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1 Introduction

Several variations of continuity are known in literature. Volicko [1] introduced the concept of
super-continuity between topological spaces in which maps are termed as supper-continuous
maps. Recently, Hawary [2] has given some constructions and characterizations of super-
continuity, and also its relation with some other forms of continuity. In this paper some more
properties of super-continuity are studied. Motivated by super-continuity, feebly-regular
and completely feebly-regular topological spaces are introduced and their basic properties
are studied.

2 Super-continuity and its properties

Definition 1 Following Volicko [1] for a subset A of a topological Space X, we define the
super-closure of A to be the set A+ given by:

A+ = {x ∈ X : U ∩ A 6= φ for every open set U containing x}.

Similarly, we define the super-interior of A to be the set A− given by:

A− = {x ∈ X : U ⊆ A for some open set U containing x}.

Definition 2 A subset A of topological space X is said to be super-closed if A = A+ and
super-open if A = A−.

It immediately follows from this definition that A ⊆ A+ and that A− ⊆
◦

A, where
◦

A

denotes the interior of A and A denotes the closure of A. Also it follows immediately that
a subset A of X is closed whenever it is super-closed and open whenever it is super-open.

Definition 3 A map f : X −→ Y , where X and Y are topological spaces is said to be
super-continuous if f−1(B) is super-closed (super-open) in X, for every closed(resp.open)
set B in Y .
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It is immediate from this definition that super-continuity implies continuity. Hawary [2]

has proved that X is regular implies that A+ = A and A− =
◦

A for every subset A of X

and that continuity coincides with super-continuity. In the following we give examples of
a closed subset of an infinite T2 space which is not super-closed, and also of a continuous
map on the same space which is not super-continuous.

Example 1 Consider the topology on R having the usual open intervals and the set Q of
rationals as subbasis. Let I be the set of irrationals. Then I = I since Q is open. However
I+ = R. Hence I is closed but not super-closed. Then the identity map i : R −→ R, which
is continuous, is not super-continuous, since i−1(I) is not super-closed.

The following lemma can be found in [3, Lemma 2].

Lemma 1 Let X be a topological space and let T ∗ be the family consisting of all the
super-open subsets of X. Then T ∗ is a topology on X.

Theorem 1 The projection maps from R×R to R are super-continuous. Also the addition,
subtraction and multiplication operations are super-continuous functions from R × R to R,
and the quotient function is a super-continuous function from R × (R − {0}) to R.

Proof The stated functions are continuous functions. That these functions are also super-
continuous follows from [2, Theorem 11] by noting that R × R is regular.2

The following result is proved in [3, Theorem 6].

Theorem 2 Let Y be a topological space and X = Π
α∈Λ

Xα a product space. A function

f : Y −→ X is super-continuous on Y if and only if each coordinate function πα ◦ f is
super-continuous on Y , where πα are the canonical projections from Π

α∈Λ
Xα to Xα.

The topology on the product space Y above is the Tychonoff topology. i.e. the smallest
topology on Y such that every projection from Y is continuous. The next theorem, shows
that this easily carries over to any space with weak topology.

Theorem 3 Let X have weak topology induced by a collection {fα|α ∈ Λ} of maps on the
topological space X (to topological spaces Xα). Then f : Y → X is super-continuous iff
fα ◦ f is super-continuous, ∀α ∈ Λ.

Proof For the necessity part of the proof, Hawary [2] has shown that the composition of
two super-continuous maps is super-continuous. Conversely, assume that fα ◦ f is super-
continuous, ∀α ∈ Λ. For each subbasic open set f−1

α (Uα), we see that f−1(f−1
α (Uα)) =

(fα ◦ f)−1(Uα) which is super-open in Y . Thus, it follows that f is super-continuous. 2

The following theorem is a particular case of [3, Corollary 1]

Theorem 4 Let f, g : X −→ R be super-continuous maps. Define h : X −→ R × R by
h(x) = (f(x), g(x)), then h is also super-continuous.

Notation 1 We denote the set of all real-valued super-continuous functions on the topo-
logical space X by S(X, R). The corresponding set for continuous functions is denoted by
C(X, R).

By using the results stated in this section, it is now straightforward to verify that the
set S(X, R) is a ring under pointwise addition and pointwise multiplication. However, we
shall prove a stronger result in Theorem 4 below. But, first we prove the following lemma.

Lemma 2 Let f : X → Y be continuous. Then f−1(V ) is super-open in X for every
super-open set V in Y .
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Proof Let V be super-open in Y . So, f−1(V ) is open in X. Let x ∈ f−1(V ). i.e.
f(x) ∈ V . By hypothesis, f(x) ∈ W ⊂ W ⊂ V for some open subset W of Y . Therefore, x ∈
f−1(W ) ⊂ f−1(W ) ⊂ f−1(V ). But f−1(W ) ⊂ f−1(W )(by [4, Ch III, 8.3(6)]). Therefore
x ∈ f−1(W ) ⊂ f−1(W ) ⊂ f−1(V ). Also f−1(W ) is open in X. Thus f−1(V ) is super-open
in X. 2

Theorem 5 S(X,R)=C(X,R).

Proof Since every super-continuous map is continuous, it follows that S(X, R) ⊂ C(X, R).
Conversely, let f ∈ C(X, R) and V be open in R. So, f−1(V ) is open in X. But R is regular,
so V is also super-open in R. So by Lemma 2 above, f−1(V ) is also super-open in X. Thus
f ∈ S(X, R). 2

Definition 4 A collection {fα| fα : X → Xα, α ∈ Λ} of functions is said to separate points
from super-closed sets iff whenever B is super-closed and x 6∈ B, then for some α ∈ Λ,
fα(x) 6∈ fα(B).

We conclude this section, with the following result.

Theorem 6 A collection {fα|α ∈ Λ} of super-continuous functions on a topological space
X separates points from super-closed sets in X iff the sets f−1

α (V ), α ∈ Λ, V open in Xα,
form a base for the topology T ∗ consisting of super-open subsets of X.

Proof Let x ∈ X and U be super-open in X with x ∈ U . So B = U c is super-closed,
and x 6∈ B. So, ∃α ∈ Λ such that fα(x) 6∈ fα(B). Now, let V = fα(B)

c
. So, V is an

open subset of Xα. Thus f−1
α (V ) is super-open subset of X containing x. Let y ∈ f−1

α (V ).

Therefore, fα(y) ∈ V = fα(B)
c
. So, fα(y) 6∈ fα(B). i.e. y 6∈ B, so that y ∈ Bc = U . Hence

f−1
α (V ) ⊂ U .

Conversely, let x ∈ X, and B be super-closed in X with x 6∈ B. So, x ∈ Bc which is
super-open. Thus x ∈ f−1

α (V ) ⊂ Bc, for some α ∈ Λ and some open subset V of Xα, i.e.,
fα(x) ∈ V . We conclude that, V ∩ fα(B) = φ. For if xα ∈ fα(B) ∩ V , then xα = fα(b) for
some b ∈ B. This then gives b ∈ f−1

α (V )∩B, which contradicts the fact that f−1
α (V ) ⊂ Bc.

Hence we conclude fα(x) 6∈ fα(B). So, the collection {fα|α ∈ Λ} separates points from
super-closed sets. 2

3 Feebly-regular and completely feebly-regular spaces

In this section we introduce two new separation axioms and study their basic properties.

Definition 5 A topological space X is said to be feebly-regular (f.r in short) iff whenever
x 6= y in X, there are super-open sets U, V such that x ∈ U , y ∈ V , U ∩ V = φ.

Definition 6 A topological space X is said to be completely feebly-regular (c.f.r in short)
iff whenever x 6= y in X, there is a super-continuous map f : X −→ R such that f(x) = 0,
and f(y) = 1.

Theorem 7 For a topological space X, we have the following implications:

(i) X f.r =⇒ X T2.

(ii) X c.f.r =⇒ X f.r.

(iii) X T3 =⇒ X f.r.

(iv) X Tychonoff =⇒ X c.f.r.
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Proof

(i) Since super-open sets are open, it follows at once that X is T2 whenever it is f.r.

(ii) Let x, y be distinct points of X. Then ∃ super-continuous map f such that f(x) = 0,
f(y) = 1. Let U , V be non intersecting basic neighborhoods of 0, 1 respectively. Then
f−1(U), f−1(V ) are non-intersecting super-open sets which contain x, y respectively.
Thus X is f.r.

(iii) Let p, q be distinct points of X. Then, ∃ disjoint open sets U , V which contains p, q

respectively. Regularity of X forces U , V to be super-open. Hence X is f.r.

(iv) Let p, q be distinct points of X. Then, ∃ real-valued continuous map f on X which
evaluates to 1 at p and 0 at q. Regularity of X forces f to be super-continuous. Hence
X is c.f.r. 2

Below, we exhibit an example of a space which is f.r but not regular.

Example 2 The space R in Example 1 above is not regular since 1 and I do not have
disjoint neighborhoods. However this space can be easily verified to be f.r.

Notation 2 In the following proposition clY V denotes the closure of V in Y .

Proposition 1 Let Y be a subspace of X, and U be super-open in X, then U ∩ Y is
super-open in Y .

Proof Let p ∈ U ∩ Y , So, p ∈ U , super-open in X Thus, clXB ⊂ U for some open subset
B of X containing p. Now, let V = B ∩ Y Therefore V is open in Y and contains p. Again,

clY V = clY (B ∩ Y )

⊆ clY B ∩ clY Y

= (clXB ∩ Y ) ∩ Y

⊂ U ∩ Y

showing U ∩ Y is super-open in Y.2

Theorem 8

(i) Every subspace of a f.r space is f.r.

(ii) The product space Π
α∈Λ

Xα is f.r iff Xα is f.r ∀α ∈ Λ.

Proof

(i) If X is f.r. and Y is a subspace of X with x, y distinct points of Y , then x, y are
distinct points of X. So, ∃ disjoint sets U , V both super-open in X such that x ∈ U ,
y ∈ V . Now, x ∈ U ∩ Y , y ∈ V ∩ Y and U ∩ Y , V ∩ Y are super-open in Y by
Proposition 1 above. Hence Y is f.r.

(ii) If the product space is f.r, then by part (i) above, each factor of the product is also
f.r. Conversely, let x, y be distinct points of Π

α∈Λ
Xα. So, for at least one α, xα 6= yα.

Fix one such α. Now, Xα is f.r, so ∃ super-open sets Uα,Vα such that Uα ∩ Vα = φ,
xα ∈ Uα, yα ∈ Vα. We have,

Π
β∈Λ

Uβ (where Uβ = Xβ , ∀β except for β = α),

Π
β∈Λ

Vβ (where Vβ = Xβ , ∀β except for β = α),
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are disjoint neighborhoods of x,y respectively. To complete our proof, we claim that
these are also super-open sets. It is enough to show that Π

β∈Λ
Uβ is super-open.

Let (zβ) ∈ Π
β∈Λ

Uβ. So zα ∈ Wα ⊂ Wα ⊂ Uα, for some open subset Wα of Xα. Now

consider the product Π
β∈Λ

Wβ where Wβ = Xβ , ∀β except for β = α. We have,

Π
β∈Λ

Wβ = Π
β∈Λ

Wβ ⊂ Π
β∈Λ

Uβ .

But, Π
β∈Λ

Wβ is a neighborhood of z. Hence, Π
β∈Λ

Uβ is super-open.2

Remark 1 Quotient of a f.r space need not be f.r. The space X in [5, eg 14.11(b)] is
Tychonoff and hence f.r. But its continuous open image Y is not T2 and hence not f.r.

Theorem 9

(i) Every subspace of a c.f.r space is c.f.r.

(ii) The product space Π
α∈Λ

Xα is c.f.r iff Xα is c.f.r ∀α ∈ Λ.

Proof

(i) If X is c.f.r and Y is a subspace of X with x, y distinct points of Y , then x, y are
distinct points of X. So, ∃ super-continuous map f : X −→ R satisfying f(x) = 0
and f(y) = 1. Now f|Y : Y → R is also super-continuous since for any open subset U

of R, (f|Y )−1(U) = f−1(U)∩ Y , which is super-open in Y by Proposition 1. Hence Y

is c.f.r.

(ii) If the product space is c.f.r, then the fact that each factor is c.f.r follows at once
from part (i) above. Conversely, suppose that each factor space Xα is c.f.r. Let
x, y be distinct points of Π

α∈Λ
Xα. So xα 6= yα in at least one coordinate α. Now,

∃ super-continuous map fα : Xα → R such that fα(xα) = 0, fα(yα) = 1.

Define g : Π
α∈Λ

Xα → R by g(w) = (fα ◦ πα)(w). Let U be open in R. Therefore

g−1(U) = (fα ◦ πα)−1(U) = π−1
α f−1

α (U). Again, f−1
α (U) is super-open in Xα, and

πα is continuous, so by Lemma 2 above, g−1(U) is also super-open. Thus g is also
super-continuous. Moreover, g(x) = 0 and g(y) = 1. 2

Remark 2 Quotient of a c.f.r space need not be c.f.r. The space X in [5, eg 14.11(b)] is
Tychonoff and hence c.f.r. But its continuous open image is not T2 and hence not c.f.r.
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