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1 Introduction

One goal of time series analysis is to forecast the future values of the time series data. Many
methods and approaches for formulating forecasting models are available in the literature.
The most widely used technique for analysis of the time series data is, undoubtedly, the
Box Jenkins Autoregressive integrated moving average (ARIMA) methodology. One crucial
assumption of the ARIMA model is the presence of linear dependence in the observations of
the series. However, many financial time series show periods of stability, followed by unstable
periods with high volatility. Volatility is a condition where the conditional variance changes
between extremely high and low values, see Chatfield [1].

In order to account for volatility, we require “non-linear time series models” that allow
for conditional changes in the variance. Prediction of the variability of the future values
based on the past and current values is the main concern for the development of conditional
variance process model [2, 3].

The most suitable parametric nonlinear time series model captures volatility is the Au-
toregressive conditional heteroscedastic (ARCH) model, which was pioneered by Engle [4].
ARCH model allows the conditional variance to change over time and its main purpose
is to predict the future conditional variance. ARCH model can also be called the error
term model [5]. However, forecasting of future conditional variances by using ARCH model
involves the past squared returns only. Therefore, Bollerslev [6] extended the ARCH model
which includes past conditional variances instead of past squared returns. This model is
known as Generalized ARCH (GARCH) model. If the lag of past conditional variance is
zero, ARCH and GARCH models are equal. For more details see [7].
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In this paper, we consider Box Jenkins ARIMA as criterion model. The current study
is focuses on forecasting of a monthly average temperature series that is from 1964 to 2012
in Jerusalem/Palestine using GARCH model. To fit the models, R-programming [8] is used
with a step by step procedure. To estimate the coefficients of the fitted GARCH model,
the R package ‘fGarch’ [9] is particularly used. The GARCH model is used to provide a
volatility measure of the temperature series. The goodness of fit and the forecasting models
are measured by AIC and BIC information criterion. For comparison, we use the statistical
measures: the mean absolute error (MAE), the root mean square error (RMSE), and the
mean absolute percentage error (MAPE) respectively.

The remaining parts of this paper will be organized as follows. Section 2 reviews previous
studies related to forecasting techniques and particularly to temperature time series. In
Section 3, we introduce the ARIMA and GARCH models which are used to describe the
distinct components and their processes for estimating and forecasting our monthly average
temperature series. Section 4 describes data, analyzes different forecasting techniques, and
illustrates the methodology followed in this study. Finally, the conclusions are summarized
in Section 5.

2 Previous Study for Temperature Time Series

Tol [10] suggests using a generalized AR conditional heteroscedastic (GARCH) model for
daily temperature observations. Tol’s suggestion for selecting the GARCH model depends
on the detection that the predictability of meteorological variables is not constant but shows
regular variations. He estimates the proposed model on 30 years of daily temperature
observations in De Bilti, The Netherlands (Beneth [11]). Franses, Neste and Dijk [12]
suggest to use a so-called quadratic GARCH (QGARCH) model allowing for asymmetry
in the impact of innovations on the conditional variance. They estimate the model on the
same time series records as in Tol [10].

Campbell and Diebold [13] model the daily average temperature in a number of US
cities by an AR time series with a seasonal AR conditional heteroscedastic (GARCH) type
dynamics for the residuals.

3 Time Series Models

In this section we introduce the models which are used to describe the distinct components
of our daily temperature series.

3.1 The ARIMA model

The process {Xt} is called an autoregressive moving average (ARMA) process, denoted by
ARMA(p, q) is given by

Xt = φ1Xt−1 + φ2Xt−2 + · · ·+ φpXt−p + εt − θ1εt−1 − θ2εt−2 − · · · − θqεt−q (1)

or simply by
φp(B)Xt = θq(B)εt (2)

where,
φp(B) = 1 − φ1B − φ2B

2 − · · · − φpB
p
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is an autoregressive polynomial of B for order p.

Also,

θq(B) = 1 − θ1B− θ2B
2 − · · · − θpB

p

is a moving average polynomial of B for order q.

In the above, B is the backshift operator, used to simplify the representation of lag
values, by BXt = Xt−1. A generalization of ARMA model, to cover a wide class of
non-stationary time series, is achieved by proposing “differencing” in the model. A non-
stationary time series {Xt} is said to follow a non-stationary autoregressive integrated
moving average (ARIMA) denoted by ARIMA(p, d, q) if it is expressed as:

φp(B) 5d Xt = µ + θq(B)εt (3)

where εt are identically and independently distributed as N(0, σ2), t = 1, 2, . . . , N and N is
the number of samples, d is the order of non-seasonal differences and 5 is the non-seasonal
differencing operator, 5 = 1−B. µ is the mean of a series assuming that after differencing
is stationary. One can notice that when d = 0, the ARIMA(p, d, q) model becomes an
ARMA(p, q) model. More details can be found in [2, 3, 14, 15].

The ARIMA model (3) is for non-stationary non-seasonal observations. Box and Jenkins
in [14] popularized this model to deal with seasonality. For time series possessing a seasonal
component that repeats every s observations, their proposed model is known as the seasonal
ARIMA model. For monthly time series s = 12 and for quarterly time series s = 4.

The situation is entirely analogous in dealing with Equation 3. The seasonal autoregres-
sive integrated moving average model is given by

φP (Bs)φp(B) 5D
s 5dXt = µ + θQ(Bs)θq(B)εt (4)

and is denoted as an ARIMA(p, d, q)× (P, D, Q)s, where D is the order of seasonal differ-
ences and 5s is the seasonal differencing operator, 5s = 1 − Bs. It is worth noting that
ARIMA(p, d, q)× (P, D, Q)s processes with d ≥ 1 and/or D ≥ 1 are non-stationary.

3.2 The GARCH model

A process {εt} is called an ARCH(q) process if its evolution is described by the following
two equations

εt = σtηt,

σ2

t = ω +

q∑

i=1

αiε
2

t−i (5)

where the constraints on the model parameters in Equation 5 are ω > 0, αi ≥ 0 for
all i, i = 1, 2, . . . , q and

∑q

i=1
αi < 1. This is to ensure that the conditional variance, σ2

t ,

is always nonnegative. It is further assumed that {ηt} is a sequence of independent and
identically distributed random variables with mean 0 and variance 1 and is independent of
the past process εt for all t. For more details, see [7, p. 34], and see also [10, 16].

As previously mentioned, Bollerslev [6] proposed the Generalized ARCH (GARCH)
model in which conditional variance is also a linear function of its own lags and its evolution
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is described by the following pair of equations:

εt = σtηt,

σ2

t = ω +

q∑

i=1

αiε
2

t−i +

p∑

j=1

βjσ
2

t−j (6)

To ensure that the conditional variance, σ2
t , is nonnegative, the constraint on the parameters

of Equation 6 are ω > 0, αi ≥ 0, i = 1, 2, . . . , q and βj ≥ 0, j = 1, 2, . . . , p. It is further
assumed that {ηt} is a sequence of independent and identically distributed random variables
with E(ηt) = 0 and Var(ηt) = 1 and ηt is independent of {εt−k, k ≥ 1} for all t. When
p = 0, Equation 6 is reduced to an autoregressive conditional heteroscedastic, ARCH(q),
model. The necessary and sufficient condition for Equation 6 to define a weakly stationary
process {εt, t = 0,±1,±2, . . . .} with E(ε2

t ) < ∞ is that

q∑

i=1

αi +

p∑

j=1

βj < 1

(for more details see [17, Theorem 2.5, p. 37] and see also [18–20]). It is worthy to mention
that in applications, GARCH(1, 1) is the most famous GARCH model. Moreover, one can
derive the ARMA representation of the GARCH(p, q) model. Let

ζt = ε2

t − σ2

t ,

the process {ζt} is said to be the innovation of the squared returns process,{ε2
t }. Then

ε2

t = ω +

r∑

i=1

(αi + βi)ε
2

t−i + ζt +

p∑

j=1

βjζt−j, (7)

where r = max(p, q), αi = 0 if i > q, and βj = 0 if j > p. The last equation shows that
{ε2

t } is an ARMA(r, p) process. For more fine points, see [7, p. 35-39] and [17, p.19-21].

3.3 Parameters Estimation

The estimation of parameters for ARIMA model is a nonlinear problem that demands
some special procedures, like the maximum likelihood method or nonlinear least-squares
estimation. At this stage of model building, the estimated parameter values should minimize
the sum of squared residuals. For this purpose, many software packages are applicable for
fitting ARIMA models. In this current study, R software package will be used.

To choose the best ARIMA model based on observation data, we use the corrected
Akaike Information Criterion (AIC) and can be calculated by the formula:

AICc = N log(
SS

N
) + 2(p + q + 1)

N

(N − p − q − 2)

where,
N : the number of items after difference (N = n − d),
SS: sum of squares of differences
p & q: the order of autoregressive and moving average model, respectively.
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In literature, method of Maximum Likelihood, ML, has been used to estimate the pa-
rameters of GARCH model. Consider a GARCH(p, q) model of Equation 6. Suppose that
ε2
t ∼ N(0, σ2

t ). The probability density function of εt is given by

f(εt) =
1√

2πσ2
t

exp

{
−ε2

t

2σ2
t

}

The log likelihood function is obtained by taking log of the joint probability density function
of εt,

` = logL = log

N∏

i=1

(
1√

2πσ2
t

exp

{
−ε2

t

2σ2
t

})
,

= −
N

2
log(2π) −

1

2

N∑

i=1

{
log(σ2

t ) +
ε2

t

σ2
t

}
. (8)

where,

σ2

t = ω +

q∑

i=1

αiε
2

t−i +

p∑

j=1

βjσ
2

t−j

Then, maximize the log-likelihood function ` of Equation 8 in order to estimate the values
ω̂, α̂i , i = 1, 2, . . . , q and β̂j j = 1, 2, . . . , p.

3.4 Testing for ARCH Effects

Testing for ARCH effects or disorders can also be defined as testing the presence of het-
eroscedasticity in time series model. Engle in [4] introduced the Lagrange Multiple (LM)
test to check for ARCH disorders.

Let εt = yt −µt be the residual series. The squared series {ε2
t} is used to implement the

LM test to check for conditional heteroscedasticity. Under the null hypothesis, we have

H0 : αi = 0, i = 1, 2, . . . , q

versus,
H1 : αi 6= 0, for at least one i

in the linear regression

ε2

t = ω + α1ε
2

t−1 + · · ·+ αqε
2

t−q, t = q + 1, . . . , N, (9)

where q is the length of ARCH lags and N is the number of observations used in that
regression. Test statistic for LM-test is defined by:

LM = NR2 (10)

where R2 is the R-squared from the regression of ε2
t in Equation 9 and defined by

R2 =
regression sum of squares

total sum of squares
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Under the null hypothesis, the test statistics NR2 is distributed as a Chi-squared distribu-
tion with q degrees of freedom. Rejecting H0 when LM > χ2

α(q) implies that ARCH effect
exists.

Figure 1: Data of Monthly Mean Temperature in Jerusalem/Palestine

4 Modeling of Jerusalem’s Monthly Temperature Data

For the objective of research, the data set consists of 600 observations from average monthly
temperature of Jerusalem, Palestine between 1964 and 2013. Considered holy to three major
religions: Islam, Christianity, and Judaism, Jerusalem is one of the oldest cities in the
world. During its ancient times, the city of Jerusalem has been demolished at least twice,
besieged 23 times, attacked 52 times, captured 44 times, but remained a world heritage site.
Jerusalem is 60 kilometers east of the Mediterranean Sea, and 35 kilometers west of the
Dead Sea, the lowest body of water on Earth as seen in Figure 2. As a result, the city has a
hot-summer Mediterranean climate with hot summers and wet winters. The geography and
climate of this old city add more to its beauty and status. Therefore, it is worthy to hold
statistical analysis and time series models for monthly temperature data of the old city of
Jerusalem.

To identify and fit the model, 588 observations up to year 2012 are used for sampling
and forecasting 12 months-ahead temperature records. The observations of year 2013 are
considered for comparing the predicted average monthly temperature.
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Figure 2: Map of Palestine Showing the Location of Jerusalem.

Data from January 1964 to December 2012 are plotted in Figure 1. The regular pattern
of ups and downs is an indicator of seasonality. Moreover, to detect seasonality, we need
to plot means for the 12 months of the year. Figure 3 shows that there are monthly
differences (seasonality). Consequently, we will take a first seasonal difference of the data.
The seasonally different data are shown in Figure 4. It seems that there is no seasonality for
this time series and the data has mean 0. Therefore, we will not consider further differences.

Figure 3: Data of Means of Jerusalem’s Temperature for the 12 Months of the Year

4.1 Fitting of ARIMA Model

Our aim now is to find an appropriate ARIMA model based in the ACF and PACF shown
in Figure 4. Looking at just the first 2 or 3 lags, it seems possible that an AR(2) might
work based on the two spikes in the PACF. On the other hand, a tapering pattern in the
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beginning lags of ACF. That is, the pattern in the ACF is not indicative of any simple
model.

For the seasonal behavior, we check the situation on around lags 12, 24 and so on. In
the ACF, there is a collection of negative spikes around lag 12. In the PACF there is a
clear spike at lag 12, 24 and also at lag 36.

Figure 4: Seasonally Differenced Monthly Mean Temperature in Jerusalem

Consequently, this primary analysis proposes that the advisable model for these data
is an ARIMA(2, 0, 0)(3, 1, 1)12. We fit this model, along with some variations on it, and
compute their AICc values which are shown in Table 1.

Table 1: AICc Values of Suggested ARIMA Models

ARIMA Model AICc

ARIMA(3, 0, 0)(3, 1, 1)12 2108.33
ARIMA(3, 0, 1)(3, 1, 1)12 2106.62
ARIMA(2, 0, 0)(3, 1, 1)12 2109.65
ARIMA(2, 0, 1)(3, 1, 1)12 2105.78
ARIMA(3, 0, 0)(2, 1, 1)12 2106.71
ARIMA(3, 0, 1)(2, 1, 1)12 2104.97
ARIMA(2, 0, 0)(2, 1, 1)12 2107.97
ARIMA(2, 0, 1)(2, 1, 1)12 2103.82

All information criteria prefer the ARIMA(2, 0, 1)(2, 1, 1)12 model, which is the model
displayed in Equation 4. The fitted model in this case is

(1 − 0.0351B12 − 0.0632B24)(1 − 0.9412B+ 0.1119B2)(1 −B12)X̂t =

0.0017 + (1 −B12)(1 − 0.6585B)ε̂t (11)

with estimated variance, σ̂2

ε = 2.242.
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The diagnostics for the fit are displayed in Figure 5. There are one or two extreme stan-
dardized residuals. The Q-Q plot show some non-normality on the tails of the distribution
which is accepted and the model seems to fit well.

Figure 5: Residual Analysis for the ARIMA(2, 0, 1)(2, 1, 1)12 fit to Jerusalem’s Temperature
Data Set.

The performance of the best model in Box-Jenkins modeling will later be compared with
the best model in GARCH modeling.

4.2 Fitting of GARCH Model

Model identification of the GARCH Model is based on the ACF and PACF plots. On eval-
uating autocorrelations of squared residuals of the fitted ARIMA(2, 0, 1)(2, 1, 1)12 model,
recorded in Table 2, it is found that the autocorrelation is high at lag 12, which is 0.164.
The ARCH-LM test statistic at lag 12 computed using Equations 9 and 10 is 41.5903,
which is significant at 5% level. But it is not acceptable to apply ARCH model of order
12 because of the extraordinarily large number of parameters. Therefore, the parsimonious
GARCH model is applied.
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Table 2: Sample Autocorrelation Functions (ACF) and Partial Autocorrelation Functions
(PACF) of the Squared Residuals of the ARIMA(2, 0, 1)(2, 1, 1)12 Series.

Lag
ACF of the squared

residual series
PACF of the squared

residual series
1 0.157 0.157
2 0.078 0.054
3 0.021 0.001
4 −0.009 −0.016
5 −0.066 −0.065
6 0.004 0.025
7 −0.029 −0.026
8 −0.039 −0.032
9 −0.036 −0.024
10 0.045 0.056
11 0.073 0.067
12 0.164 0.140
13 0.030 −0.028
14 −0.007 −0.034
15 −0.001 0.006
16 −0.022 −0.014
17 −0.009 0.014
18 −0.034 −0.036
19 −0.084 −0.068
20 −0.055 −0.017
21 −0.054 −0.032
22 −0.028 −0.026
23 0.071 0.065
24 0.129 0.092

A quick comparison of the results obtained from R to fit GARCH models, using the
residuals of the ARIMA(2, 0, 1)(2, 1, 1)12 series, is shown in Table 3. There are two models
(the 2nd and the 4th) with low AIC within 2 decimals and both can be considered as the
best. However, BIC is lower for the second model. Therefore GARCH(1,1) model with
Mean and Variance Equation: AR(1)-GARCH(1,1) is preferred on the basis of minimum
AIC and BIC values. Moreover, the LM test for this model has p−value = 0.016199 is
less than 5% level of significance and the null hypothesis stated “no ARCH effect or no
conditional heteroskedasticity in the residuals” is rejected. Thus the AR(1)-GARCH(1,1)
model best fit our data set.

Table 3: Information Criterion Statistics with LM-ARCH p-value of Fitted GARCH Models

Model AIC BIC LM ARCH p-value
1 GARCH(1, 1) 5.485320 5.515094 0.0173654
2 AR(1)-GARCH(1,1) 5.473084 5.510301 0.01619934
3 MA(1)-GARCH(1,1) 5.475204 5.512421 0.01470771
4 ARMA(1,1)-GARCH(1,1) 5.472166 5.516827 0.02477267
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The p−values of residuals and squared residuals of Box-Ljung Q statistics of GARCH(1,1)
are reported in Table 4. The p−values of residuals are less than 5% level of significance
which shows no attendance of autocorrelations; however, the squared residuals show time
dependency in the series.

Table 4: Standardised Residuals Tests of Residuals Using AR(1)-GARCH(1,1) Model.

Statistic p-value

Jarque-Bera Test R Chi∧2 18621.04 0
Shapiro-Wilk Test R W 0.5995114 0
Ljung-Box Test R Q(10) 7.063854 0.7194033
Ljung-Box Test R Q(15) 19.31244 0.1999232
Ljung-Box Test R Q(20) 23.88994 0.2472329
Ljung-Box Test R∧2 Q(10) 1.541173 0.9988013
Ljung-Box Test R∧2 Q(15) 26.63124 0.03188855
Ljung-Box Test R∧2 Q(20) 27.81042 0.1139637
LM Arch Test R TR∧2 24.72146 0.01619934

The residuals plot of the AR(1)-GARCH(1,1) model in Figure 6 attains a few peaks
away from the boundaries and it displays volatility clustering.

Figure 6: Time Series Plot of Residuals of AR(1)-GARCH(1,1) Process

The peaks of the model residuals coincide with the peaks of the standard deviation
shown in Figure 7. Moreover, the standard deviation of AR(1)-GARCH(1,1) process shows
that there is a high volatility in the middle and at the end of the year.
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Figure 7: Time Series Plot of Standard Deviation of AR(1)-GARCH(1,1) Process.

The ACF of standardized residuals is shown in Figure 8. The ACF of standardized
residuals in Figure 8 shows there are peaks i.e., autocorrelations but within ACF boundary.
Notice the slow decay of the lag plots which means there is correlation between the magni-
tude of change in the residuals. In other words, there is serial dependence in the variance of
the data. The ACF plot of squared standardized residuals is shown in Figure 9. As shown
in Figure 9, some of the peaks of squared standardized residuals are reduced. The QQ plot
is shown in Figure 10.

Figure 8: ACF Plot of Standardized Residuals.
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Figure 9: ACF Plot of Squared Standardized Residuals

Figure 10: QQ Plot of AR(1)-GARCH(1,1) Model.

The ‘garchFit’ function of the R package ‘fGarch’ (see [9]) is used to estimate the
coefficients of the AR(1)-GARCH(1,1) model. These coefficients are listed in Table 5:

Table 5: Coefficients of AR(1)-GARCH(1,1) Model with Error Analysis

Estimate Std. Error t value Pr(> |t|)

mu 1.804746 0.173794 10.384 < 2e − 16 ***
ar1 0.135693 0.045256 2.998 0.002715 **
omega 0.144262 0.049703 2.902 0.003703 **
alpha1 0.011225 0.003324 3.377 0.000732 ***
beta1 0.979603 0.004374 223.951 < 2e − 16***

Full AR(1)-GARCH(1,1) model with the estimated coefficients is represented as:

Xt = 1.804746 + 0.135693Xt−1 + εt,

σ2

t = 0.144262 + 0.011225ε2

t−1
+ 0.979603σ2

t−1
(12)
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The p−values for all parameters are less than 0.05, showing that they are highly statistically
significant. The value of α1+β1 is less than but close to unity and β1 > α1. This agrees that
the volatility shocks are totally continual. The coefficient of the squared residuals is positive
and statistically significant showing that strong GARCH effects are evident for our data.
Higher value of β1 shows a long memory in the variance. Thus the AR(1)-GARCH(1,1)
model displayed in equation (12) adequately represents the residuals.

4.3 Forecasting of Jerusalem’s Temperature Data

The forecast models are predestined in terms of their capability to predict the future values.
In order to compare forecasting performance of different models, many statistical measures
can be used for this purpose. The most widely reported error measure is RMSE. The other
frequently used measures are MAE and MAPE.

The RMSE and MAE are used for comparison of model accuracy. Smaller values indi-
cates better model performance. Both of MAE and RMSE together can be used to diagnose
the variation in the errors of predicted values. Whenever value of MAE is less than RMSE,
there is a variation in the errors. The three prediction error estimators are defined as follows
(see [21, 22]):

• Mean Absolute Error (MAE):
The MAE is used to measure how close forecasts or predictions are to the actual data
and is given by:

MAE =
1

n

n∑

t=1

∣∣∣Xt − X̂t

∣∣∣ (13)

• Root Mean Square Error (RMSE):
The RMSE is a quadratic formula which measures the differences between values
predicted by hypothetical model and observed values and is given by:

RMSE =

√
1

n

(
Xt − X̂t

)2

(14)

• Mean absolute percentage error (MAPE):
The MAPE measures the relative dispersion of forecast errors and is defined by the
following formula:

MAPE =
1

n

n∑

t=1

∣∣∣Xt − X̂t

∣∣∣
Xt

∗ 100 (15)

Table 6 shows the 12-month-ahead prediction results of Jerusalem’s temperature along with
their corresponding standard errors inside the brackets ( ) for the year 2013 in respect of
the above fitted models.
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Table 6: The 12-Month-Ahead Prediction Results of Jerusalem’s Temperature for the Fitted
Models.

Months Observed Forecasts By
Values SARIMA AR(1)-GARCH(1,1)

Jan 2013 10.019355 9.763649 (1.512443) 9.843522 (3.509865)
Feb 2013 11.903571 10.585964 (1.571673) 10.964575 (3.514317)
Mar 2013 15.219355 13.089481 (1.588858) 14.006754 (3.518723)
Apr 2013 16.393333 16.786828 (1.598088) 16.699214 (3.523083)
May 2013 21.829032 20.805272 (1.603809) 21.284091 (3.527397)
Jun 2013 22.983333 23.305218 (1.607454) 23.181534 (3.531667)
Jul 2013 23.245161 24.808717 (1.609788) 24.192735 (3.535893)
Aug 2013 24.374194 24.793023 (1.611285) 24.653073 (3.540075)
Sep 2013 22.270000 23.491077 (1.612245) 23.071035 (3.544213)
Oct 2013 18.958065 21.038515 (1.612859) 20.148405 (3.548309)
Nov 2013 17.410000 15.933020 (1.613248) 16.897626 (3.552363)
Dec 2013 9.706452 11.602616 (1.613479) 10.624668 (3.556375)

Figure 11 displays the forecast value for the monthly mean temperature of year 2013
using AR(1)-GARCH(1,1) model. In Figure 11 the solid line shows the forecasted value
whereas the dashed lines are forecast temperature with ±2 standard deviations.

Figure 11: Forecast of Monthly Mean Temperature of Year 2013 by AR(1)-GARCH(1,1)

The actual and predicted Monthly mean temperature records by AR(1)-GARCH(1,1)
model are plotted in Figure 12. From Figure 12 it can be shown that the trend of prediction
temperature records follows the actual for the 12 months closely.
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Figure 12: The Plot of Actual Temperature versus Forecast Temperature

After obtaining the 12-month-ahead prediction results reported in Table 6 above, we
need to compute the three statistical estimators of equations (13), (14) and (15). The
values of these measures of forecast errors are reported in Table 7. Based on lower values
of MAE, RMSE and MAPE, AR(1)-GARCH(1,1) is a more convenient forecast model for
Jerusalem’s temperature values since it performs better than ARIMA(2, 0, 1)(2, 1, 1)12.

Table 7: The Computed MAE, RMSE and MAPE for the Fitted Models.

Model MAE RMSE MAPE
SARIMA 1.821726 1.349713 6.578911

AR(1)-GARCH(1,1) 0.5793938 0.7611792 3.744483

5 Conclusion

In this paper, the model that has been selected for forecasting Jerusalem’s temperature
values is AR(1)-GARCH(1,1). The model performs better than ARIMA(2, 0, 1)(2, 1, 1)12
because of its capability to captivate the volatility or the time-varying conditional variances
or errors. In the current study, AR(1)-GARCH(1,1) was achieved to be a better model than
ARIMA(2, 0, 1)(2, 1, 1)12 in forecasting Jerusalem’s temperature because the values for the
statistical estimators MAE, RMSE and MAPE using this model were smaller than those
computed using ARIMA(2, 0, 1)(2, 1, 1)12 model.

Future studies in this area can also use other types of GARCH models namely, Integrated
GARCH (IGARCH) and Exponential GARCH (EGARCH).

R-programming is well appropriate for modeling and predicting of temperature data in
this case.
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