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1 Introduction

Let Z,, be the ring of integers modulo n, n > 1 and U, be the set of all units of the ring
Zy,. The unitary Cayley graph introduced by Dejter and Giudici [1] is an undirected graph,
whose vertex set is the set Z, and any two vertices a and b of Z, are adjacent if and
only if a — b € U,. The various structures and properties of unitary Cayley graphs have
been studied extensively by Dejter and Gudici[l], Koltz and Sender[2], Akhtar et al.[3] and
Boggers et al.[4].

The addition Cayley graph is defined by considering an abelian group I' and a subset B
of T'. The addition Cayley graph G’ = Cay™* (T, B) is the graph having vertex set V(G’) =T
and the edge set E(G') = {ab|a+b € B, a,b € T'}. Several properties of addition Cayley
graphs have been discussed by Grynkiewicz et al.[5] and Grynkiewicz et al.[6].

Sinha, Garg and Singh [7] defined the unitary addition Cayley graph by taking T = Z,
and B = U,,. Several graph theoretic properties of unitary addition Cayley graph have been
studied by them.

Our work is a generalisation of the set Z,, to Z,[i]. Every element in Z,[i] is of the form
a +ib, where a,b € Z,,. In Z,]i], a norm is defined as N(a + ib) = a® + b* and an element
¢+ id will be an unit if and only if ged(N(c + id),n) = 1 or simply we can say that ¢ + id
will be an unit element in Z,[7] if and only if N(c+id) is an unit element in Z,,. We denote
the Unitary addition Cayley graph of Gaussian integers modulo n by G,,[i] with vertex set
Z,|i] and edge set Uy,[i], where U,[i] is the set of all units in Z,[i]. Any two vertices a + b
and ¢ + id will be adjacent in G, [7] if and only if ged(N((a + ¢) +i(b+ d)),n) = 1. In this
paper we investigate some graph theoretic properties such as degree of a vertex, number of
edges, diameter, girth and planarity of the graph G,,[i]. We also obtain the condition for
which the graph G,,[i] is Eulerian and Hamiltonian.

Before going to our main results we give some definitions and preliminary results which
will be used in our main results.
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2 Preliminaries and definitions

A graph G is a pair G(V, E) ,where V is a non-empty finite set, and F is a set of unordered
pairs of elements of V. The elements of V' are called the vertices of GG, and the elements of
E are the edges of G. The set of vertices and edges of a graph G is denoted by V(G) and
E(G) respectively. |V(G)| and |E(G)| denote the cardinality of V(G) and E(G) respectively.
The degree of a vertex v, denoted by deg(v) in G is the number of edges incident at v. If
degree of each vertex is equal, say r in G, then G is called r-regular graph. A walk of
a graph is an alternating sequence of vertices and edges vy, e1,v1, €2, ..., €y, Uy, beginning
and ending with vertices, in which each edge is incident with the two vertices immediately
preceding and following it. A walk is called a trail if all the edges are distinct. If all the
vertices and necessarily all the edges of a walk are distinct then it is called a path. A closed
path(i.e., a path in which vg = v,,) is called a cycle. An Eulerian trail is a closed trail
containing all vertices and edges of a graph G. A graph G is called an Fulerian graph if it
contains an Fulerian trail. If a graph G has a spanning cycle, then G is called Hamiltonian
graph and the spanning cycle is called a Hamiltonian cycle. A bigraph or bipartite graph
G is a graph whose vertex set V' can be partitioned in to two subsets V; and V5 such that
every edge of V; joins with V5. If G contains every edge joining V3 and Vs |, then G is
called a complete bipartite graph. For distinct vertices x and y of a graph G, let d(z,y)
be the length of a shortest path from z to y, the diameter of G, denoted by diam(G) =
sup{d(x,y) : x,y are vertices of G}. The girth of a graph G, denoted by girth(G) is the
length of a shortest cycle in G (girth(G) = oo if G contains no cycles). A graph that can
be drawn in the plane so that edges intersect only at vertices is called planar.

Let T be a group and B be a subset of I" such that B does not contain the identity of
I'. Assume B~'={b"! | b € B} = B. The Cayley graph X' = Cay(T, B) is an undirected
graph having vertex set V(X’) =T and edge set E(X’) = {ab | ab~! € B}, where a,b € T.
The Cayley graph X' = Cay(T, B) is a regular graph of degree |B|.

Gaussian integers contains set of all complex numbers a+ib , where a and b are integers.
It is denoted by Z[i] and is a Fuclidian domain under usual complex operations, with norm
N(a+ib) = a®+b%. It is clear that a+ib is a unit in Z[i] if and only if N(a+1ib) = 1 ,which
implies that 1, —1,7 and —¢ are the only units. Let < n > be the principal ideal generated
by n in Z[i] where n is a natural number and let Z,[i] denote the ring of integers modulo
n. The result that the factor ring Z[i]/ < n > is isomorphic to Z,[i] = {a +ib | a,b € Z,}
is obtained by Dresden and Dymacek[8] and this result will be used in our paper whenever
necessary. Some examples of unitary addition Cayley graph of Gaussian integers modulo n
are displayed in Figure 1, Figure 2 and Figure 3.
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Figure 1: Gai] Figure 2: G3]i] Figure 3: G4]i]
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We are now going to investigate the degree of a vertex, number of edges, diameter and
girth of the graph G,[i]. But for this investigation we require the following theorem due to
R.Boyer[9]. We shall also prove the two lemmas giving the number of elements and number
of unit elements U, [i] in Z,[i]. First we state the theorem which will be used in proving
the second lemma.

Theorem 2.1 [9](Chinese Remainder Theorem) Let Ay, Ag, ...... , Ay, be ideals in R. Con-
sider the mapping

R— R/A1 X R/As X ... x RJA; byr — (r + A1, r+ Aoy oo, + Ag)
is a ring homomorphism with kernel A1 N Ay N ...N Ag. If for each i,j € {1,2,...,k} with
i # j the ideals A; and A; are comaximal, then the map is surjective and Ay NAaN...N A
A1 As.. Ay Hence, we have the natural isomorphism R/A1As... Ay, = R/JA1NAyN...NAg
R/A; x R/As X ... x R/Ay.

e 1l

Lemma 2.1 Total number of elements in Z,]i] is n® .

Proof As the elements of Z,[i] are written as a+ib where, a,b € Z,. So, the real part can
be filled up by "Ciways and the imaginary part can also be filled up by "C; ways. Hence
the total number of elements will be "C; x™ C; = n2. O

Remark 2.1 As we are taking vertex set of the graph G, [i] as Z,[i]. So, the number of

vertex of the graph G,,[i] is n%.

Lemma 2.2 Total number of unit elements |U,li]| in Z,[i] are given as the following:
() |Unli]| = 227~t, when n =2",r € N.

(ii) |Un[i]| = n* — 1, when n = 3(mod 4).

(iii) |Unli]] = (n —1)2, when n = 1(mod 4).

(iv) |Unli]| = n? —n, when n = k? and k is an odd prime.

(V) U] = |Uny [8)]-|Uns 4], for n = ning, where ny and ng are distinct primes.
Proof

(i) Let a+ib € Z,[i], where n = 2", r € N. Then the norm of a+ib i.e., N(a+ib) = a®+b?
is either an even number or an odd number. As there are n? elements in Gy[i], so
half of the elements in G, [i] will have the norm as an even number and the remaining
half of the numbers will have the norm as an odd number. As n is even therefore,
the elements which have the norm as odd number are the unit elements of G,[i].
So,|U,[i]| = 2% /2 = 227~ 1,

(ii) Let n be an odd prime and n = 3(mod 4), then by [10], Z,[i] forms a field. So, there
will be only one zero divisor namely 0 + 0i. Therefore, |U,[i]| = n? — 1.

(iii) Let n be an odd prime and n = 1(mod 4), then an element a + ib will be an unit
element if and only if a? + b? # 0(mod n), where a,b € Z,, If a is any number other
than 0 then we can take the values of a in "~!C; ways. Now for each a there exists
an element b for which a? + > = 0(mod n). If we discard the value of b for which
a?+b? = 0(mod n) then for each value of a we can take the value of b in "~1C} ways.
Therefore, total number of elements in will be (n — 1)2. Hence |U,[i]| = (n — 1)2.
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(iv) Let n = k2, where k is an odd prime, k = 3(mod 4) or k = 1(mod 4) then there are k
elements which are not relatively prime ton. Let a+ib € Z,[i], then a?+b? = 0(mod n)
which is possible only when both a and b are multiples of k. So, a can take values in
kC, ways, also b can take values in *C; ways. Therefore, the total number of ways
such that a? 4 b? = 0(mod n) is *Cy x* C; = k? = n. Hence total number of units in

Zy,[i] is n® — n, that is |U,[i]| = n® — n.

(v) If n = nyng, where n; and ny are distinct primes, then by Theorem 5 [8] and Chinese
Remainder Theorem|9] , Z,[i] & Z,,[i] X Zn,[i]. Suppose, |Up, []| =l and |Uy, [i]| = m.
Therefore, number of units in Z,,[i] X Z,,[i] is l.m. Thus, l.m = |U,,[i]|.|Un,[i]| =
Un[i]]- 0

Remark 2.2 If n = n{*.n5...n%, where ny,na, ...,,n, are all distinct primes and

1,09, ..., € N

then [Un[i]| = |Uny o [i]][Unyes [i] ... [ Un, o [i]].

Example 2.1 Consider Zs[i], Z3[i], Z4[i], Zsi], Zs[i] and Zy[i] then |Us[i]| = 2, |Us[i]| =
8, |Usli]| =8, |Usli]| = 16, |Ug[i]| = 16 and |Uy[i]| = 72.

3 Basic invariants of G,,[i]

In this section we establish the nature of the degree of each vertex of G,[i] in theorem
3.1. In theorem 3.2 we find a necessary and sufficient condition for which the graph G,,[i]
is complete bipartite. Diameter and girth of G, [i] are obtained in theorem 3.3 and 3.4
respectively.

Theorem 3.1 Let m = a + ib be any vertex in G,[i] then,

22r=1ifn =2"r eN.

22r=L(n; —1)2)if n=2"ny,r € Nand n; = 1(mod 4).
227=1(ny2 — 1),if n=2"ny,r € Nand n; = 3(mod 4).
deg(m) = ¢ (n—1)2, if n=1(mod 4) and gcd(N(m),n) # 1.

n? —1, if n = 3(mod 4) and gcd(N(m),n) # 1.

n? —2n, if n=1(mod 4) and ged(N(m),n) = 1.

n? —2, if n = 3(mod 4) and gcd(N(m),n) = 1.

Proof Suppose n is even, and let a + ib be a vertex of the graph G,,[i]. Now 0+ 0¢ will be
adjacent to a + @b if and only if ged(N((0+ a) +i(0+b))) = 1 that isif a + b € U,[i] . It
follows that deg(0 + i0) = |U,[i]|. Suppose, ¢+ id € U,[i] since n is even then N(c+ id) is
not even. The vertex a + ib will be adjacent to all the vertices of the form (¢ —a)+i(d—b).
But 2(a + ib) ¢ U,li],that means 2(a + ib) # (¢ + id) (mod n), and which implies that
a+1ib# (c—a)+i(d—b) (mod n). Hence deg(m) = |U,[i]|.

2
(i) When n = 2",r € N, then deg(m) = 7 = 22r=1,
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(ii) When n =2"ny,r € N and ny = 1(mod 4), then
227 (ng — 1)2 S 9
deg(m) = ——— =24""1(ny — 1)°.
(iii) When n =2"ny,r € N and ny = 3(mod 4), then
227 (n? — 1) o1/ o
deg(m) = ————=2"""(n - 1).

Suppose, n is odd and ged(N(a + ib),n)) # 1. Then a + ib ¢ U,[i], which implies
2(a 4+ ib) ¢ Uy,[i]. Thus, a +ib % (c — a) +i(d — b) (mod n). Therefore, deg(m) = |U,[i]|.
Case(i) When n = 1(mod 4) then deg(m) = (n — 1)%.

Case(ii) When n = 3(mod 4) then deg(m) = (n? — 1).

Next we consider n is odd and gcd(N(a+1ib),n)) = 1. Then a+ib € U,[i], which implies
2(a +ib) € Uy[i]. Which implies a 4 ib = (¢ — a) + i(d — b)(mod n). But the vertex cannot
be adjacent to itself. Hence deg(m) = |Uy,[i]| — 1.

Case(i) When n = 1(mod 4) then deg(m) = (n —1)2 — 1 =n? — 2n.
Case(ii) When n = 3(mod 4) then deg(m) = (n? —1) — 1 =n? — 2. O

Corollary 3.1 Number of edges ¢ in G,,[i],

22@r=1 if n=2"reN.

22@r=Un,2(ny —1)2if n=2"ny1,r € N and ny = 1(mod 4).
22U 2(n2 = 1),if n=2"n1,r € N and ny = 3(mod 4).

R QRN UES VPP

(2~ 1

5 Jif n=3(mod 4).

Proof First we consider that n is even. We know that the sum of the degrees of the

2
n

vertices of a graph is twice the number of lines. So, 2¢ = »_ deg(x;)

j=1
= 2 = 12U, il
Ly PPl

2

Case(i) When n = 2", r € N, then ¢ =
=q= 22(27"71).

227)(3)
2

2r ny— 2
(22rn§){(2 )(21 1) }
2

Case(ii) When n = 2"n;,r € N and n; = 1(mod 4), then ¢ =
= q= 22(27"_1)7112(711 — 1)2

(22) (n) { B2

Case(iii) When n = 2"ny,r € N and ny = 3(mod 4), then g = 5

= q= 22(2T71)77/12(7L12 — ].)
Next we consider that n is odd.
Therefore, 2q = (n? — |UL[IDIURLE)] + U] (|URE]] — 1)




48 J. Roy and K. Patra

(v = DIV
2

Case(i) When n = 1(mod 4), then ¢ =

= q=
(n% —1)(n — 1)

2
2 1)(n—1)°
Lo 1)
2 _ 2 _
Case(ii) When n = 3(mod 4) , then ¢ = W
2_12
:qzu. (]

2

Lemma 3.1 Ifn is an even number then we can partition the vertexr set V(G,[i]) in to two
subsets V1 (Gpli]) which contains the vertices with even norm and Va(Gy[i]) which contains
the vertices with odd norm, also |V1(Gy,li])| = [Va(Gy[i])| = n?/2.

Proof A vertex a+ b in G, [i] will have even norm if both the values a and b are even or
odd. Since n is even so, there will be n/2 even numbers and n/2 odd numbers. Suppose,
both a and b are even then total number of these type of vertices will be "/2C; x"™/2 C} =
n?/4. Similarly, if both @ and b are odd then the total number of these type of vertices
n/2Cy x"/2Cy = n?/4. Hence, total number of vertices with even norm n?/4+4n?/4 = n?/2.
Also the total number of vertices with odd norm will be n? — n?/2 = n?/2. Therefore,

Theorem 3.2 G, [i] is a complete bipartite graph if and only if n =27, r € N.

Proof Suppose, n =2",r € N. Then by Lemma 3.1 we can partition the vertex set into
two sets V7 = containing all the vertices of even norm, V5 = containing all the vertices with
odd norm. Then by Theorem 3.1, G, [i] is a complete bipartite graph.
Conversely, we suppose that G,[i] is a complete bipartite graph. We have to show that
n is even of the form 2", € N. By Lemma 3.1 it is clear that the vertex set can be
partitioned into two sets if n is an even number. Suppose n = 2"n;, where n; = 3(mod4)
then degree of each vertex will be 22"~!(n;2 — 1) which is certainly less than n?/2. We can
draw same conclusion when n = 2"ny, where ny = 1(mod4). Hence in both cases G,,[i] will
be a bipartite graph but not complete bipartite graph. Therefore, n is of the form 27, r € N.
|

Example 3.1 Let n = 4 then by Lemma 3.1 V;(G4[i]) = {0+40,0 + 42,1 4+ 4,1 4+ 13,2 +
10,2+142,3 44,3+ i3} and Va(Gy[i]) = {0+¢,0+i3,1440,1+42,2+1¢,2+13,3 4140, 3 + 42}
and by Theorem 3.1 degree of each vertex will be 8. Graphical representation of G4[i] is
shown in Figure 4.

Corollary 3.2 G,[i] is a bipartite graph if and only if n = 2"ny, r € N and ny = 1(mod 4)
or ny = 3(mod 4).

Proof follows from the theorem 3.2.
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Figure 4: Gy4i

{0+40,0+ 2,0 + 44,1 +,1 +

i3,1+145,24140,242,2+i4,3+1,3+13,3+15,4+1i0,4+1i2, 4 +i4,5+14,5+143,5+i5} and

Va(Geli])

Example 3.2 Let n = 6 then by Lemma 3.1 V;(Gg[i])

{0+4,0+i3,0 45,1 +140,1 + 42,1 +i4,2 +14,2 + 3,2 + i5,3 + 40,3 + 12,3 +

i4,4+1i,4+143,44i5,5+140,5+ 12,5+ i4} containing 18 vertices in each set. By Theorem

3.1 degree of each vertex will be 16. Graphical representation of Ggli] is shown in Figure 5.

Figure 5: Gg]i]
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2, if nis even or odd.
Theorem 3.3 Forn > 2, diam(G,li])=1< 8, if n=miny if n1 is even

and ny is an odd prime.

Proof Suppose n is even then by Theorem 3.2, G,[i] is a complete bipartite graph and
hence diam(Gy[i]) = 2.

Suppose n is odd and consider the vertices (n —1)+in and 1+4in , they are not adjacent
but 0440 is adjacent to both of them. Thus there will be a path (n—1)+in—0+i0—1+in.
Hence, diam(Gy[i]) < 2. Theorem 3.1 suggests that G, [i] will never be a complete graph.
So, diam(G,[i]) = 2. So, diam(G[i])=2.

Suppose n = minoe , where n; is an even number and ns is any odd prime. Let us
consider the vertices 0+ 0 and ny + in then they will never have a common vertex adjacent
to them. So, diam(G[i]) > 2. Next we consider the vertices 0+140, (n—1)+in, 1+i(n—1)
and ng + in, then there will be a path 04490 — (n — 1) +in — 1 +i(n — 1) — ng + in.
Therefore, diam(Gyi]) < 3. Hence, diam(G,[i])=3. O

3, if nis odd.

Theorem 3.4 For n > 2, girth(G,[i])= { Jif i
, if nis even.

Proof Suppose, n is even then by Corollary 3.1.1, G,[i] is a bipartite graph and hence
girth(Gpli]) = 4. Now let us consider the vertices a = 0+140, b = 1+in, c=2+in and d =
3+in. We can easily see that gcd(N(a+b),n) = 1, ged(N (b+c),n) =1, gcd(N(c+d),n) =1
and ged(N(d + a),n) = 1. But ged(N(a+c),n) # 1, ged(N(b+ d),n) # 1. Thus, we get a
closed path 0440 — 1+in — 2+in — 34+1in — 0440 of length 4. Hence girth(G,[i]) = 4.

Next we consider that n is odd. Let us take the vertices ' = 0+ 10, b’ = 1 + 0
and ¢ = 0+ i. We observe that ged(N(a' + V'),n) = 1, ged(N(' + ),n) = 1 and
ged(N(c' +a'),n) = 1. Thus, we get a closed path 0440 — 14140 — 0+ — 0+ 0 of length
3. Hence, girth(G,li]) = 3. O

4 Traversability and planarity of G,,]i]

Theorem 4.1 The unitary addition Cayley graph of Gaussian integers modulo n, G,[i] is
Hamiltonian.

Proof Suppose, n is even. We can construct a cycle C =0+i0—-14+in—2+in — ... —
n—1)4+in—1+in—-1)—-2+in—-1)-3+i(n—-1)—...—(n—-1+i(n—-1)—...—n+
iln—1)—n+in—2)—...—n+1i3—n+1i2—n+1i— 0+ 0 Since the cycle contains all
the vertices of G,,[i] exactly once. Thus, C is one of the Hamiltonian cycles of G,,[i]. Hence
G [i] is a Hamiltonian graph.

Next we consider that n is odd. We can construct a cycle ¢/ = 1+1i0 -3 +4i0—5 +
0—-7+i0—..(n—4)4+i0—-(n—2)+i0—-0+i0—-2+in—4+in—6+in—8+in— (n—
5)+in—(n—3)+in—(n—1)+in—14+in—-1)—24+in—-1)—(n—-1)+i(n—-1) -1+
iln—2)—2+i(n—2)—3+i(n—2)—(n—2)4+i—(n—1)+i—1+40. In this case also C"
contains all the vertices of G, [i] exactly once. Thus, C” is one of the Hamiltonian cycles of
G, li]. Hence G [i] is a Hamiltonian graph. O
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Remark 4.1 As we get a Hamiltonian cycle when n is even as well as when n is odd. We
can say that in both cases the graph G, [i] is a connected graph.

Theorem 4.2 If n is an even number then unitary addition Cayley graph of Gaussian
integers modulo n, Gy,i] is Fulerian.

Proof Suppose n = 2",r € N, then by the Theorem 3.1, the degree of each vertex will
be |U,[i]] = 22?71, Again when n = 2"n;,r € N and ny; = 1(mod 4) or n; = 3(mod 4),
then the degree of each vertex will be 22"~V (n;)2? (n; — 1) or 227D (n;)?(ny? — 1),
which are even numbers. Again a graph G is Eulerian if and only if G is connected and all
its vertices have even degrees. By the remark above, the graph G, [i] is connected and, the
degree of all the vertices of the graph G,,[i] is even. Therefore, the graph G, [i] is Eulerian.

(I

Theorem 4.3 G,[i] is planer if and only if n =1,2.

Proof When n = 2 then G,[i] is a cycle of length 4. Hence G, [i] is planar for n = 1,2.
Again we know that a simple planar connected graph has a vertex of degree less than six.
But when n = 3 then the degree of unit elements of G3[i] is seven and the degree of zero
divisor is eight. Therefore, G, [i] is nonplaner for n > 3. O
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