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1 Introduction

Yet by the year 1912, S. Bernstein obtained the estimate inverse to Jakson’s inequality in
the space of continuous functions for some special cases [1], later Stechkin [2], Timan [3],
proved such inverse estimates, including the case of the space Lp, 1 < p < ∞.

Approximation problems for functions in the space L2(Rd, wl(x)dx), where wl is a weight
function invariant under the action of an associated reflection groups, using the function
with bounded spectrum, are studied in this paper. Applying the Dunkl transform, Dunkl
Laplacian operator and generalized spherical mean operator, we obtain analogs of the Bern-
stein inequality for function with bounded spectrum, direct and inverse theorem of Jackson
type [4],[2],[5], where the modulus of smoothness is constructed on the basis of generalized
spherical mean operator.

2 The Dunkl transform and its basic properties

Dunkl [3] defined a family of first-order differential-difference operators related to some re-
flection groups. These operators generalize in a certain manner the usual differentiation and
have gained considerable interest in various fields of mathematics and also in physical ap-
plications. The theory of Dunkl operators provides generalizations of various multivariable
analytic structures. Among others, we cite the exponential function, the Fourier transform
and the translation operator. For more details about these operators see [6], [7], [1] and [8].

Let R be a root system in Rd, W the corresponding reflection group, R+ a positive
subsystem of R and l a non-negative and W-invariant function defined on R. The Dunkl
operator is defined for f ∈ C1(Rd) by

Djf(x) =
∂f

∂xj
(x) +

∑

α∈R+

l(α)αj
f(x) − f(σα(x))

〈α, x〉
, x ∈ Rd.

Here 〈, 〉 is the usual Euclidean scalar product on Rd with the associated norm |.| and σα

the reflection with respect to the hyperplane Hα orthogonal to α. We consider the weight
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function
wl(x) =

∏

α∈R+

|〈α, x〉|2l(α),

where wl is W-invariant and homogeneous of degree 2γ where

γ =
∑

α∈R+

l(α).

We let η be the normalized surface measure on the unit sphere Sd−1 in Rd and set

dηl(y) = wl(y)dη(y).

Then ηl is a W-invariant measure on Sd−1, and we let dl = ηl(S
d−1).

The Dunkl kernel El on Rd × Rd has been introduced by Dunkl in [9]. For y ∈ Rd the
function x 7→ E(x, y) can be viewed as the solution on Rd of the following initial problem:

{
Dju(x, y) = yju(x, y), if 1 ≤ j ≤ d,

u(0, y) = 0, for all y ∈ Rd,

This kernel has a unique holomorphic extension to Cd × Cd.
Rösler has proved in [8] the following integral representation for the Dunkl kernel,

El(x, z) =

∫

Rd

e〈y,z〉dµx(y), x ∈ Rd, z ∈ Cd,

where µx is a probability measure on Rd with support in the closed ball B(0, |x|) of center
0 and radius |x|.

Proposition 1 [6] Let z, w ∈ Cd and λ ∈ C

(i) El(z, 0) = 1,El(z, w) = El(w, z), El(λz, w) = El(z, λw).
(ii) For all ν = (ν1, ..., νd) ∈ N,x ∈ Rd,z ∈ Cd, we have

|Dν
z Ek(x; z)| ≤ |x||ν|exp(|x||Rez|,

where

Dν
z =

∂|ν|

∂
|ν|
z1

....∂
|ν|
zd

, |ν | = ν1 + .... + νd.

In particular |Dν
z El(ix; z)| ≤ |x||ν| for all x, z ∈ Rd.

We denote by L2
l (R

d) = L2(Rd, wl(x)dx) the space of measurable functions on Rd such
that

‖f‖2,l =

(∫

Rd

|f(x)|2wl(x)dx

) 1
2

,

and Dl the Dunkl Laplacian defined by

Dl =
d∑

i=1

D2
j .
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The scalar product in the Hilbert space L2
l (R

d) obeys the formula

(f, g) :=

∫

Rd

f(x)g(x)wl(x)dx, f, g ∈ L2
l (R

d).

By the partial integration one can verify the correlation

(Dlf, g) = (g, Dlf).

for any functions f, g ∈ D (D denotes the set of infinitely differentiable functions with a
compact support).

As usual, we endow the space D with a topology; this turns it into a topological vector
space [10]. Let D′ stand for the set of generalized functions, i.e., linear continuous functionals
on the space D. We denote the value of a functional f ∈ D′ on a function ϕ ∈ D by 〈f, ϕ〉.
The space L2

l (R
d) is embedded into D′, provided that for f ∈ L2

l (R
d) and ϕ ∈ D we put

〈f, ϕ〉 :=

∫

Rd

f(x)ϕ(x)wl(x)dx.

One can extend (in a natural way) the action of the Dunkl Laplacian operator Dl onto the
space of generalized functions D′, putting

〈Dlf, ϕ〉 := 〈f, Dlϕ〉, f ∈ D′, ϕ ∈ D.

In particular, the action of the operator Dlf is defined for any function f ∈ L2
l (R

d) but,
generally speaking, Dlf is a generalized function.

The Dunkl transform is defined for f ∈ L1
l (R

d) = L1(Rd, wl(x)dx)

F(f)(ξ) = f̂(ξ) = c−1
l

∫

Rd

f(x)El(−iξ, x)wl(x)dx,

where the constant cl is given by

cl =

∫

Rd

e−
|x|2

2 wl(z)dz.

The inverse Dunkl transform is defined by the formula

f(x) =

∫

Rd

f̂(ξ)El(ix, ξ)wl(ξ)dξ, x ∈ Rd.

From [11], we have that if f ∈ L2
l (R

d)

D̂lf(ξ) = −|ξ|2f̂(ξ). (1)

The Dunkl transform shares several properties with its counterpart in the classical case. We
mention here, in particular that Parseval theorem holds in L2

l (R
d). As in the classical case,

a generalized translation operator is defined in the Dunkl [5, 12]. Namely, for f ∈ L2
l (R

d)
and x ∈ Rd we define τx(f) to be the unique function in L2

l (R
d) satisfying

τ̂xf(y) = El(ix, y)f̂(y) a.e y ∈ Rd.
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Form to Parseval theorem and proposition 1.1, we see that

‖τxf‖2,l ≤ ‖f‖2,l for all x ∈ Rd.

For α > −1
2

, let jα(x) be a normalized Bessel function of the first kind, i.e.,

jα(x) =
2αΓ(α + 1)Jα(x)

xα
,

where Jα(x) is a Bessel function of the first kind [13].
The function Jα(x) is infinitely differentiable, Jα(0) = 1.

Proposition 2 ([14] or [15]) For x ∈ R the following inequalities are fulfilled

(i) |jα(x)| ≤1.

(ii) |1 − jα(x)| ≥ c0 with |x| ≥ 1, where c0 > 0 is a certain constant which depend only on

α.

(iii) |1 − jα(x)| ≤ c1x
2, where c1 is a constant.

The generalized spherical mean value of f ∈ L2
l (R

d) is defined by

Mhf(x) =
1

dl

∫

Sd−1

τxf(hy)dηl(y), x ∈ R
d, h > 0.

We have

‖Mhf‖2,l ≤ ‖f‖2,l. (2)

Proposition 3 ([16]) Let f ∈ L2
l (R

d) and fix h > 0. Then Mhf ∈ L2
l (R

d) and

M̂hf(ξ) = jγ+ d
2
−1(h|ξ|)f̂(ξ), ξ ∈ Rd. (3)

Let the function f ∈ L2
l (R

d). We define differences of the order k (k = 1, 2, ...) with a
step h > 0.

∆k
hf(x) = (I − Mh)kf(x),

where I is the unit operator.
For any positive integer k, we define the generalized module of smoothness of the kth order
by the formula

ωk(f, δ)2,l = sup
0<h≤δ

‖∆k
hf‖2,l, δ > 0.

Let W k
2,l be the Sobolev space constructed by the operator Dl, i.e.,

W k
2,l = {f ∈ L2

l (R
d) : Dj

l f ∈ L2
l (R

d); j = 1, 2, ..., k},

where D0
l f = f, Dj

l f = Dl(D
j−1
l f).

For any f ∈ L2
l (R

d) and any number ν > 0, let us define the function

Pν(f)(x) = F−1(f̂(ξ)χν(ξ)),
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where χν(ξ) = 1 if |ξ| ≤ ν and χν(ξ) = 0 if |ξ| > ν , F−1 is the inverse Dunkl transform.
One can easily prove that the function Pν(f)(x) is infinitely differentiable and belongs to
all classes W k

2,l, k = 1, 2, ....

A function f ∈ L2
l (R

d) is called a function with bounded spectrum of order ν > 0 if f̂(ξ) = 0
for |ξ| > ν . The set of all such functions is denoted by Iν.
The best approximation of a function f ∈ L2

l (R
d) by functions in Iν is the quantity

Eν(f)2,l := inf
g∈Iν

‖f − g‖2,l.

3 Bernstein’s inequality and Jackson’s direct theorems

Bernstein’s Theorem 1

If f ∈ Iν, then Dlf ∈ Iν and

‖Dlf‖2,l ≤ ν2‖f‖2,l. (4)

Proof

From equality (1), we have Dlf ∈ Iν if f ∈ Iν

Formula (1) and Parseval theorem gives

‖Dlf‖
2
2,l =

∫

Rd

|Dlf(x)|2wl(x)dx

=

∫

Rd

|D̂lf(ξ)|2wl(ξ)dξ

=

∫

|ξ|≤ν

|ξ|4|f̂(ξ)|2wl(ξ)dξ

≤ ν4

∫

Rd

|f̂(ξ)|2wl(ξ)dξ

= ν4

∫

Rd

|f(x)|2wl(x)dx

= ν4‖f‖2
2,l.

Therefore
‖Dlf‖2,l ≤ ν2‖f‖2,l. 2

Jackson’s Theorem 2

Suppose that f ∈ Wm
2,l(m = 1, 2, ...), then

Eν(f)2,l ≤ c2ν
−2mωk(Dm

l f, 1/ν)2,l, (5)

for all ν > 0 , where c2 = c
−(k+m)
0 cm

1 is a constant.
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Proof

Using the Parseval equality, we have

‖f − Pν(f)‖2
2,l =

∫

Rd

|f(x) − Pν(f)(x)|2wl(x)dx

=

∫

Rd

|f̂(ξ) − P̂ν(f)(ξ)|2wl(ξ)dξ

=

∫

Rd

|(1 − χν(ξ))f̂ (ξ)|2wl(ξ)dξ.

Therefore

‖f − Pν(f)‖2
2,l =

∫

|ξ|>ν

|f̂(ξ)|2wl(ξ)dξ. (6)

By Proposition 2, we have
|1 − jγ+ d

2
−1(|ξ|/ν)| ≥ c0

for |ξ| ≥ ν .
Therefore, from (3) and Parseval equality we deduce that

‖f − Pν(f)‖2
2,l ≤

1

c
2(k+m)
0

∫

Rd

(1 − jγ+ d
2
−1(|ξ|/ν))2(k+m)|f̂(ξ)|2wl(ξ)dξ

=
1

c
2(k+m)
0

∫

Rd

|F((I − M1/ν)k+mf)(ξ)|2wl(ξ)dξ

=
1

c
2(k+m)
0

∫

Rd

|(I − M1/ν)k+mf(x)|2wl(x)dx

=
1

c
2(k+m)
0

‖(I − M1/ν)k+mf‖2
2,l.

Therefore
‖f − Pν(f)‖2,l ≤ c

−(k+m)
0 ‖(I − M1/ν)k+mf‖2,l. (7)

Proposition 2, Parseval equality and formula (1) show that

‖(I − M1/ν)f‖2
2,l =

∫

Rd

|(I − M1/ν)f(x)|2wl(x)dx

=

∫

Rd

|F((I − M1/ν)f)(ξ)|2wl(ξ)dξ

=

∫

Rd

(1 − jγ+ d
2
−1(|ξ|/ν))2|f̂(ξ)|2wl(ξ)dξ

≤ c2
1ν

−4

∫

Rd

|ξ|4|f̂(ξ)|2wl(ξ)dξ

= c2
1ν

−4

∫

Rd

|D̂lf(ξ)|2wl(ξ)dξ

= c2
1ν

−4

∫

Rd

|Dlf(x)|2wl(x)dx

= c2
1ν

−4‖Dlf‖
2
2,l.
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Therefore

‖(I − M1/ν)f‖2,l ≤ c1ν
−2‖Dlf‖2,l. (8)

Successive applications of (8) to the right-hand side of (7) result in

‖f − Pν(f)‖2,l ≤ c
−(k+m)
0 cm

1 ν−2m‖(I − T1/ν)kDm
l f‖2,l

≤ c2ν
−2mωk(Dm

l f, 1/ν)2,l,

where c2 = c
−(k+m)
0 cm

1 which implies (5) holds, the theorem is proved. 2

Proposition 4 The modulus of smoothness ωk(f, t)2,l has the following properties.

(i) ωk(f + g, t)2,l ≤ ωk(f, t)2,l + ωk(g, t)2,l.

(ii) ωk(f, t)2,l ≤ 2k‖f‖2,l.

(iii) If f ∈ W k
2,l, then

ωk(f, t)2,l ≤ c3t
2k‖Dkf‖2,l,

where c3 = ck
1 is a constant.

Proof

Property (i) follow from the definition of ωk(f, t)2,l.
Property (ii) follow from the fact that ‖Mhf‖2,l ≤ ‖f‖2,l.
Assume that h ∈ (0, t]. From formulas (1), (3) and Parseval equality, we have

‖∆k
hf‖2

2,l = ‖∆̂k
hf‖2

2,l =

∫

Rd

(1 − jγ− d
2
−1(h|ξ|))

2k|f̂(ξ)|2wl(ξ)dξ, (9)

‖Dk
l f‖2

2,l = ‖D̂k
l f‖2

2,l =

∫

Rd

|ξ|4k|f̂(ξ)|2wl(ξ)dξ. (10)

Formula (9) implies the equality

‖∆k
hf‖2

2,l = h4k

∫

Rd

(1 − jγ− d
2
−1(h|ξ|))

2k

h4k|ξ|4k
|ξ|4k|f̂(ξ)|2wl(ξ)dξ.

From Proposition 2 and Parseval equality we obtain

‖∆k
hf‖2

2,l ≤ c2k
1 h4k

∫

Rd

|ξ|4k|f̂(ξ)|2wl(ξ)dξ

= c2k
1 h4k‖D̂k

l f‖2,l = c2k
1 h4k‖Dk

l f‖2
2,l.

Therefore

‖∆k
hf‖2,l ≤ ck

1h2k‖Dk
l f‖2,l.

Calculating the supremum with respect to all h ∈ (0, t], we obtain

ωk(f, t)2,l ≤ c3t
2k‖Dk

l f‖2,l,

where c3 = ck
1 . 2
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4 Proofs of the inverse theorems

Proposition 5 For j ≥ 1 we have

22k(j−1)E2j(f)2,l ≤

2j∑

η=2j−1+1

η2k−1Eη(f)2,l.

Proof Note that
2j∑

η=2j−1+1

η2k−1 ≥ (2j−1)2k−12j−1 = 22k(j−1).

Since Eη(f)2,l is monotonically decreasing, we conclude that

22k(j−1)E2j(f)2,l ≤

2j∑

η=2j−1+1

η2k−1Eη(f)2,l. 2

Proposition 6 For n ∈ N we have

2kEn(f)2,l ≤
c4

n2k

n∑

j=0

(j + 1)2k−1Ej(f)2,l.

Proof Note that

n∑

j=0

(j + 1)2k−1 ≥

n∑

j≥n
2
−1

(j + 1)2k−1 ≥
(n

2

)2k−1 n

2
= 2−2kn2k.

Since Ej(f)2,l is monotonically decreasing, we conclude that

2kEn(f)2,l ≤
c4

n2k

n∑

j=0

(j + 1)2k−1Ej(f)2,l. 2

Proposition 7. If Φν ∈ Iν such that ‖f − Φν‖2,l = Eν(f)2,l For every ν ∈ N, then

‖Dk
l Φ2j+1 − Dk

l Φ2j‖2,l ≤ 22k(j+1)+1E2j(f)2,l.

In particular

‖Dk
l Φ1‖2,l = ‖Dk

l Φ1 − Dk
l Φ0‖2,l ≤ 24k+1E0(f)2,l.

Proof By Theorem 1 and the fact that Eν(f)2,l is monotone decreasing with respect to ν ,
we obtain

‖Dk
l Φ2j+1 − Dk

l Φ2j‖2,l ≤ 22k(j+1)‖Φ2j+1 − Φ2j‖2,l

= 22k(j+1)‖(f − Φ2j) − (f − Φ2j+1 )‖2,l

≤ 22k(j+1)(E2j(f)2,l + E2j+1(f)p,α)2,l

≤ 22k(j+1)+1E2j(f)2,l.
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and

‖Dk
l Φ1 − Dk

l Φ0‖2,l ≤ ‖Φ1 − Φ0‖2,l = ‖(f − Φ1) − (f − Φ0)‖2,l

≤ E1(f)2,l + E0(f)2,l

≤ 2E0(f)2,l ≤ 24k+1E0(f)2,l . 2

The following theorems are analogues of the classical inverse theorems of approximation
theory [2,5].
Theorem 3 For every function f ∈ L2

l (R
d) and every positive integer n we have

ωk(f,
1

n
)2,l ≤

c

n2k

n∑

j=0

(j + 1)2k−1Ej(f)2,l ,

where c = c(k, α) is a positive constant.

Proof

Let 2m ≤ n < 2m+1 for any integer m ≥ 0.
For every ν ≥ 0, let Φν be an element of best approximation to f in the space Iν , that is,
Φν ∈ Iν and ‖f − Φν‖2,l = Eν(f)2,l . By formulas (i) and (ii) of Proposition 4, we obtain

ωk(f,
1

n
)2,l ≤ ωk(f − Φ2m+1 ,

1

n
)2,l + ωk(Φ2m+1 ,

1

n
)2,l

≤ 2k‖f − Φ2m+1‖2,l + ωk(Φ2m+1 ,
1

n
)2,l.

Therefore

ωk(f,
1

n
)2,l ≤ 2kE2m+1(f)2,l + ωk(Φ2m+1 ,

1

n
)2,l ≤ 2kEn(f)2,l + ωk(Φ2m+1 ,

1

n
)2,l. (11)

Now with the aid of Proposition 5 and 7 and formula (iii) of Proposition 3, we conclude
that

ωk(Φ2m+1 ,
1

n
)2,l ≤

c3

n2k
‖BkΦ2m+1‖2,l

≤
c3

n2k


‖BkΦ1 − BkΦ0‖2,l +

m∑

j=0

‖BkΦ2j+1 − BkΦ2j‖2,l




≤
c3

n2k


24k+1E0(f)2,l +

m∑

j=0

22k(j+1)+1E2j(f)2,l




≤
c3

n2k
24k+1


E0(f)2,l +

m∑

j=0

22k(j−1)E2j(f)2,l




≤
c3

n2k
24k+1


E0(f)2,l + E1(f)2,l +

m∑

j=1

2j∑

η=2j−1+1

η2k−1Eη(f)2,l




≤
c3

n2k
24k+1


E0(f)2,l + E1(f)2,l +

2m∑

j=2

(j + 1)2k−1Ej(f)2,l


 .
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Therefore

ωk(Φ2m+1 ,
1

n
)2,l ≤

c5

n2k

2m∑

j=0

(j + 1)2k−1Ej(f)2,l. (12)

Thus from (11) and (12) we derive the estimate

ωk(f,
1

n
)2,l ≤ 2kEn(f)2,l +

c5

n2k

n∑

j=0

(j + 1)2k−1Ej(f)2,l. (13)

By Proposition 6 and formula (13), we have

ωk(f,
1

n
)2,l ≤

c

n2k

n∑

j=0

(j + 1)2k−1Ej(f)2,l . 2

Theorem 4 Suppose that f ∈ L2
l (R

d) and

∞∑

j=1

j2m−1Ej(f)2,l < ∞.

Then f ∈ Wm
2,l and, for every positive integer n, we have

ωk(Bmf,
1

n
)2,l ≤ C


 1

n2k

n∑

j=0

(j + 1)2(k+m)−1Ej(f)2,l +

∞∑

j=n+1

j2m−1Ej(f)2,l


 ,

where C = c(k, m, α) is a positive constant.

Proof.

Let 2m ≤ n < 2m+1 for any integer m ≥ 0. For every positive integer r ≤ m, we consider
the series

Dr
l Φ1 +

∞∑

j=0

(Dr
l Φ2j+1 − Dr

l Φ2j). (14)

It follows from Propositions 7 and 5 that the series (14) converges in the norm of L2
l (R

d)
because
∞∑

j=0

‖Dr
l Φ2j+1 − Dr

l Φ2j‖2,l ≤
∞∑

j=0

22r(j+1)+1E2j(f)2,l

= 22r+1E1(f)2,l + c22
4r+1

∞∑

j=1

22r(j−1)E2j(f)2,l ≤ 24r+1


E1(f)2,l +

∞∑

j=1

22r(j−1)E2j(f)2,l




≤ 24r+1


E1(f)2,l +

∞∑

j=1

2j∑

η=2j−1+1

η2r−1Eη(f)2,l




≤ 24r+1
∞∑

j=1

j2r−1Ej(f)2,l < ∞.
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Note that

f = Φ1 +

∞∑

j=0

(Φ2j+1 − Φ2j). (15)

where the series (15) converges in L2
l (R

d) and, a fortiori, in the space D′ of distributions.
Since the operator Dl is a linear continuous operator on D′, the equality

Dr
l f = Dr

l Φ1 +

∞∑

j=0

(Dr
l Φ2j+1 − Dr

l Φ2j), (16)

holds in the space D′. Since the right-hand side of (16) belongs to L2
l (R

d) for r ≤ m, we
see that f belongs to the Sobolev space Wm

2,l. In particular, Dm
l f ∈ L2

l (R
d).

By formula (i) of Proposition 4, we obtain

ωk(Dm
l f,

1

n
)2,l ≤ ωk(Dm

l f − Dm
l Φ2s+1 ,

1

n
)2,l + ωk(Dm

l Φ2s+1 ,
1

n
)2,l.

Using Propositions 4, 5 and 7 we get

ωk(Dm
l f − Dm

l Φ2s+1 ,
1

n
)2,l ≤ 2k‖Dm

l f − Dm
l Φ2s+1‖2,l

≤ 2k
∞∑

j=s+1

‖Dm
l Φ2j+1 − Dm

l Φ2j‖2,l

≤ 2k
∞∑

j=s+1

22m(j+1)+1E2j(f)2,l

≤ 2k+4m+1
∞∑

j=s+1

22m(j−1)E2j(f)2,l

≤ 2k+4m+1
∞∑

j=s+1

2j∑

η=2j−1+1

η2m−1Eη(f)2,l

≤ 2k+4m+1
∞∑

j=2s+1

j2m−1Ej(f)2,l.

Therefore

ωk(Dm
l f − Dm

l Φ2s+1 ,
1

n
)2,l ≤ c6

∞∑

j=2s+1

j2m−1Ej(f)2,l. (17)

Now with the aid of Propositions 5 and 7 and by formula (iii) of Proposition 4, we conclude
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that

ωk(Dm
l Φ2s+1 ,

1

n
)2,l ≤

c3

n2k
‖Dm+k

l Φ2s+1‖2,l

≤
c3

n2k


‖Dm+k

l Φ1 − Dm+k
l Φ0‖2,l +

s∑

j=0

‖Dm+k
l Φ2j+1 − Dm+k

l Φ2j‖2,l




≤
c3

n2k


24(k+m)+1E0(f)2,l +

s∑

j=0

22(k+m)(j+1)+1E2j(f)2,l




≤
c3

n2k
24(k+m)+1


E0(f)2,l +

s∑

j=0

22(k+m)(j−1)E2j(f)2,l




≤
c3

n2k
24(k+m)+1


E0(f)2,l + E1(f)2,l +

s∑

j=1

2j∑

η=2j−1+1

η2(k+m)−1Eη(f)2,l




≤
c3

n2k
24(k+m)+1


E0(f)2,l + E1(f)2,l +

2s∑

j=2

(j + 1)2(k+m)−1Ej(f)2,l


 .

Therefore

ωk(Dm
l Φ2s+1 ,

1

n
)2,l ≤

c7

n2k

2s∑

j=0

(j + 1)2(k+m)−1Ej(f)2,l. (18)

Thus from (17) and (18) we derive the estimate

ωk(Dm
l f,

1

n
)2,l ≤ C




∞∑

j=n+1

j2m−1Ej(f)2,l +
1

n2k

n∑

j=0

(j + 1)2(k+m)−1Ej(f)2,l


 . 2
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