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Abstract In this paper we study a class of dense ideals in a locally convex algebra.
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which is introduced by Reiter in 1971. We define generalized Segal algebras and prove
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1 Introduction

The concept of Segal and abstract Segal algebras were first introduced and studied in [1].
Many authors have considered this notion ever since and investigated several properties
of these algebras such as different kinds of amenability, BSE property, Arens regularity
and so on (see for instance [2–4]). An abstract Segal algebra is a Banach algebra which is
perceived as a certain ideal in another Banach algebra. In this paper we focus our attention
on a complete locally m-convex version of this to get some extended results. Our work is
motivated by multiplier seminorm defined on an arbitrary Bnach algebra and its essential
role for Segal extensions [5].

2 Preliminaries

By a locally m-convex algebra we shall mean an algebra E which is, in particular, a topo-
logical vector space whose topology is defined by a family of submultiplicative seminorms.
This family forces the algebra to possess a local basis consisting of convex sets which are
multiplicative i.e. sets U for them U.U ⊆ U . If E is an m-convex algebra, then the ring
multiplication of E is jointly continuous by [6, Proposition 1.6].

A given locally m-convex algebra E is said to be complete if the underlying topological
vector space of E is complete i.e., every Cauchy filter in E converges.

Let E be a locally m-convex algebra. Then, its completion exists and is a (complete)
locally m-convex algebra [6, Lemma 4.1]. A Fréchet algebra is a complete algebra A

generated by a sequence (pn)n of separating increasing submultiplicative seminorms, i.e.,
pn(xy) ≤ pn(x)pn(y) for all n ∈ N and every x, y ∈ A such that pn(x) ≤ pn+1(x) for all
positive integer n and x ∈ A. It is known that if an algebra (not necessarily complete)
is equipped with a family of seminorms as above, then its completion is a Fréchet alge-
bra [6, Corollary 4.7]. For any uniform space E in this paper we use Ẽ for the completion
of E.
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A multiplicative linear functional on a Banach algebra A is a non-zero linear functional ϕ

on A such that ϕ(xy) = ϕ(x)ϕ(y) where x, y ∈ A. We denote the set of all such functionals
by ∆(A).

Throughout this paper a Banach algebra is called semisimple if the intersection of the
kernels of its multiplicative linear functionals is {0}.

There are certainly known examples of Fréchet spaces which are not Banach but a
remarkable number of results in the area of Banach spaces are also fulfilled for Fréchet
spaces. One of them is the closed graph theorem:

Theorem 2.1 [7, Theorem 2.15] If E and F are Fréchet spaces and T : E → F is a linear

mapping, then T is continuous if its graph {(x, Tx); x ∈ E} is closed in E × F.

As this paper deals with an extended notion of abstract Segal algebra, we need to give
the definition of this algebra.

Definition 2.1 Let (A; ‖.‖A) be a Banach algebra. A Banach algebra (B; ‖.‖B) is an
abstract Segal algebra with respect to A if

(i) B is a dense left ideal in A;
(ii) there exists M > 0 such that ‖b‖A ≤ M‖b‖B for each b ∈ B;
(iii) there exists C > 0 such that ‖ab‖B ≤ C‖b‖B‖a‖A for each a ∈ A and b ∈ B.

The above version of this notion is given by Reiter [1]. But Barnes proved that the last
condition could be obtained by the others. It is also seen by [8, proposition 2.2] that when
A is a semisimple Banach algebra, every dense left ideal of A is an abstract Segal algebra.

3 Generalized Segal algebras

In this section the definition of generalized Segal algebras is given and we shall find some
relations between the different notions of Segal algebras.

Definition 3.1 Let (A;P) be a complete locally m-convex algebra. A Banach algebra
(B; ‖.‖B) is a g-Segal (for generalized Segal) algebra with respect to A if

(i) B is a dense left ideal in A;
(ii) for every p ∈ P there exists Mp > 0 such that p(b) ≤ Mp‖b‖B for each b ∈ B and ;
(iii) there exists C > 0 such that ‖ab‖B ≤ C‖b‖B supp∈P p(a) for each a ∈ A and b ∈ B.

Remark 3.1 If the second condition in the previous definition is replaced by the following

∃D > 0 ∀b ∈ B ∀p ∈ P, p(b) ≤ D‖b‖,

then ‖x‖′ := supp∈P p(x) defines a norm on B and B is an abstract Segal algebra with

respect to (B, ‖.‖′)̃ see [5, Proposition 2.6].

Remark 3.2 Note that the locally convex topology generated by the family P is in general
different from the topology induced by the norm ‖.‖′ (when defined). See for example [9]
from which one can construct a uniform algebra A, an ideal M of A and a net {eα} ⊆ M

such that for some m0 ∈ M , ‖eαm0 − m0‖
′ does not converge to zero whereas for each

ϕ ∈ ∆(A), ϕ(eαm0 − m0) → 0.
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As it is pointed out in the introduction, the third condition in Definition 2.1 can be
omitted. We have a similar fact when A is a Fréchet algebra.

Theorem 3.1 Let (A,P) be a Fréchet algebra and B be an ideal in A. Suppose that there

exists a positive real number D such that for each b ∈ B and each p ∈ P, p(b) ≤ D‖b‖.
Then there exists M > 0 with the following inequality

‖ba‖B, ‖ab‖B ≤ M‖b‖ sup
p∈P

p(a).

Proof Since the closed graph theorem also satisfies for Fréchet spaces (Theorem 2.1), the
proof runs along much the same lines as that of Theorem 2.3 of [8]. For every g ∈ B the
operator f 7→ fg from A into B has closed graph and therefore is continuous. Hence there
exists Mg > 0 such that

‖fg‖ ≤ Mg‖g‖ sup
p∈P

p(f).

Let f ∈ A and Lf be the linear mapping on B given by Lf(g) = fg. For Γ = {Lf ∈
A; supp∈P p(f) ≤ 1} and any member g of the unit closed ball of B, we have ‖Lf(g)‖B ≤
Mg . Therefore since this unit ball is in the second category by the uniform boundedness
theorem [7] there exists M > 0 such that

‖fg‖ ≤ M (‖g‖ ≤ 1, Lf ∈ Γ).

For g = 0 and f = 0 the theorem is obviously satisfied. Let g ∈ B \ {0} and f ∈ A \ {0}.
Then supp∈P p(f) 6= 0 and we have

‖fg‖ ≤ sup
p∈P

p(f)‖g‖‖
g

‖g‖
.

f

supp∈P p(f)
‖

≤ M‖g‖ sup
p∈P

p(f).

One can get the other inequality by a similar argument. 2

There are non-trivial semisimple Banach algebras with countable structure space (see
for example [10]).

Theorem 3.2 Let (A, ‖.‖A) be a semisimple Banach algebra with countable structure space

and (B, ‖.‖B) be a left dense ideal in (A,P )̃, where P = {|ϕ|; ϕ ∈ ∆(A)}. If the inclusion

map from B to (A, ‖.‖A) is continuous, then B is a g-Segal algebra in the Fréchet algebra

(A,P )̃.

Proof By continuity of the inclusion map, there exists a positive real number D such that
for every y ∈ B we have

|φ(y)| ≤ ‖y‖A ≤ D‖y‖B .

Since (A,P )̃ is a Fréchet algebra the result is obtained by the previous theorem. 2

Theorem 3.3 Let (A, ‖.‖) be a Banach algebra and P be a separating equicontinuous family

of seminorms on A. For a ∈ A define ‖a‖′ := supp∈P p(a). If A is a g-Segal algebra in

(A,P )̃, then A is an abstract Segal algebra in (A, ‖.‖′̃).
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Proof Let Definition 3.1 satisfies for A and (A,P )̃. Since P is equicontinuous, there is a
positive real number M such that for every a ∈ A and every p ∈ P we have p(a) ≤ M‖a‖.

By the definition of g-Segal algebra it is enough only to prove that A is an ideal in (A, ‖.‖′̃).

Suppose that x ∈ (A, ‖.‖′̃) and y ∈ A. Then x can be regarded as the equivalence class of
a Cauchy net (xα)α in (A, ‖.‖′). On the other hand

‖xαy − xβy‖ ≤ C‖y‖ sup
p∈P

p(xα − xβ).

Therefore (xαy)α is a Cauchy net in (A, ‖.‖) and must converge to a point in A, y0, say.
But for each p ∈ P, p(xαy − y0) ≤ M‖xαy − y0‖. This along with the separability of P
means that the equivalence classes of (xαy) and (y0) are the same. In other words, xy = y0.

2

Let A be an involutive Banach algebra. A representation of A is a ∗-homomorphism π

of A into the C∗-algebra B(H) of all bounded operators on a Hilbert space H . If π(x) 6= 0
for every nonzero x ∈ A, then π is called faithful.

Example 3.1 Suppose that A is an A∗−algebra i.e., A is an involutive Banach algebra
with at least a faithful ∗-representation. Denote by

∑
the set of ∗-representations of A.

By [11, Proposition 5.2] for each π ∈
∑

we have ‖π‖ ≤ 1. Then the set of functions
pπ(x) := ‖π(x)‖op is an equicontinuous separating family of seminorms on A, when ‖.‖op is

the operator norm in the related operator algebra. If A is a g-Segal algebra in (A,P )̃, then

A is an abstract Segal algebra in (A, ‖.‖′̃), where ‖a‖′ = supπ∈
P pπ(a). In particular for a

locally compact group G, since L1(G) is not in general an ideal in the group C∗−algebra

C∗(G), the group algebra L1(G) is not a g-Segal algebra in (L1(G),P )̃.

Lemma 3.1 Let B be a g-Segal algebra with a bounded approximate identity in a Fréchet

algebra (A,P) and P is equicontinuous on B. Then B = (B, ‖.‖′)̃.

Proof By Theorem 3.3 B is an abstract Segal algebra in (B, ‖.‖′̃). Now by [12] B =

(B, ‖.‖′)̃ as Banach algebras. 2

Theorem 3.4 Let (A,P) be a Fréchet algebra. Let also there exists a finite dimensional

Banach algebra (B, ‖.‖) with a bounded approximate identity, which is a g-Segal algebra in

A. If P is equicontinuous on B, then B = A and A is a Banach algebra.

Proof Thanks to the open mapping theorem, it is only enough to show that B is of the
second category in A, see [7, Chapter 2]. Since B is finite dimensional, it is σ−compact.
In other words, there is a countable collection {Bi}

∞
i=1 of first category in A, then there

exists a countable collection {Dj}
∞
j=1 of nowhere dense subsets of A such that B = ∪Dj.

Put Ei,j = Bi ∩ Dj . Then B = ∪Ei,j and each Ei,j is nowhere dense in A. We prove that
two topologies induced by the family of seminorms P and ‖.‖′ are the same on Bi. Since
each Bi is compact, by an undergraduate argument, the functional sequence {pn} converges
uniformly to ‖.‖′ on each Bi. Then P and ‖.‖′ induce the same topology on each Bi. Hence
by Lemma 3.1 these two topologies agree on each Ei,j with the original norm topology
of B. In particular each Ei,j is a nowhere dense subset in (B, ‖.‖). This means that B
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is of the first category in itself, which would lead to contradiction with Baire’s category
theorem [7, Theorem 2.2]. 2

It is shown that a finite dimensional Banach algebra is amenable if and only if it is
semisimple. So we have the following corollary.

Corollary 3.1 A finite dimensional semisimple Banach algebra is a proper g-Segal algebra

in no Fréchet algebra.

4 Conclusion

It is seen in this paper that based on different locally convex structures on a given algebra,
the notions of abstract or g-Segal algebras are comparable. According to the topics of
Section 3, there are examples of known algebras with subalgebras which may or may not
be g-Segal algebra in them.
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