) then S(k;) > 0
Oy 3 3 fy O

Proof Case 13: {, <0 < &,.

1 1
Let kyyp = 5—[1—(— logp)~*] and k., = 5—[1—(— logp)~¢¥] then x,, = 1z +0 ks and
T Y

Yp = by + 0yky.p, and we require x, < y, to hold for all p € [0,1]. When p | 0 = kg0 — 00
1 1
andp=0=kyo=—>0,andwhenp=1= k1 = —<0andp11=ky; — —oo. If

&y §a
S(I;p) = yp — Tp, then we get Equation (8). For k,, = M with M T oo,

a.
S =y 22— (1= ME)/S] = e = oM
Yy
~ — (- Me)S /S — o, M
&y
~ —o.M | —o0.
1
For km;p = é_—,
1 o 1 1
Sl—) = + 21— (1= =&)%/%] — py — 05—
(£) = m+Pu-a-geee .
~ _ Tyt /ts &y
~ ——0%"% | —oc0o as = <0.
&y o

The condition for S(ks.,) > 0 is not satisfied as kg, — 0. O
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3 Some extensions and generalizations

When & = & = £, we can combine and simplify Conditions 1-3 of Theorem 1, i.e. & =
& >0,& =& <0and & =& =0. We see the importance of the sign of £ compared to
the sign of o, — oy leads to the definition and corollary as follows

Definition 1 The function sign(x) is such that

-1 for z<0
sign(z) = 1 for >0 (13)
0 for z=0.

Corollary 1 Let Z, ~ GEVM(uy,04,&:) and Zy ~ GEVM(uy,0y,&,) then suppose we
assume that &, = &, = & for the relationship Z,, > Z, to hold then if sign(§) = sign(oz—oy),
then py > pop + 1(0g, 0y, §) where

N0z, 04,€) = 2227V with (o, ,0) = 0.
Proof
From Theorem 1, by considering all {, = &, = & cases. When £ > 0 and o, > o, then
sign(¢) = 1 and sign(o; — 0y) = 1 with To — % _ (05, 0y,§). When £ < 0 and 0, < gy
then sign(¢) = —1 and sign (0, — 0y) = —1 with T g v = N(0z,0y,§). When £ =0

Op — Oy

and o, = o, then sign(§) = 0 and sign(o, — 0,) = 0 with = n(0g,04,§) = 0 as

0y = 0y = 0 and & = 0. Combining all the three cases then Z, > Z, when for sign(§) =
sign(o, — oy) and py > pg + (04, 0y, §) holds. O

For Condition 4 of Theorem 1, £, < 0 < &, Lemma 1 is written for only the case when
we assume 0, = 0y = 0. From Lemma 1 when {, — 0 and & — 0, then Condition 3 of

Theorem 1 is preferable. Neither o, < oy nor o, > o, case is presented here as no easy
closed form found.

© &) _ 1 1
Lemma 1 For &, <0 <&, then uy + % — fhz — SN Ugy/(fy fx)ay USRS (— — —) .
&y 3 §&e &y

If we assume 0, = 04 = 0 then py — g > 20A, where A = gi — gi > 0.
x y
Proof

z 1 1
From Theorem 1, p,, + % _ Mo — ELES Ugy/(fyff’”)agf’”/(fyffz) (— — —)

Let 0, = 0y = 0 then,

o o €0/ (Ey—Ea) &K&&)(l 1)
FL _"_ - l‘l’x —_ > o Yy Yy o Yy —_
Y &z & &y

_ +U(L_L> . U(L_L>
Hy = He & & & &

> 2 (1 1) O
Hy — [z olz—% -
Y e &y
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For Condition 5 of Theorem 1, three assumptions possible for the scale parameters, i.e.
Oy < 0y, 05 < 0y and 05 = 0y, as in the following three lemmas.

Lemma 2 For {, =0, & <0 then uy + ———|——1 (U ) > 0. If we assume

sy T, T

oy(1+68) = 0y, 8> 0 then > 1y + C with C = z—[(l+5)10g(1+5) 5] < 0.
Yy

Proof

o
From, 0 < p,+ —,um———|-—1 (m>
! §y & &
1
_luy—lum—g—[ Uy—|—am—|—0'm10g(—y>]. (14)

Suppose oy < 0y, if we let 0y (1+ ) = 05, with § > 0, then

R () R
' = oy[d—(1+d)log(l+0)] <0

As &, <0, then C = _fi [—Uy—kam—kamlog (%)] = %[(1+5)10g(1+5) —-dl<0. O
y x y

Lemma 3 For {, =0, & <0 then uy + ,um———|——1 (U ) > 0. If we assume

§y Sy

oy = 0p(1408),0 >0 then iy > jip + C with C = Z—[(S—log(l +0) >
Yy

Proof
From equation (14), suppose o, > 0, if we let oy = 0,(1 +6), with § > 0, then

[—ay + 0, + 0y log (%)] = —0,0+0,log(l+9)

= oyllog(l+0)—4d] > 0.

As €, < 0, then C = —— [—ay + 0y + 0, log (@ﬂ = 2¥(5 — log(1 + 8)] > 0. 0
&y Oz &y

Lemma 4 For &, =0,§, <0 then,uy—ka— ,um———|——10 (U ) > 0. If we assume
&y ay &y
Oy = 0y = 0 then iy — piz > 0.

Proof

From equation (14) if we let 0, = 0, = ¢ > 0, then

o c o
+ = —fg— — +—1logl >0
&y &y y
My — pg > 0. O
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4 Conclusion

Theorem 1 tells us that if we know that the stochastic ordering constraint Z, < Z, holds for
GEVM distributed random variables Z, and Z,. We can simplify the possible parameter
space for the marginal parameters of Z, and Z, into five conditions. The sign of the shape
parameter helps in simplying Theorem 1 leading to Corollary 1 and Lemmas 1-4.
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