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Abstract The main objective of the present paper is to examine the stability of
three species syn-eco-system. The system comprises of a commensal (S1) common to
two hosts S2 and S3 with mortality rate for commensal. Further S2 is a commensal
of S3 and S3 is a host of both S1, S2. Here all three species are having limited
resources. The mathematical model equations constitute a set of three first order non-
linear simultaneous coupled differential equations in the strengths N1, N2, N3 of S1,
S2, S3 respectively. Criteria for the asymptotic stability of all the eight equilibrium
points are established. Trajectories of the perturbations over the equilibrium points are
illustrated. Further the global stability of a three species syn-eco system is established
with the aid of suitably constructed Liapunovs function-pair. Also the growth rates of
the species are numerically estimated using Runge-Kutta fourth order scheme.
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1 Introduction

Ecology is a branch of life sciences connected to the existence of diverse species in the
same environment and habitat. It is natural that two or more species living in a common
habitat interact in different ways. Significant research in the area of theoretical ecology has
been thresholded by Lotka [?] and by Volterra [?]. Several mathematicians and ecologists
contributed to the growth of this area of knowledge. The Ecological interactions can be
broadly classified as Ammensalism, Competition, Commensalism, Neutralism, Mutualism,
Predation and so on.

Mathematical modeling has been playing an important role for the last half a century
in explaining several phenomena concerned with individuals and groups of populations in
nature. The general concept of modeling has been presented in the treatises of Meyer
[?], Kushing [?], Paul [?], Kapur [?]. Srinivas [?] studied competitive ecosystem of two
species and three species with limited and unlimited resources. Later, Lakshminarayan [?],
Lakshminarayan and Pattabhi Ramacharyulu [?] studied prey-predator ecological models
with partial cover for the prey and alternate food for the predator. Stability analysis
of competitive species was carried out by Archana Reddy, Pattabhi Ramacharyulu and
Krishna Gandhi [?] and by Bhaskara Rama Sarma and Pattabhi Ramacharyulu [?], while
Ravindra Reddy [?] investigated mutualism between two species. Further Phani Kumar [?]
studied some mathematical models of ecological commensalism. The present author Hari
Prasad [?,?,?,?,?,?,?] discussed on the stability of a three and four species syn-ecosystems.

The present investigation is on an analytical study of three species (S1, S2, S3) syn-eco
system with mortality rate for commensal. The system comprises of a commensal (S1), two
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hosts S2 and S3 ie, S2 and S3 both benefit S1, without getting themselves affected either
positively or adversely. Further S2 is a commensal of S3 and S3 is a host of both S1, S2.
Commensalism is a symbiotic interaction between two populations where one population
(S1) gets benefit from (S2) while the other (S2) is neither harmed nor benefited due to the
interaction with (S1). The benefited species (S1) is called the commensal and the other, the
helping one (S2) is called the host species. An example is a squirrel in an oak tree gets a
place to live and food for its survival, while the tree remains neither benefited nor harmed.

2 Basic Equations of the Model

The model equations for the three species syn ecosystem is given by the following system
of first order non-linear ordinary differential equations employing the following notations:

S1 : Commensal of S2 and S3

S2 : Host of S1 and commensal of S3

S3 : Host of S1 and S2

Ni(t) : The population strength of Si at time t, i = 1, 2, 3

t : Time instant

d1 : Natural death rate of S1

ai : Natural growth rate of Si, i = 1, 2, 3

aii : Self inhibition coefficients of Si, i = 1, 2, 3

a12, a13 : Interaction coefficients of S1 due to S2 and S2 due to S3

a23 = Interaction coefficient of S2 due to S3

e1 =
d1

a11
: Extinction coefficient of S1

ki =
ai

aii

: Carrying capacities of Si, i = 2, 3

Further the variables N1, N2, N3 are non-negative and the model parameters d1, a2, a3, a11,

a12, a22, a33, a13, a23 are assumed to be non-negative constants.

The model equations for the growth rates of S1, S2, S3 are

dN1

dt
= −d1N1 − a11N

2
1 + a12N1N2 + a13 N1N3 (1)

dN2

dt
= a2N2 − a22N

2
2 + a23N2N3 (2)

dN3

dt
= a3N3 − a33N

2
3 (3)

3 Equilibrium States

The system under investigation has eight equilibrium states given by dNi

dt
= 0, i = 1, 2, 3
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(i) Fully washed out state.

E1 : N̄1 = 0, N̄2 = 0, N̄3 = 0

(ii) States in which two of the tree species are washed out and third is not.

E2 : N̄1 = 0, N̄2 = 0, N̄3 = k3

E3 : N̄1 = 0, N̄2 = k2, N̄3 = 0

E4 : N̄1 = −e1 , N̄2 = 0, N̄3 = 0

(iii) Only one of the three species is washed out while the other two are not.

E5 : N̄1 = 0, N̄2 = k2 +
a23k3

a22
, N̄3 = k3

E6 : N̄1 =
a13k3

a11
− e1, N̄2 = 0, N̄3 = k3

E7 : N̄1 =
a12k2

a11
− e1, N̄2 = k2, N̄3 = 0

(iv) The co-existent state or normal steady state.

E8 : N̄1 =
a12

a11

(

k2 +
a23k3

a22

)

+
a13k3

a11
− e1, N̄2 = k2 +

a23k3

a11
, N̄3 = k3

4 Stability of the Equilibrium States

Let
N = (N1, N2, N3) = N̄ + U (4)

where U = (u1, u2, u3)
T

is a small perturbation over the equilibrium state

N̄ =
(

N̄1, N̄2, N̄3

)

.

The basic equations (1), (2) and (3) are quasi-linearized to obtain the equations for the
perturbed state as

dU

dt
= AU (5)

with

A =





−d1 − 2a11N̄1 + a12N̄2 + a13N̄3 a12N̄1 a13N̄1

0 a2 − 2a22N̄2 + a23N̄3 a23N̄2

0 0 a3 − 2a33N̄3



 (6)

The characteristic equation for the system is det

[A − λI ] = 0 (7)

The equilibrium state is stable, if all the roots of the equation (7) are negative in case
they are real or have negative real parts, in case they are complex.
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4.1 Fully Washed Out State

In this case we have

A =





−d1 0 0
0 a2 0
0 0 a3



 (8)

The characteristic equation is

(λ + d1) (λ− a2) (λ − a3) = 0 (9)

The characteristic roots of (9) are −d1, a2, a3 . Since two of these three are positive.
Hence the fully washed out state is unstable and the solutions of the equations (5) are

u1 = u10 e
−d1t; ui = uio e

ait, i = 2, 3 (10)

where u10, u20, u30 are the initial values of u1, u2, u3 respectively.

4.1.1 Trajectories of Perturbations

The trajectories in u1 − u2 and u2 − u3 planes are

(

u1

u10

)

−
1

d1

=

(

u2

u20

)
1

a2

=

(

u3

u30

)
1

a3

(11)

4.2 Equilibrium State E2 : N̄1 = 0, N̄2 = 0, N̄3 = k3

In this case we have

A =





a13k3 − d1 0 0
0 µ 0
0 0 −a3



 (12)

where
µ = a2 + a23k3 > 0 (13)

The characteristic roots are a13k3−d1, µ and −a3. Since one of these three roots is positive,
hence the state is unstable. The equations (5) yield the solutions:

u1 = u10e
(a13k3−d1)t; u2 = u20 e

µt; u3 = u30e
−a3t (14)

When d1 = a13 k3, (14) becomes

u1 = u10; u2 = u20 e
µt; u3 = u30e

−a3t (15)

4.2.1 Trajectories of Perturbations

The trajectories in the u1 − u2 and u2 − u3 planes are given by

(

u1

u10

)
1

a13k3−d1

=

(

u2

u20

)
1

µ

=

(

u3

u30

)

−
1

a3

(16)
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4.3 Equilibrium state E3 : N̄1 = 0, N̄2 = k2, N̄3 = 0

In this case we have

A =





a12k2 − d1 0 0
0 −a2 a23k2

0 0 a3



 (17)

The characteristic roots are a12k2 − d1, − a2, a3. Since one of these three roots is
positive, hence the state is unstable. The equations (5) yield the solutions curves.

u1 = u10e
(a12k2−d1)t; u2 = (u20 − α) e−a2t + αea3t; u3 = u30e

a3t (18)

where

α =
a23k3u30

a2 + a3
> 0 (19)

Case I: When d1 = a12k2 and α 6= u20

In this case (18) becomes

u1 = u10; u2 = (u20 − α) e−a2t + αea3t; u3 = u30e
a3t (20)

Case II: When d1 6= a12k2 and α = u20

In this case (18) becomes

u1 = u10e
(a12k2−d1)t; u2 = u20e

a3t; u3 = u30e
a3t (21)

Case III: When d1 = a12k2 and α = u20

In this case (18) becomes

u1 = u10; u2 = u20e
a3t; u3 = u30e

a3t (22)

4.3.1 Trajectories of Perturbations

The trajectories in the u1 − u2 and u2 − u3 planes are

u2 = (u20 − α)

(

u1

u10

)

a2

d1−a12k2

+ α

(

u1

u10

)

a3

a12k2−d1

(23)

and

u2 = (u20 − α)

(

u3

u30

)

−a2

a3

+
u3α

u30
(24)

respectively.
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4.4 Equilibrium State E4 : N̄1 = −e1, N̄2 = 0, N̄3 = 0

In this case we get

A =





d1 −a12e1 −a13e1
0 a2 0
0 0 a3



 (25)

The characteristic roots are d1, a2, a3. Since all these three roots are positive, hence the
state is unstable. The equations (5) yield the solutions.

u1 = (u10 − β − γ) ed1t + βea2t + γea3t; u2 = u20e
a2t; u3 = u30e

a3t (26)

where

u1 = (u10 − β − γ) ed1t + βea2t + γea3t; u2 = u20e
a2t; u3 = u30e

a3t and γ =
a13e1u30

d1 − a3
(27)

Case I: When β = γ

In this case (26) becomes

u1 = (u10 − 2β) ed1t + β
(

ea2t + ea3t
)

; u2 = u20e
a2t; u3 = u30e

a3t (28)

Case II: When u10 = β + γ

In this case (26) becomes

u1 = βea2t + γea3t; u2 = u20e
a2t; u3 = u30e

a3t (29)

4.4.1 Trajectories of Perturbations

The trajectories in the u1 − u2 and u2 − u3 planes are given by

u1 = (u20 − β − γ)

(

u2

u20

)

d1

a2

+
u2β

u20
+ γ

(

u2

u20

)

a3

a2

and

(

u2

u20

)a3

=

(

u3

u30

)a2

(30)

4.5 Equilibrium State E5 : N̄1 = 0, N̄2 = k2 + a23k3

a22

, N̄3 = k3

In this case we get

A =





ρ− d1 0 0
0 −µ a23µ

a22

0 0 −a3



 (31)

where

ρ =
a12µ

a22
+ a13k3 > 0 (32)

The characteristic roots are ρ− d1,− µ,− a3.
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Case I: When ρ < d1

In this case all the three roots are negative, hence the state is stable. The equations
(5) yield the solutions.

u1 = u10e
−(d1+ρ)t; u2 = (u20 − σ) e−µt + σe−a3t; u3 = u30e

−a3t (33)

where
σ =

a23µu30

a22 (µ− a3)
(34)

It can be noticed that u1 → 0, u2 → 0 and u3 → 0 as t→ ∞

Case II: When ρ > d1

In this case one of the three roots is positive, hence the state is unstable. The equations
(5) yield the solutions.

u1 = u10e
(d1+ρ)t; u2 = (u20 − σ) e−µt + σe−a3t; u3 = u30e

−a3t (35)

Case III: When ρ = d1

In this case the state is neutrally stable and the equations (5) yield the solutions.

u1 = u10; u2 = (u20 − σ) e−µt + σe−a3t; u3 = u30e
−a3t (36)

4.5.1 Trajectories of perturbations

The trajectories in the u1 − u2 and u2 − u3 planes are given by

u2 = (u20 − σ)

(

u1

u10

)

µ

d1−ρ

+ σ

(

u1

u10

)

a3

d1−ρ

and u2 = (u20 − σ)

(

u3

u30

)

µ

a3

+
u3σ

u30
(37)

4.6 Equilibrium State E6 : N̄1 = a13k3

a11

− e1, N̄2 = N̄3 = k3

In this case we get

A =





d1 − a13k3
a12

a11

(a13k3 − d1 ) a13

a11

(a13k3 − d1 )

0 µ 0
0 0 −a3



 (38)

The characteristic roots are d1 − a13k3, µ, −a3 . Since one of these three roots is positive,
hence the state is unstable. The equations (5) yield the solutions.

u1 = (u10 − b− d) e(d1− a13k3)t + beµt + de−a3t; u2 = u20e
µt; u3 = u30e

−a3t (39)

where

b =
a12 (d1 − a13k3)u20

a11 (d1 − a13k3 − µ)
and d =

a13 (d1 − a13k3)u30

a11 (d1 − a13k3 + a3)
(40)

When d1 = a13k3, (39) becomes

u1 = u10; u2 = u20e
µt; u3 = u30e

−a3t (41)
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4.6.1 Trajectories of Perturbations

The trajectories in the u1 − u2 and u2 − u3 planes are

u1 = (u10 − b− d)

(

u2

u20

)

d1− a13k3

µ

+
u2b

u20
+ d

(

u2

u20

)

−a3

µ

(42)

and

u1 = (u10 − b− d)

(

u3

u30

)

a13k3−d1

a3

+ b

(

u3

u30

)
−µ
a3

+
u3d

u30
(43)

respectively.

4.7 Equilibrium State E7 : N̄1 = a12k2

a11

− d1, N̄2 = k2, N̄3 = 0

In this case we get

A =





d1 − a12k2
a12

a11

(a12k2 − d1)
a13

a11

(a12k2 − d1)

0 −a2 0
0 0 a3



 (44)

The characteristic roots are d1−a12k2, −a2, a3 . Since one of these three roots is positive,
hence the state is unstable. The equations (5) yield the solutions.

u1 = (u10 − m − n) e(d1−a12k2)t + me−a2t + nea3t; u2 = u20e
−a2t ; u3 = u30e

a3t (45)

where

m =
a12 (a12k2 − d1)u20

a11 (a2 + d1 − a12k2)
and n =

a13 (d1 − a12k2)u30

a11 (a3 − d1 + a12k2)
(46)

When d1 = a12k2 (45) becomes

u1 = u10; u2 = u20e
−a2t ; u3 = u30e

a3t (47)

4.7.1 Trajectories of Perturbations

The trajectories in the u1 − u2 and u2 − u3 planes are given by

u1 = (u10 −m− n)

(

u2

u20

)

a13k3−d1

a2

+
mu2

u20
+ n

(

u2

u20

)

−a3

a2

and

(

u2

u20

)a3

=

(

u3

u30

)

−a2

(48)

4.8 The Normal Steady State: E8

(

N̄1, N̄2, N̄3

)

In this case we get

A =





α1 a12γ a13γ

0 −µ a23µ

a22

0 0 −a3



 (49)
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where

α1 = d1 + a12k2 −
a12µ

a22
andγ =

1

a11

[

a12µ

a22
+ a13k3 − d1

]

(50)

The characteristic roots are α1, −µ, −a3 .

Case I: When α1 > 0, i.e, d1 + a12k2 >
a12µ

a22

In this case one of the three roots is positive, hence the state is unstable. The equations
(5) yield the solutions

u1 = [u10 − (η − ξ)] eα1t + ηe−µt−ξe−a3t; u2 = (u20 − ψ) e−µt+ψe−a3t; u3 = u30e
−a3

(51)
where

ψ =
a23µu30

a22 (µ− a3)
, η =

a12γ (u20 − ψ)

α1 + µ
, ξ =

γ (a12ψ + a13u30)

α1 + a3
(52)

Case II: When α1 > 0, i.e, d1 + a12k2 >
a12µ
a22

In this case all the three roots are negative, hence the state is stable. The equations
(5) yield the solutions

u1 = [u10 − (η − ξ)] e−α1t + ηe−µt−ξe−a3t; u2 = (u20 − ψ) e−µt+ψe−a3 t; u3 = u30e
−a3

(53)

It can be noticed that u1 → 0, u2 → 0 and u3 → 0 as t→ ∞

Case III: When α1 = 0, i.e, d1 + a12k2 = a12µ

a22

In this case the state is neutrally stable and the equations (5) yield the solutions.

u1 = u10 − (η − ξ) + ηe−µt − ξe−a3t; u2 = (u20 − ψ) e−µt +ψe−a3t; u3 = u30e
−a3

(54)

4.8.1 Trajectories of Perturbations

The trajectories in the u1 − u2 and u2 − u3 planes are given by

u1 = [u10 − (η − ξ)]

(

u3

u30

)

−α1

a3

+ η

(

u3

u30

)
µ

a3

− u3µ

u30
andu2 = (u20 − ψ)

(

u3

u30

)
µ

a3

+
u3ψ

u30

(55)

5 Liapunovs Function for Global Stability

In section 4 we discussed the local stability of all eight equilibrium states. From which only
two states E5

(

0, N̄2, N̄3

)

and E8

(

N̄1, N̄2, N̄3

)

are stable and rest of them are unstable. We
now examine the global stability of dynamical system (1), (2) and (3) at these two states
by suitable Liapunovs functions.

Theorem 1 The equilibrium state E5

(

0, N̄2, N̄3

)

is globally asymptotically stable.
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Proof Let us consider the following Liapunovs function

V (N2, N3) = N2 − N̄2 − N̄2 ln

(

N2

N̄2

)

+ l1

[

N3 − N̄3 − N̄3 ln

(

N3

N̄3

)]

(56)

where l1 is a suitable constant to be determined as in the subsequent steps. Now, the time
derivative of V , along with solutions of (2) and (3) can be written as

dV

dt
=

(

N2 − N̄2

N2

)

dN2

dt
+ l1

(

N3 − N̄3

N3

)

dN3

dt

=
(

N2 − N̄2

)

(a2 − a22N2 + a23N3) + l1
(

N3 − N̄3

)

(a3 − a33N3)

= −a22

(

N2 − N̄2

)2
+ a23

(

N2 − N̄2

) (

N3 − N̄3

)

+ l1

[

−a33

(

N3 − N̄3

)2
]

(57)

Hence

dV

dt
= −

[√
a22

(

N2 − N̄2

)

+
√

l1a33

(

N3 − N̄3

)

]2

−
(

2
√

l1a22a33 − a23

)

(

N2 − N̄2

) (

N3 − N̄3

)

(58)

The positive constant l1 as so chosen that, the coefficient of
(

N2 − N̄2

) (

N3 − N̄3

)

in (58)

vanish. Then we have l1 =
a2

23

4a22a33

> 0 and, with this choice of the constant l1

V (N2, N3) = N2 − N̄2 − N̄2 ln

(

N2

N̄2

)

+
a2
23

4a22a33

[

N3 − N̄3 − N̄3 ln

(

N3

N̄3

)]

(59)

dV

dt
= −

[√
a22

(

N2 − N̄2

)

− a23

2
√
a22

(

N3 − N̄3

)

]2

(60)

which is negative definite. Hence, the steady state is globally asymptotically stable. 2

Theorem 2 The equilibrium state E8

(

N̄1, N̄2, N̄3

)

is globally asymptotically stable.

Proof Let us consider the following Liapunovs function

V (N1, N2, N3) = N1 − N̄1 − N̄1 ln

(

N1

N̄1

)

+ l1

[

N2 − N̄2 − N̄2 ln

(

N2

N̄2

)]

+ l2

[

N3 − N̄3 − N̄3 ln

(

N3

N̄3

)]

(61)

where l1 and l2 are suitable constants to be determined as in the subsequent steps.
Now, the time derivative of V , along with solutions of (1), (2) and (3) can be written as

dV

dt
=

(

N1 − N̄1

N1

)

dN1

dt
+ l1

(

N2 − N̄2

N2

)

dN2

dt
+ l2

(

N3 − N̄3

N3

)

dN3

dt

=
(

N1 − N̄1

)

(−d1 − a11N1 + a12N2 + a13N3) + l1
(

N2 − N̄2

)

(a2 − a22N2 + a23N3)

+ l2
(

N3 − N̄3

)

(a3 − a33N3)

= −a11

(

N1 − N̄1

)2
+ a12

(

N1 − N̄1

) (

N2 − N̄2

)

+ a13

(

N1 − N̄1

) (

N3 − N̄3

)

+ l1

[

−a22

(

N2 − N̄2

)2
+ a23

(

N2 − N̄2

) (

N3 − N̄3

)

]

+ l2

[

−a33

(

N3 − N̄3

)2
]

(62)
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Hence

dV

dt
= −

[√
a11

(

N1 − N̄1

)

+
√

l1a22

(

N2 − N̄2

)

+
√

l2a33

(

N3 − N̄3

)

]2

+
(

2
√

l1a11a22 + a12

)

(

N1 − N̄1

) (

N2 − N̄2

)

+
(

2
√

l2a11a33 + a13

)

(

N1 − N̄1

) (

N3 − N̄3

)

+
(

2
√

l1l2a22a33 + l1a23

)

(

N2 − N̄2

) (

N3 − N̄3

)

(63)

The positive constants l1 and l2 as so chosen that, the coefficients of
(

N1 − N̄1

) (

N2 − N̄2

)

,
(

N1 − N̄1

) (

N3 − N̄3

)

and
(

N2 − N̄2

) (

N3 − N̄3

)

in (63) vanish. Then we have l1 =
a2

12

4a11a12

>

0 and l2 =
a2

13

4a11a33

> 0, with this choice of the constants l1 and l2.

dV

dt
= −√

a11

[

(

N1 − N̄1

)

+
a12

2a11

(

N2 − N̄2

)

+
a13

2a11

(

N3 − N̄3

)

]2

(64)

which is negative definite, when 2a13a22 = a12a23 . Hence, the normal steady state is
globally asymptotically stable. 2

6 Numerical Examples

Figure ?? shows the numerical example for the first species has the least initial value and the
interaction coefficients a13 and a23 are almost equal. Further, the first species is dominated
by the third which itself dominated by the second as shown in . This is a numerical example
for unstability case.

Figure 1: Variation of N1, N2, N3 against time (t) for d1 = 12.98, a2 = 7.82, a3 = 0.98, a11 =
11.86, a22 = 4.8, a33 = 0.04, a12 = 6.16, a13 = 3.1, a23 = 6.22, N10 = 3.5, N20 = 7, N30 = 4.5
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Figure ?? shows the numerical example for the initial values of S1, S2, S3 are in ascending
order. The self inhibition coefficient of the first species is least. Initially the third species
dominates over the second till the time instant t∗ = 0.83 and thereafter the dominance
is reversed. Further it is evident that all the three species asymptotically converge to the
equilibrium point as illustrated in Figure ??. This is an example for stability case.

Figure 2: Variation of N1, N2, N3 against time (t) for d1 = 18.88, a2 = 12.04, a3 = 0.8, a11 =
11.16, a22 = 7.72, a33 = 0.32, a12 = 6.64, a13 = 4.94, a23 = 4.28, N10 = 4, N20 = 5, N30 = 6

7 Conclusion

The present paper deals with an investigation on the stability of a three species syn eco-
system with mortality rate for commensal. The system comprises of a commensal (S1),
two hosts S2 and S3 ie., S2 and S3 both benefit S1, without getting themselves effected
either positively or adversely. It is observed that, in all eight equilibrium states, only two
states E5 and E8 are locally stable. Further the global stability is established with the
aid of suitably constructed Liapunovs function-pair and the growth rates of the species are
numerically estimated using Runge-Kutta fourth order scheme.
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