MATEMATIKA, 2015, Volume 31, Number 1, 1–5 ©UTM Centre for Industrial and Applied Mathematics

Super-Continuous Maps, Feebly-Regular and Completely Feebly-Regular Spaces

¹John Paul Jala Kharbhih and ²Sanghita Dutta

 ^{1,2}North Eastern Hill University Mawkynroh, Umshing, Shillong - 22, India
e-mail: ¹JPKharbhih@gmail.com, ²sanghita.smc@yahoo.co.in

Abstract In this paper properties of super-continuous maps are further studied. In addition, two new separation axioms for a topological space viz. feebly-regular space and completely feebly-regular spaces are introduced and their basic properties are studied.

Keywords super-closed; super-open; super-continuity; feebly-regular; completely feebly-regular;

2010 Mathematics Subject Classification 54A05, 54C08

1 Introduction

Several variations of continuity are known in literature. Volicko [1] introduced the concept of super-continuity between topological spaces in which maps are termed as *supper-continuous* maps. Recently, Hawary [2] has given some constructions and characterizations of super-continuity, and also its relation with some other forms of continuity. In this paper some more properties of super-continuity are studied. Motivated by super-continuity, feebly-regular and completely feebly-regular topological spaces are introduced and their basic properties are studied.

2 Super-continuity and its properties

Definition 1 Following Volicko [1] for a subset A of a topological Space X, we define the super-closure of A to be the set A^+ given by:

 $A^+ = \{ x \in X : \overline{U} \cap A \neq \phi \text{ for every open set } U \text{ containing } x \}.$

Similarly, we define the super-interior of A to be the set A^- given by:

 $A^{-} = \{ x \in X : \overline{U} \subseteq A \text{ for some open set } U \text{ containing } x \}.$

Definition 2 A subset A of topological space X is said to be *super-closed* if $A = A^+$ and *super-open* if $A = A^-$.

It immediately follows from this definition that $\overline{A} \subseteq A^+$ and that $A^- \subseteq \mathring{A}$, where \mathring{A} denotes the interior of A and \overline{A} denotes the closure of A. Also it follows immediately that a subset A of X is *closed* whenever it is *super-closed* and *open* whenever it is *super-open*.

Definition 3 A map $f: X \longrightarrow Y$, where X and Y are topological spaces is said to be super-continuous if $f^{-1}(B)$ is super-closed (super-open) in X, for every closed(resp.open) set B in Y.

It is immediate from this definition that super-continuity implies continuity. Hawary [2] has proved that X is regular implies that $A^+ = \overline{A}$ and $A^- = \mathring{A}$ for every subset A of X and that continuity coincides with super-continuity. In the following we give examples of a *closed* subset of an infinite T_2 space which is not super-closed, and also of a *continuous* map on the same space which is not super-continuous.

Example 1 Consider the topology on \mathbb{R} having the usual *open* intervals and the set \mathbb{Q} of rationals as subbasis. Let \mathbb{I} be the set of irrationals. Then $\mathbb{I} = \overline{\mathbb{I}}$ since \mathbb{Q} is *open*. However $\mathbb{I}^+ = \mathbb{R}$. Hence \mathbb{I} is *closed* but not *super-closed*. Then the identity map $i : \mathbb{R} \longrightarrow \mathbb{R}$, which is continuous, is not *super-continuous*, since $i^{-1}(\mathbb{I})$ is not *super-closed*.

The following lemma can be found in [3, Lemma 2].

Lemma 1 Let X be a topological space and let \mathcal{T}^* be the family consisting of all the *super-open* subsets of X. Then \mathcal{T}^* is a topology on X.

Theorem 1 The projection maps from $\mathbb{R} \times \mathbb{R}$ to \mathbb{R} are super-continuous. Also the addition, subtraction and multiplication operations are super-continuous functions from $\mathbb{R} \times \mathbb{R}$ to \mathbb{R} , and the quotient function is a super-continuous function from $\mathbb{R} \times (\mathbb{R} - \{0\})$ to \mathbb{R} .

Proof The stated functions are continuous functions. That these functions are also *super*continuous follows from [2, Theorem 11] by noting that $\mathbb{R} \times \mathbb{R}$ is regular.

The following result is proved in [3, Theorem 6].

Theorem 2 Let Y be a topological space and $X = \prod_{\alpha \in \Lambda} X_{\alpha}$ a product space. A function $f: Y \longrightarrow X$ is super-continuous on Y if and only if each coordinate function $\pi_{\alpha} \circ f$ is super-continuous on Y, where π_{α} are the canonical projections from $\prod_{\alpha \in \Lambda} X_{\alpha}$ to X_{α} .

The topology on the product space Y above is the *Tychonoff* topology. i.e. the smallest topology on Y such that every projection from Y is continuous. The next theorem, shows that this easily carries over to any space with weak topology.

Theorem 3 Let X have weak topology induced by a collection $\{f_{\alpha} | \alpha \in \Lambda\}$ of maps on the topological space X (to topological spaces X_{α}). Then $f : Y \to X$ is super-continuous iff $f_{\alpha} \circ f$ is super-continuous, $\forall \alpha \in \Lambda$.

Proof For the necessity part of the proof, Hawary [2] has shown that the composition of two super-continuous maps is super-continuous. Conversely, assume that $f_{\alpha} \circ f$ is super-continuous, $\forall \alpha \in \Lambda$. For each subbasic open set $f_{\alpha}^{-1}(U_{\alpha})$, we see that $f^{-1}(f_{\alpha}^{-1}(U_{\alpha})) = (f_{\alpha} \circ f)^{-1}(U_{\alpha})$ which is super-open in Y. Thus, it follows that f is super-continuous. \Box

The following theorem is a particular case of [3, Corollary 1]

super-open set V in Y.

Theorem 4 Let $f, g: X \longrightarrow \mathbb{R}$ be super-continuous maps. Define $h: X \longrightarrow \mathbb{R} \times \mathbb{R}$ by h(x) = (f(x), g(x)), then h is also super-continuous.

Notation 1 We denote the set of all real-valued super-continuous functions on the topological space X by $S(X, \mathbb{R})$. The corresponding set for continuous functions is denoted by $C(X, \mathbb{R})$.

By using the results stated in this section, it is now straightforward to verify that the set $S(X, \mathbb{R})$ is a ring under pointwise addition and pointwise multiplication. However, we shall prove a stronger result in Theorem 4 below. But, first we prove the following lemma. Lemma 2 Let $f : X \to Y$ be continuous. Then $f^{-1}(V)$ is super-open in X for every **Proof** Let V be super-open in Y. So, $f^{-1}(V)$ is open in X. Let $x \in f^{-1}(V)$. i.e. $f(x) \in V$. By hypothesis, $f(x) \in W \subset \overline{W} \subset V$ for some open subset W of Y. Therefore, $x \in f^{-1}(W) \subset f^{-1}(\overline{W}) \subset f^{-1}(V)$. But $\overline{f^{-1}(W)} \subset f^{-1}(\overline{W})$ (by [4, Ch III, 8.3(6)]). Therefore $x \in f^{-1}(W) \subset \overline{f^{-1}(W)} \subset f^{-1}(V)$. Also $f^{-1}(W)$ is open in X. Thus $f^{-1}(V)$ is super-open in X. \Box

Theorem 5 $S(X,\mathbb{R})=C(X,\mathbb{R}).$

Proof Since every super-continuous map is continuous, it follows that $S(X, \mathbb{R}) \subset C(X, \mathbb{R})$. Conversely, let $f \in C(X, \mathbb{R})$ and V be open in \mathbb{R} . So, $f^{-1}(V)$ is open in X. But \mathbb{R} is regular, so V is also super-open in \mathbb{R} . So by Lemma 2 above, $f^{-1}(V)$ is also super-open in X. Thus $f \in S(X, \mathbb{R})$. \Box

Definition 4 A collection $\{f_{\alpha} | f_{\alpha} \colon X \to X_{\alpha}, \alpha \in \Lambda\}$ of functions is said to separate points from *super-closed* sets iff whenever *B* is *super-closed* and $x \notin B$, then for some $\alpha \in \Lambda$, $f_{\alpha}(x) \notin f_{\alpha}(B)$.

We conclude this section, with the following result.

Theorem 6 A collection $\{f_{\alpha} | \alpha \in \Lambda\}$ of super-continuous functions on a topological space X separates points from super-closed sets in X iff the sets $f_{\alpha}^{-1}(V)$, $\alpha \in \Lambda$, V open in X_{α} , form a base for the topology \mathcal{T}^* consisting of super-open subsets of X.

Proof Let $x \in X$ and U be super-open in X with $x \in U$. So $B = U^c$ is super-closed, and $x \notin B$. So, $\exists \alpha \in \Lambda$ such that $f_{\alpha}(x) \notin \overline{f_{\alpha}(B)}$. Now, let $V = \overline{f_{\alpha}(B)}^c$. So, V is an open subset of X_{α} . Thus $f_{\alpha}^{-1}(V)$ is super-open subset of X containing x. Let $y \in f_{\alpha}^{-1}(V)$. Therefore, $f_{\alpha}(y) \in V = \overline{f_{\alpha}(B)}^c$. So, $f_{\alpha}(y) \notin f_{\alpha}(B)$. i.e. $y \notin B$, so that $y \in B^c = U$. Hence $f_{\alpha}^{-1}(V) \subset U$.

Conversely, let $x \in X$, and B be super-closed in X with $x \notin B$. So, $x \in B^c$ which is super-open. Thus $x \in f_{\alpha}^{-1}(V) \subset B^c$, for some $\alpha \in \Lambda$ and some open subset V of X_{α} , i.e., $f_{\alpha}(x) \in V$. We conclude that, $V \cap f_{\alpha}(B) = \phi$. For if $x_{\alpha} \in f_{\alpha}(B) \cap V$, then $x_{\alpha} = f_{\alpha}(b)$ for some $b \in B$. This then gives $\underline{b} \in \underline{f_{\alpha}}^{-1}(V) \cap B$, which contradicts the fact that $f_{\alpha}^{-1}(V) \subset B^c$. Hence we conclude $f_{\alpha}(x) \notin f_{\alpha}(B)$. So, the collection $\{f_{\alpha} | \alpha \in \Lambda\}$ separates points from super-closed sets. \Box

3 Feebly-regular and completely feebly-regular spaces

In this section we introduce two new separation axioms and study their basic properties.

Definition 5 A topological space X is said to be feebly-regular (f.r in short) *iff* whenever $x \neq y$ in X, there are *super-open* sets U, V such that $x \in U, y \in V, U \cap V = \phi$.

Definition 6 A topological space X is said to be *completely feebly-regular* (c.f.r in short) *iff* whenever $x \neq y$ in X, there is a *super-continuous* map $f: X \longrightarrow \mathbb{R}$ such that f(x) = 0, and f(y) = 1.

Theorem 7 For a topological space X, we have the following implications:

- (i) $X f.r \implies X T_2$.
- (ii) $X c.f.r \implies X f.r.$
- (iii) $X T_3 \implies X f.r.$
- (iv) X Tychonoff \implies X c.f.r.

Proof

- (i) Since super-open sets are open, it follows at once that X is T_2 whenever it is f.r.
- (ii) Let x, y be distinct points of X. Then \exists super-continuous map f such that f(x) = 0, f(y) = 1. Let U, V be non-intersecting basic neighborhoods of 0, 1 respectively. Then $f^{-1}(U), f^{-1}(V)$ are non-intersecting super-open sets which contain x, y respectively. Thus X is f.r.
- (iii) Let p, q be distinct points of X. Then, \exists disjoint *open* sets U, V which contains p, q respectively. *Regularity* of X forces U, V to be *super-open*. Hence X is f.r.
- (iv) Let p, q be distinct points of X. Then, \exists real-valued continuous map f on X which evaluates to 1 at p and 0 at q. Regularity of X forces f to be super-continuous. Hence X is c.f.r. \Box

Below, we exhibit an example of a space which is f.r but not regular.

Example 2 The space \mathbb{R} in Example 1 above is not *regular* since 1 and \mathbb{I} do not have disjoint neighborhoods. However this space can be easily verified to be f.r.

Notation 2 In the following proposition $cl_Y V$ denotes the closure of V in Y.

Proposition 1 Let Y be a subspace of X, and U be super-open in X, then $U \cap Y$ is super-open in Y.

Proof Let $p \in U \cap Y$, So, $p \in U$, super-open in X Thus, $cl_X B \subset U$ for some open subset B of X containing p. Now, let $V = B \cap Y$ Therefore V is open in Y and contains p. Again,

$$cl_Y V = cl_Y (B \cap Y)$$
$$\subseteq cl_Y B \cap cl_Y Y$$
$$= (cl_X B \cap Y) \cap Y$$
$$\subset U \cap Y$$

showing $U \cap Y$ is super-open in Y. \Box

Theorem 8

- (i) Every subspace of a f.r space is f.r.
- (ii) The product space $\prod_{\alpha \in \Lambda} X_{\alpha}$ is f.r iff X_{α} is f.r $\forall \alpha \in \Lambda$.

Proof

- (i) If X is f.r. and Y is a subspace of X with x, y distinct points of Y, then x, y are distinct points of X. So, ∃ disjoint sets U, V both super-open in X such that x ∈ U, y ∈ V. Now, x ∈ U ∩ Y, y ∈ V ∩ Y and U ∩ Y, V ∩ Y are super-open in Y by Proposition 1 above. Hence Y is f.r.
- (ii) If the product space is f.r, then by part (i) above, each factor of the product is also f.r. Conversely, let x, y be distinct points of Π X_α. So, for at least one α, x_α ≠ y_α. Fix one such α. Now, X_α is f.r, so ∃ super-open sets U_α, V_α such that U_α ∩ V_α = φ, x_α ∈ U_α, y_α ∈ V_α. We have,

$$\prod_{\beta \in \Lambda} U_{\beta} \text{ (where } U_{\beta} = X_{\beta}, \forall \beta \text{ except for } \beta = \alpha),$$

$$\prod_{\beta \in \Lambda} V_{\beta} \text{ (where } V_{\beta} = X_{\beta}, \forall \beta \text{ except for } \beta = \alpha),$$

are disjoint neighborhoods of x, y respectively. To complete our proof, we claim that these are also super-open sets. It is enough to show that $\prod_{\beta \in \Lambda} U_{\beta}$ is super-open.

Let $(z_{\beta}) \in \prod_{\beta \in \Lambda} U_{\beta}$. So $z_{\alpha} \in W_{\alpha} \subset \overline{W_{\alpha}} \subset U_{\alpha}$, for some open subset W_{α} of X_{α} . Now consider the product $\prod_{\beta \in \Lambda} W_{\beta}$ where $W_{\beta} = X_{\beta}$, $\forall \beta$ except for $\beta = \alpha$. We have,

$$\overline{\prod_{\beta \in \Lambda} W_{\beta}} = \prod_{\beta \in \Lambda} \overline{W_{\beta}} \subset \prod_{\beta \in \Lambda} U_{\beta}.$$

But, $\prod_{\beta \in \Lambda} W_{\beta}$ is a neighborhood of z. Hence, $\prod_{\beta \in \Lambda} U_{\beta}$ is super-open.

Remark 1 Quotient of a f.r space need not be f.r. The space X in [5, eg 14.11(b)] is *Tychonoff* and hence f.r. But its continuous open image Y is not T_2 and hence not f.r.

Theorem 9

- (i) Every subspace of a c.f.r space is c.f.r.
- (ii) The product space $\prod_{\alpha \in \Lambda} X_{\alpha}$ is c.f.r iff X_{α} is c.f.r $\forall \alpha \in \Lambda$.

Proof

- (i) If X is c.f.r and Y is a subspace of X with x, y distinct points of Y, then x, y are distinct points of X. So, ∃ super-continuous map f : X → ℝ satisfying f(x) = 0 and f(y) = 1. Now f_{|Y} : Y → ℝ is also super-continuous since for any open subset U of ℝ, (f_{|Y})⁻¹(U) = f⁻¹(U) ∩ Y, which is super-open in Y by Proposition 1. Hence Y is c.f.r.
- (ii) If the product space is c.f.r, then the fact that each factor is c.f.r follows at once from part (i) above. Conversely, suppose that each factor space X_{α} is c.f.r. Let x, y be distinct points of $\prod_{\alpha \in \Lambda} X_{\alpha}$. So $x_{\alpha} \neq y_{\alpha}$ in at least one coordinate α . Now, \exists super-continuous map $f_{\alpha} : X_{\alpha} \to \mathbb{R}$ such that $f_{\alpha}(x_{\alpha}) = 0, f_{\alpha}(y_{\alpha}) = 1$.

Define $g: \prod_{\alpha \in \Lambda} X_{\alpha} \to \mathbb{R}$ by $g(w) = (f_{\alpha} \circ \pi_{\alpha})(w)$. Let U be open in \mathbb{R} . Therefore $g^{-1}(U) = (f_{\alpha} \circ \pi_{\alpha})^{-1}(U) = \pi_{\alpha}^{-1}f_{\alpha}^{-1}(U)$. Again, $f_{\alpha}^{-1}(U)$ is super-open in X_{α} , and π_{α} is continuous, so by Lemma 2 above, $g^{-1}(U)$ is also super-open. Thus g is also super-continuous. Moreover, g(x) = 0 and g(y) = 1. \Box

Remark 2 Quotient of a c.f.r space need not be c.f.r. The space X in [5, eg 14.11(b)] is Tychonoff and hence c.f.r. But its continuous open image is not T_2 and hence not c.f.r.

References

- [1] Volicko, N. H-closed Topological Spaces. Trans. AMS. 1968. 78: 103–118.
- [2] Al-Hawary, T. A. On super continuity of topological spaces. MATEMATIKA. 2005. 21(1): 43–49.
- [3] Labendia M. A. and Canoy S. R. Jr. Super-open sets and super-continuity of maps in the product space. *MATEMATIKA*. 2013. 29(2): 197–202.
- [4] Dugundji, J. Topology. Boston: Allyn and Bacon, Inc. 1966.
- [5] Willard, S. General Topology. New York: Addison-Wesley. 1970.