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1 Introduction

Let Zn be the ring of integers modulo n, n > 1 and Un be the set of all units of the ring
Zn. The unitary Cayley graph introduced by Dejter and Giudici [1] is an undirected graph,
whose vertex set is the set Zn and any two vertices a and b of Zn are adjacent if and
only if a − b ∈ Un. The various structures and properties of unitary Cayley graphs have
been studied extensively by Dejter and Gudici[1], Koltz and Sender[2], Akhtar et al.[3] and
Boggers et al.[4].

The addition Cayley graph is defined by considering an abelian group Γ and a subset B
of Γ. The addition Cayley graph G′ = Cay+(Γ, B) is the graph having vertex set V (G′) = Γ
and the edge set E(G′) = {ab | a + b ∈ B, a, b ∈ Γ}. Several properties of addition Cayley
graphs have been discussed by Grynkiewicz et al.[5] and Grynkiewicz et al.[6].

Sinha, Garg and Singh [7] defined the unitary addition Cayley graph by taking Γ = Zn

and B = Un. Several graph theoretic properties of unitary addition Cayley graph have been
studied by them.

Our work is a generalisation of the set Zn to Zn[i]. Every element in Zn[i] is of the form
a + ib, where a, b ∈ Zn. In Zn[i], a norm is defined as N(a + ib) = a2 + b2 and an element
c + id will be an unit if and only if gcd(N(c + id), n) = 1 or simply we can say that c + id
will be an unit element in Zn[i] if and only if N(c+ id) is an unit element in Zn. We denote
the Unitary addition Cayley graph of Gaussian integers modulo n by Gn[i] with vertex set
Zn[i] and edge set Un[i], where Un[i] is the set of all units in Zn[i]. Any two vertices a + ib
and c + id will be adjacent in Gn[i] if and only if gcd(N((a + c) + i(b + d)), n) = 1. In this
paper we investigate some graph theoretic properties such as degree of a vertex, number of
edges, diameter, girth and planarity of the graph Gn[i]. We also obtain the condition for
which the graph Gn[i] is Eulerian and Hamiltonian.

Before going to our main results we give some definitions and preliminary results which
will be used in our main results.
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2 Preliminaries and definitions

A graph G is a pair G(V,E) ,where V is a non-empty finite set, and E is a set of unordered
pairs of elements of V . The elements of V are called the vertices of G, and the elements of
E are the edges of G. The set of vertices and edges of a graph G is denoted by V (G) and
E(G) respectively. |V (G)| and |E(G)| denote the cardinality of V (G) and E(G) respectively.
The degree of a vertex v, denoted by deg(v) in G is the number of edges incident at v. If
degree of each vertex is equal, say r in G, then G is called r-regular graph. A walk of
a graph is an alternating sequence of vertices and edges v0, e1, v1, e2, ..., en, vn beginning
and ending with vertices, in which each edge is incident with the two vertices immediately
preceding and following it. A walk is called a trail if all the edges are distinct. If all the
vertices and necessarily all the edges of a walk are distinct then it is called a path. A closed
path(i.e., a path in which v0 = vn) is called a cycle. An Eulerian trail is a closed trail
containing all vertices and edges of a graph G. A graph G is called an Eulerian graph if it
contains an Eulerian trail. If a graph G has a spanning cycle, then G is called Hamiltonian
graph and the spanning cycle is called a Hamiltonian cycle. A bigraph or bipartite graph
G is a graph whose vertex set V can be partitioned in to two subsets V1 and V2 such that
every edge of V1 joins with V2. If G contains every edge joining V1 and V2 , then G is
called a complete bipartite graph. For distinct vertices x and y of a graph G, let d(x, y)
be the length of a shortest path from x to y, the diameter of G, denoted by diam(G) =
sup{d(x, y) : x, y are vertices of G}. The girth of a graph G, denoted by girth(G) is the
length of a shortest cycle in G (girth(G) = ∞ if G contains no cycles). A graph that can
be drawn in the plane so that edges intersect only at vertices is called planar.

Let Γ be a group and B be a subset of Γ such that B does not contain the identity of
Γ. Assume B−1={b−1 | b ∈ B} = B. The Cayley graph X ′ = Cay(Γ, B) is an undirected
graph having vertex set V (X ′) = Γ and edge set E(X ′) = {ab | ab−1 ∈ B}, where a, b ∈ Γ.
The Cayley graph X ′ = Cay(Γ, B) is a regular graph of degree |B|.

Gaussian integers contains set of all complex numbers a+ib , where a and b are integers.
It is denoted by Z[i] and is a Euclidian domain under usual complex operations, with norm
N(a+ ib) = a2 +b2. It is clear that a+ ib is a unit in Z[i] if and only if N(a+ ib) = 1 ,which
implies that 1,−1, i and −i are the only units. Let < n > be the principal ideal generated
by n in Z[i] where n is a natural number and let Zn[i] denote the ring of integers modulo
n. The result that the factor ring Z[i]/ < n > is isomorphic to Zn[i] = {a + ib | a, b ∈ Zn}
is obtained by Dresden and Dymacek[8] and this result will be used in our paper whenever
necessary. Some examples of unitary addition Cayley graph of Gaussian integers modulo n
are displayed in Figure 1, Figure 2 and Figure 3.

Figure 1: G2[i] Figure 2: G3[i] Figure 3: G4[i]
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We are now going to investigate the degree of a vertex, number of edges, diameter and
girth of the graph Gn[i]. But for this investigation we require the following theorem due to
R.Boyer[9]. We shall also prove the two lemmas giving the number of elements and number
of unit elements Un[i] in Zn[i]. First we state the theorem which will be used in proving
the second lemma.

Theorem 2.1 [9](Chinese Remainder Theorem) Let A1, A2, ......, Ak be ideals in R. Con-
sider the mapping

R −→ R/A1 ×R/A2 × ...×R/Ak by r −→ (r + A1, r + A2, ...., r + Ak)
is a ring homomorphism with kernel A1 ∩ A2 ∩ ... ∩ Ak. If for each i, j ∈ {1, 2, ..., k} with
i 6= j the ideals Ai and Aj are comaximal, then the map is surjective and A1∩A2∩ ...∩Ak =
A1A2...Ak. Hence, we have the natural isomorphism R/A1A2...Ak = R/A1∩A2∩ ...∩Ak

∼=
R/A1 ×R/A2 × ...×R/Ak.

Lemma 2.1 Total number of elements in Zn[i] is n2 .

Proof As the elements of Zn[i] are written as a+ib where, a, b ∈ Zn. So, the real part can
be filled up by nC1ways and the imaginary part can also be filled up by nC1 ways. Hence
the total number of elements will be nC1 ×n C1 = n2. �

Remark 2.1 As we are taking vertex set of the graph Gn[i] as Zn[i]. So, the number of
vertex of the graph Gn[i] is n2.

Lemma 2.2 Total number of unit elements |Un[i]| in Zn[i] are given as the following:
(i) |Un[i]| = 22r−1, when n = 2r, r ∈ N.
(ii) |Un[i]| = n2 − 1, when n ≡ 3(mod 4).
(iii) |Un[i]| = (n− 1)2, when n ≡ 1(mod 4).
(iv) |Un[i]| = n2 − n, when n = k2 and k is an odd prime.
(v) |Un[i]| = |Un1 [i]|.|Un2 [i]|, for n = n1n2, where n1 and n2 are distinct primes.

Proof
(i) Let a+ib ∈ Zn[i], where n = 2r, r ∈ N. Then the norm of a+ib i.e., N(a+ib) = a2+b2

is either an even number or an odd number. As there are n2 elements in Gn[i], so
half of the elements in Gn[i] will have the norm as an even number and the remaining
half of the numbers will have the norm as an odd number. As n is even therefore,
the elements which have the norm as odd number are the unit elements of Gn[i].
So,|Un[i]| = 22r/2 = 22r−1.

(ii) Let n be an odd prime and n ≡ 3(mod 4), then by [10], Zn[i] forms a field. So, there
will be only one zero divisor namely 0 + 0i. Therefore, |Un[i]| = n2 − 1.

(iii) Let n be an odd prime and n ≡ 1(mod 4), then an element a + ib will be an unit
element if and only if a2 + b2 6≡ 0(mod n), where a, b ∈ Zn If a is any number other
than 0 then we can take the values of a in n−1C1 ways. Now for each a there exists
an element b for which a2 + b2 ≡ 0(mod n). If we discard the value of b for which
a2 + b2 ≡ 0(mod n) then for each value of a we can take the value of b in n−1C1 ways.
Therefore, total number of elements in will be (n− 1)2. Hence |Un[i]| = (n− 1)2.
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(iv) Let n = k2,where k is an odd prime, k ≡ 3(mod 4) or k ≡ 1(mod 4) then there are k
elements which are not relatively prime to n. Let a+ib ∈ Zn[i], then a2+b2 ≡ 0(mod n)
which is possible only when both a and b are multiples of k. So, a can take values in
kC1 ways, also b can take values in kC1 ways. Therefore, the total number of ways
such that a2 + b2 ≡ 0(mod n) is kC1 ×k C1 = k2 = n. Hence total number of units in
Zn[i] is n2 − n, that is |Un[i]| = n2 − n.

(v) If n = n1n2, where n1 and n2 are distinct primes, then by Theorem 5 [8] and Chinese
Remainder Theorem[9] , Zn[i] ∼= Zn1 [i]×Zn2 [i]. Suppose, |Un1 [i]| = l and |Un2 [i]| = m.
Therefore, number of units in Zn1 [i] × Zn2 [i] is l.m. Thus, l.m = |Un1 [i]|.|Un2 [i]| =
|Un[i]|. �

Remark 2.2 If n = nα1
1 .nα2

2 ....nαr
r , where n1, n2, ..., , nr are all distinct primes and

α1, α2, ..., αr ∈ N,

then |Un[i]| = |Un1
α1 [i]|.|Un2

α2 [i]|...|Unr
αr [i]|.

Example 2.1 Consider Z2[i], Z3[i], Z4[i], Z5[i], Z6[i] and Z9[i] then |U2[i]| = 2, |U3[i]| =
8, |U4[i]| = 8, |U5[i]| = 16, |U6[i]| = 16 and |U9[i]| = 72.

3 Basic invariants of Gn[i]

In this section we establish the nature of the degree of each vertex of Gn[i] in theorem
3.1. In theorem 3.2 we find a necessary and sufficient condition for which the graph Gn[i]
is complete bipartite. Diameter and girth of Gn[i] are obtained in theorem 3.3 and 3.4
respectively.

Theorem 3.1 Let m = a + ib be any vertex in Gn[i] then,

deg(m) =



22r−1, ifn = 2r, r ∈ N.

22r−1(n1 − 1)2, if n = 2rn1, r ∈ N and n1 ≡ 1(mod 4).
22r−1(n1

2 − 1), if n = 2rn1, r ∈ N and n1 ≡ 3(mod 4).
(n− 1)2, if n ≡ 1(mod 4) and gcd(N(m), n) 6= 1.

n2 − 1, if n ≡ 3(mod 4) and gcd(N(m), n) 6= 1.

n2 − 2n, if n ≡ 1(mod 4) and gcd(N(m), n) = 1.

n2 − 2, if n ≡ 3(mod 4) and gcd(N(m), n) = 1.

Proof Suppose n is even, and let a+ ib be a vertex of the graph Gn[i]. Now 0+0i will be
adjacent to a + ib if and only if gcd(N((0 + a) + i(0 + b))) = 1 that is if a + ib ∈ Un[i] . It
follows that deg(0 + i0) = |Un[i]|. Suppose, c + id ∈ Un[i] since n is even then N(c + id) is
not even. The vertex a+ ib will be adjacent to all the vertices of the form (c−a)+ i(d− b).
But 2(a + ib) /∈ Un[i],that means 2(a + ib) 6≡ (c + id) (mod n), and which implies that
a + ib 6≡ (c− a) + i(d− b) (mod n). Hence deg(m) = |Un[i]|.

(i) When n = 2r, r ∈ N, then deg(m) =
2r

2
= 22r−1.
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(ii) When n = 2rn1, r ∈ N and n1 ≡ 1(mod 4), then

deg(m) =
22r(n1 − 1)2

2
= 22r−1(n1 − 1)2.

(iii) When n = 2rn1, r ∈ N and n1 ≡ 3(mod 4), then

deg(m) =
22r(n2

1 − 1)
2

= 22r−1(n2
1 − 1).

Suppose, n is odd and gcd(N(a + ib), n)) 6= 1. Then a + ib /∈ Un[i], which implies
2(a + ib) /∈ Un[i]. Thus, a + ib 6≡ (c− a) + i(d− b) (mod n). Therefore, deg(m) = |Un[i]|.

Case(i) When n ≡ 1(mod 4) then deg(m) = (n− 1)2.

Case(ii) When n ≡ 3(mod 4) then deg(m) = (n2 − 1).

Next we consider n is odd and gcd(N(a+ ib), n)) = 1. Then a+ ib ∈ Un[i], which implies
2(a + ib) ∈ Un[i]. Which implies a + ib ≡ (c− a) + i(d− b)(mod n). But the vertex cannot
be adjacent to itself. Hence deg(m) = |Un[i]| − 1.

Case(i) When n ≡ 1(mod 4) then deg(m) = (n− 1)2 − 1 = n2 − 2n.

Case(ii) When n ≡ 3(mod 4) then deg(m) = (n2 − 1)− 1 = n2 − 2. �

Corollary 3.1 Number of edges q in Gn[i],

q=



22(2r−1), if n = 2r, r ∈ N.

22(2r−1)n1
2(n1 − 1)2, if n = 2rn1, r ∈ N and n1 ≡ 1(mod 4).

22(2r−1)n1
2(n1

2 − 1), if n = 2rn1, r ∈ N and n1 ≡ 3(mod 4).
(n2 − 1)(n− 1)2

2
, if n ≡ 1(mod 4).

(n2 − 1)2

2
, if n ≡ 3(mod 4).

Proof First we consider that n is even. We know that the sum of the degrees of the

vertices of a graph is twice the number of lines. So, 2q =
n2∑

j=1

deg(xj)

⇒ 2q = n2|Un[i]|

⇒ q =
n2|Un[i]|

2
.

Case(i) When n = 2r, r ∈ N, then q =
(22r)( 22r

2 )
2

⇒ q = 22(2r−1).

Case(ii) When n = 2rn1, r ∈ N and n1 ≡ 1(mod 4), then q =
(22rn2

1){
(22r)(n1−1)2

2 }
2

⇒ q = 22(2r−1)n1
2(n1 − 1)2.

Case(iii) When n = 2rn1, r ∈ N and n1 ≡ 3(mod 4), then q =
(22r)(n2

1){
(22r)(n2

1−1)
2 }

2
⇒ q = 22(2r−1)n1

2(n1
2 − 1).

Next we consider that n is odd.
Therefore, 2q = (n2 − |Un[i]|)|Un[i]|+ |Un[i]|(|Un[i]| − 1)
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⇒ q =
(n2 − 1)|Un[i]|

2
.

Case(i) When n ≡ 1(mod 4), then q =
(n2 − 1)(n− 1)2

2

⇒ q =
(n2 − 1)(n− 1)2

2
.

Case(ii) When n ≡ 3(mod 4) , then q =
(n2 − 1)(n2 − 1)

2

⇒ q =
(n2 − 1)2

2
. �

Lemma 3.1 If n is an even number then we can partition the vertex set V (Gn[i]) in to two
subsets V1(Gn[i]) which contains the vertices with even norm and V2(Gn[i]) which contains
the vertices with odd norm, also |V1(Gn[i])| = |V2(Gn[i])| = n2/2.

Proof A vertex a + ib in Gn[i] will have even norm if both the values a and b are even or
odd. Since n is even so, there will be n/2 even numbers and n/2 odd numbers. Suppose,
both a and b are even then total number of these type of vertices will be n/2C1 ×n/2 C1 =
n2/4. Similarly, if both a and b are odd then the total number of these type of vertices
n/2C1×n/2 C1 = n2/4. Hence, total number of vertices with even norm n2/4+n2/4 = n2/2.
Also the total number of vertices with odd norm will be n2 − n2/2 = n2/2. Therefore,
|V1(Gn[i])| = |V2(Gn[i])| = n2/2. �

Theorem 3.2 Gn[i] is a complete bipartite graph if and only if n = 2r, r ∈ N.

Proof Suppose, n = 2r, r ∈ N. Then by Lemma 3.1 we can partition the vertex set into
two sets V1 = containing all the vertices of even norm, V2 = containing all the vertices with
odd norm. Then by Theorem 3.1, Gn[i] is a complete bipartite graph.

Conversely, we suppose that Gn[i] is a complete bipartite graph. We have to show that
n is even of the form 2r, r ∈ N. By Lemma 3.1 it is clear that the vertex set can be
partitioned into two sets if n is an even number. Suppose n = 2rn1, where n1 ≡ 3(mod4)
then degree of each vertex will be 22r−1(n1

2 − 1) which is certainly less than n2/2. We can
draw same conclusion when n = 2rn1, where n1 ≡ 1(mod4). Hence in both cases Gn[i] will
be a bipartite graph but not complete bipartite graph. Therefore, n is of the form 2r, r ∈ N.

�

Example 3.1 Let n = 4 then by Lemma 3.1 V1(G4[i]) = {0 + i0, 0 + i2, 1 + i, 1 + i3, 2 +
i0, 2+ i2, 3+ i, 3+ i3} and V2(G4[i]) = {0+ i, 0+ i3, 1+ i0, 1+ i2, 2+ i, 2+ i3, 3+ i0, 3+ i2}
and by Theorem 3.1 degree of each vertex will be 8. Graphical representation of G4[i] is
shown in Figure 4.

Corollary 3.2 Gn[i] is a bipartite graph if and only if n = 2rn1, r ∈ N and n1 ≡ 1(mod 4)
or n1 ≡ 3(mod 4).

Proof follows from the theorem 3.2.
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Figure 4: G4[i]

Example 3.2 Let n = 6 then by Lemma 3.1 V1(G6[i]) = {0 + i0, 0 + i2, 0 + i4, 1 + i, 1 +
i3, 1+ i5, 2+ i0, 2+ i2, 2+ i4, 3+ i, 3+ i3, 3+ i5, 4+ i0, 4+ i2, 4+ i4, 5+ i, 5+ i3, 5+ i5} and
V2(G6[i]) = {0 + i, 0 + i3, 0 + i5, 1 + i0, 1 + i2, 1 + i4, 2 + i, 2 + i3, 2 + i5, 3 + i0, 3 + i2, 3 +
i4, 4 + i, 4 + i3, 4 + i5, 5 + i0, 5 + i2, 5 + i4} containing 18 vertices in each set. By Theorem
3.1 degree of each vertex will be 16. Graphical representation of G6[i] is shown in Figure 5.

Figure 5: G6[i]



50 J. Roy and K. Patra

Theorem 3.3 For n > 2, diam(Gn[i])=


2, if n is even or odd.

3, if n = n1n2 if n1 is even

and n2 is an odd prime.

Proof Suppose n is even then by Theorem 3.2, Gn[i] is a complete bipartite graph and
hence diam(Gn[i]) .= 2.

Suppose n is odd and consider the vertices (n−1)+ in and 1+ in , they are not adjacent
but 0+i0 is adjacent to both of them. Thus there will be a path (n−1)+in−0+i0−1+in.
Hence, diam(Gn[i]) 6 2. Theorem 3.1 suggests that Gn[i] will never be a complete graph.
So, diam(Gn[i]) > 2. So, diam(Gn[i])=2.

Suppose n = n1n2 , where n1 is an even number and n2 is any odd prime. Let us
consider the vertices 0+ i0 and n2 + in then they will never have a common vertex adjacent
to them. So, diam(Gn[i]) > 2. Next we consider the vertices 0+ i0, (n−1)+ in, 1+ i(n−1)
and n2 + in, then there will be a path 0 + i0 − (n − 1) + in − 1 + i(n − 1) − n2 + in.
Therefore, diam(Gn[i]) 6 3. Hence, diam(Gn[i])=3. �

Theorem 3.4 For n > 2, girth(Gn[i])=

{
3, if n is odd.

4, if n is even.

Proof Suppose, n is even then by Corollary 3.1.1, Gn[i] is a bipartite graph and hence
girth(Gn[i]) > 4. Now let us consider the vertices a = 0+ i0, b = 1+ in, c = 2+ in and d =
3+in. We can easily see that gcd(N(a+b), n) = 1, gcd(N(b+c), n) = 1, gcd(N(c+d), n) = 1
and gcd(N(d + a), n) = 1. But gcd(N(a + c), n) 6= 1, gcd(N(b + d), n) 6= 1. Thus, we get a
closed path 0 + i0 − 1 + in − 2 + in − 3 + in − 0 + i0 of length 4. Hence girth(Gn[i]) = 4.

Next we consider that n is odd. Let us take the vertices a′ = 0 + i0, b′ = 1 + i0
and c′ = 0 + i. We observe that gcd(N(a′ + b′), n) = 1, gcd(N(b′ + c′), n) = 1 and
gcd(N(c′ + a′), n) = 1. Thus, we get a closed path 0+ i0 − 1+ i0 − 0+ i − 0+ i0 of length
3. Hence, girth(Gn[i]) = 3. �

4 Traversability and planarity of Gn[i]

Theorem 4.1 The unitary addition Cayley graph of Gaussian integers modulo n, Gn[i] is
Hamiltonian.

Proof Suppose, n is even. We can construct a cycle C = 0 + i0− 1 + in− 2 + in− ...−
(n− 1) + in− 1 + i(n− 1)− 2 + i(n− 1)− 3 + i(n− 1)− ...− (n− 1) + i(n− 1)− ...− n +
i(n − 1) − n + i(n − 2) − ... − n + i3 − n + i2 − n + i − 0 + i0 Since the cycle contains all
the vertices of Gn[i] exactly once. Thus, C is one of the Hamiltonian cycles of Gn[i]. Hence
Gn[i] is a Hamiltonian graph.

Next we consider that n is odd. We can construct a cycle C ′ = 1 + i0 − 3 + i0 − 5 +
i0− 7 + i0− ...(n− 4) + i0− (n− 2) + i0− 0 + i0− 2 + in− 4 + in− 6 + in− 8 + in− (n−
5) + in− (n− 3) + in− (n− 1) + in− 1 + i(n− 1)− 2 + i(n− 1)− (n− 1) + i(n− 1)− 1 +
i(n− 2)− 2 + i(n− 2)− 3 + i(n− 2)− (n− 2) + i− (n− 1) + i− 1 + i0. In this case also C ′

contains all the vertices of Gn[i] exactly once. Thus, C ′ is one of the Hamiltonian cycles of
Gn[i]. Hence Gn[i] is a Hamiltonian graph. �
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Remark 4.1 As we get a Hamiltonian cycle when n is even as well as when n is odd. We
can say that in both cases the graph Gn[i] is a connected graph.

Theorem 4.2 If n is an even number then unitary addition Cayley graph of Gaussian
integers modulo n, Gn[i] is Eulerian.

Proof Suppose n = 2r, r ∈ N, then by the Theorem 3.1, the degree of each vertex will
be |Un[i]| = 22(2r−1). Again when n = 2rn1, r ∈ N and n1 ≡ 1(mod 4) or n1 ≡ 3(mod 4),
then the degree of each vertex will be 22(2r−1) (n1)2 (n1 − 1)2 or 22(2r−1)(n1)2(n1

2 − 1),
which are even numbers. Again a graph G is Eulerian if and only if G is connected and all
its vertices have even degrees. By the remark above, the graph Gn[i] is connected and, the
degree of all the vertices of the graph Gn[i] is even. Therefore, the graph Gn[i] is Eulerian.

�

Theorem 4.3 Gn[i] is planer if and only if n = 1, 2.

Proof When n = 2 then Gn[i] is a cycle of length 4. Hence Gn[i] is planar for n = 1, 2.
Again we know that a simple planar connected graph has a vertex of degree less than six.
But when n = 3 then the degree of unit elements of G3[i] is seven and the degree of zero
divisor is eight. Therefore, Gn[i] is nonplaner for n > 3. �
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