On Estimates for the Generalized Fourier-Dunkl Transform in the Space $L^2_{\alpha,n}$

¹Radouan Daher*, ²Salah El Ouadih and ³Hamad Sidi Lafdal

^{1,2}Department of Mathematics, Faculty of Sciences Aïn Chock, University Hassan II, Casablanca, Morocco ³CRMEF Laayoune *Corresponding author: rjdaher024@gmail.com

Article history Received: 8 August 2015 Received in revised form: 31 December 2017 Accepted: 31 December 2017 Published on line: 1 June 2018

Abstract Two useful estimates are proved for the generalized Fourier-Dunkl transform in the space $L^2_{\alpha,n}$ on certain classes of functions characterized by the generalized continuity modulus.

Keywords Differential-difference operator; Generalized Fourier-Dunkl transform; Generalized translation operator.

Mathematics Subject Classification 42B37, 42B10.

1 Introduction

In [5], Abilov et al. proved two useful estimates for the Fourier transform in the space of square integrable functions on certain classes of functions characterized by the generalized continuity modulus, using a translation operator.

In this paper, we consider a first-order singular differential-difference operator Λ on \mathbb{R} which generalizes the Dunkl operator Λ_{α} , we prove two useful estimates in certain classes of functions characterized by a generalized continuity modulus and connected with the generalized Fourier-Dunkl transform associated to Λ in $L^2_{\alpha,n}$ analogs of the statements proved in [5]. For this purpose, we use a generalized translation operator.

In section 2, we give some definitions and preliminaries concerning the generalized Fourier-Dunkl transform. Two useful estimates are proved in section 3.

2 Preliminaries

In this section, we develop some results from harmonic analysis related to the differentialdifference operator Λ . Further details can be found in [1] and [6]. In all what follows assume where $\alpha > -1/2$ and n a non-negative integer.

Consider the first-order singular differential-difference operator on $\mathbb R$ defined by

$$\Lambda f(x) = f'(x) + \left(\alpha + \frac{1}{2}\right) \frac{f(x) - f(-x)}{x} - 2n \frac{f(-x)}{x}.$$

For n = 0, we regain the differential-difference operator

$$\Lambda_{\alpha}f(x) = f'(x) + \left(\alpha + \frac{1}{2}\right)\frac{f(x) - f(-x)}{x},$$

which is referred to as the Dunkl operator of index $\alpha + 1/2$ associated with the reflection group \mathbb{Z}_2 on \mathbb{R} . Such operators have been introduced by Dunkl (see [3], [4]) in connection with a generalization of the classical theory of spherical harmonics.

Let M be the map defined by

$$Mf(x) = x^{2n}f(x), \quad n = 0, 1, ...$$

Let $L^p_{\alpha,n}$, $1 \leq p < \infty$, be the class of measurable functions f on \mathbb{R} for which

$$||f||_{p,\alpha,n} = ||M^{-1}f||_{p,\alpha+2n} < \infty,$$

where

$$||f||_{p,\alpha} = \left(\int_{\mathbb{R}} |f(x)|^p |x|^{2\alpha+1} dx\right)^{1/p}.$$

If p = 2, then we have $L^2_{\alpha,n} = L^2(\mathbb{R}, |x|^{2\alpha+1})$. The one-dimensional Dunkl kernel is defined by

$$e_{\alpha}(z) = j_{\alpha}(iz) + \frac{z}{2(\alpha+1)} j_{\alpha+1}(iz), z \in \mathbb{C},$$
(1)

where

$$j_{\alpha}(z) = \Gamma(\alpha+1) \sum_{m=0}^{\infty} \frac{(-1)^m (z/2)^{2m}}{m! \Gamma(m+\alpha+1)}, z \in \mathbb{C},$$
(2)

is the normalized spherical Bessel function of index α . It is well-known that the functions $e_{\alpha}(\lambda), \lambda \in \mathbb{C}$, are solutions of the differential-difference equation

$$\Lambda_{\alpha} u = \lambda u, u(0) = 1.$$

In the terms of $j_{\alpha}(x)$, we have (see [2])

$$1 - j_{\alpha}(x) = O(1), x \ge 1.$$
 (3)

$$1 - j_{\alpha}(x) = O(x^2), 0 \le x \le 1.$$
(4)

$$\sqrt{hx}J_{\alpha}(hx) = O(1), hx \ge 0, \tag{5}$$

where $J_{\alpha}(x)$ is Bessel function of the first kind, which is related to $j_{\alpha}(x)$ by the formula

$$j_{\alpha}(x) = \frac{2^{\alpha} \Gamma(\alpha+1)}{x^{\alpha}} J_{\alpha}(x), x \in \mathbb{R}^+.$$
(6)

For $\lambda \in \mathbb{C}$, and $x \in \mathbb{R}$, put

$$\varphi_{\lambda}(x) = x^{2n} e_{\alpha+2n}(i\lambda x),$$

where $e_{\alpha+2n}$ is the Dunkl kernel of index $\alpha + 2n$ given by (1).

Proposition 2.1

(i) φ_{λ} satisfies the differential equation

$$\Lambda \varphi_{\lambda} = i \lambda \varphi_{\lambda}.$$

(*ii*) For all $\lambda \in \mathbb{C}$, and $x \in \mathbb{R}$

$$|\varphi_{\lambda}(x)| \le |x|^{2n} e^{|Im\lambda||x|}$$

The generalized Fourier-Dunkl transform we call the integral transform

$$\mathcal{F}_{\Lambda}f(\lambda) = \int_{\mathbb{R}} f(x)\varphi_{-\lambda}(x)|x|^{2\alpha+1}dx, \lambda \in \mathbb{R}, f \in L^{1}_{\alpha,n}$$

Let $f \in L^1_{\alpha,n}$ such that $\mathcal{F}_{\Lambda}(f) \in L^1_{\alpha+2n} = L^1(\mathbb{R}, |x|^{2\alpha+4n+1}dx)$. Then the inverse generalized Fourier-Dunkl transform is given by the formula

$$f(x) = \int_{\mathbb{R}} \mathcal{F}_{\Lambda} f(\lambda) \varphi_{\lambda}(x) d\mu_{\alpha+2n}(\lambda),$$

where

$$d\mu_{\alpha+2n}(\lambda) = a_{\alpha+2n}|\lambda|^{2\alpha+4n+1}d\lambda, \quad a_{\alpha} = \frac{1}{2^{2\alpha+2}(\Gamma(\alpha+1))^2}$$

Proposition 2.2

(i) For every $f \in L^2_{\alpha,n}$,

$$\mathcal{F}_{\Lambda}(\Lambda f)(\lambda) = i\lambda \mathcal{F}_{\Lambda}(f)(\lambda).$$

(ii) For every $f \in L^1_{\alpha,n} \cap L^2_{\alpha,n}$ we have the Plancherel formula

$$\int_{\mathbb{R}} |f(x)|^2 |x|^{2\alpha+1} dx = \int_{\mathbb{R}} |\mathcal{F}_{\Lambda} f(\lambda)|^2 d\mu_{\alpha+2n}(\lambda).$$

(iii) The generalized Fourier-Dunkl transform \mathcal{F}_{Λ} extends uniquely to an isometric isomorphism from $L^2_{\alpha,n}$ onto $L^2(\mathbb{R}, \mu_{\alpha+2n})$.

The generalized translation operators $\tau^x, x \in \mathbb{R}$, tied to Λ are defined by

$$\begin{aligned} \tau^{x}f(y) &= \frac{(xy)^{2n}}{2} \int_{-1}^{1} \frac{f(\sqrt{x^{2}+y^{2}-2xyt})}{(x^{2}+y^{2}-2xyt)^{n}} \left(1 + \frac{x-y}{\sqrt{x^{2}+y^{2}-2xyt}}\right) A(t)dt \\ &+ \frac{(xy)^{2n}}{2} \int_{-1}^{1} \frac{f(-\sqrt{x^{2}+y^{2}-2xyt})}{(x^{2}+y^{2}-2xyt)^{n}} \left(1 - \frac{x-y}{\sqrt{x^{2}+y^{2}-2xyt}}\right) A(t)dt \end{aligned}$$

where

$$A(t) = \frac{\Gamma(\alpha + 2n + 1)}{\sqrt{\pi}\Gamma(\alpha + 2n + 1/2)} (1+t)(1-t^2)^{\alpha + 2n - 1/2}.$$

Proposition 2.3 Let $x \in \mathbb{R}$ and $f \in L^2_{\alpha,n}$. Then $\tau^x f \in L^2_{\alpha,n}$ and

$$\|\tau^x f\|_{2,\alpha,n} \le 2x^{2n} \|f\|_{2,\alpha,n}$$

Furthermore,

$$\mathcal{F}_{\Lambda}(\tau^{x}f)(\lambda) = x^{2n} e_{\alpha+2n}(i\lambda x) \mathcal{F}_{\Lambda}(f)(\lambda).$$
(7)

The generalized modulus of continuity of function $f \in L^2_{\alpha,n}$ is defined as

$$w(f,\delta)_{2,\alpha,n} = \sup_{0 < h \le \delta} \|\tau^h f(x) + \tau^{-h} f(x) - 2h^{2n} f(x)\|_{2,\alpha,n}, \delta > 0.$$

Let $W_{2,\phi}^r(\Lambda)$, r = 0, 1, ..., denote the class of functions $f \in L^2_{\alpha,n}$ that have generalized derivatives satisfying the estimate

$$\omega(\Lambda^r f, \delta)_{2,\alpha,n} = O(\phi(\delta)), \quad \delta \to 0,$$

where $\phi(x)$ is any nonnegative function given on $[0,\infty)$, and $\Lambda^0 f = f$, $\Lambda^r f = \Lambda(\Lambda^{r-1}f)$, r = 1, 2, ...i.e.,

 $W^r_{2,\phi}(\Lambda) = \{ f \in L^2_{\alpha,n}, \Lambda^r f \in L^2_{\alpha,n} \text{and} \quad \omega(\Lambda^r f, \delta)_{2,\alpha,n} = O(\phi(\delta)), \delta \to 0 \}.$

3 Main Results

The goal of this work is to prove two useful estimates for the integral

$$J_N^2(f) = \int_{|\lambda| \ge N} |\mathcal{F}_{\Lambda} f(\lambda)|^2 d\mu_{\alpha+2n}(\lambda),$$

in certain classes of functions in $L^2_{\alpha,n}$.

Lemma 3.1 For $f \in W^r_{2,\phi}(\Lambda)$, we have,

$$\begin{aligned} \|\tau^h \Lambda^r f(x) + \tau^{-h} \Lambda^r f(x) - 2h^{2n} \Lambda^r f(x)\|_{2,\alpha,n}^2 \\ &= 4h^{4n} \int_{\mathbb{R}} \lambda^{2r} |j_{\alpha+2n}(\lambda h) - 1|^2 |\mathcal{F}_{\Lambda} f(\lambda)|^2 d\mu_{\alpha+2n}(\lambda), \end{aligned}$$

where r = 0, 1, 2, ...

Proof From formula (i) of proposition 2.2, we obtain

$$\mathcal{F}_{\Lambda}(\Lambda^r f)(\lambda) = (i\lambda)^r \mathcal{F}_{\Lambda} f(\lambda); r = 0, 1, \dots$$
(8)

By using the formulas (1), (2) and (7), we conclude that

$$\mathcal{F}_{\Lambda}(\tau^{h}f + \tau^{-h}f - 2h^{2n}f)(\lambda) = 2h^{2n}(j_{\alpha+2n}(\lambda h) - 1)\mathcal{F}_{\Lambda}f(\lambda).$$
(9)

Now by formulas (8), (9) and Plancherel equality, we have the result.

Theorem 3.2 Given r and $f \in W^r_{2,\phi}(\Lambda)$. Then there exist a constant c > 0 such that, for all N > 0,

$$J_N(f) = O(N^{-r+2n}\phi(c/N))$$

Proof

Firstly, we have

$$J_N^2(f) \le \int_{|\lambda| \ge N} |j| d\mu + \int_{|\lambda| \ge N} |1 - j| d\mu, \tag{10}$$

with $j = j_p(\lambda h)$, $p = \alpha + 2n$ and $d\mu = |\mathcal{F}_{\Lambda}f(\lambda)|^2 d\mu_{\alpha+2n}(\lambda)$. The parameter h > 0 will be chosen in an instant.

In view of formulas (5) and (6), there exist a constant $c_1 > 0$ such that

$$|j| \le c_1(|\lambda|h)^{-p-\frac{1}{2}}.$$

Then

$$\int_{|\lambda| \ge N} |j| d\mu \le c_1 (hN)^{-p - \frac{1}{2}} J_N^2(f).$$

Choose a constant c_2 such that the number $c_3 = 1 - c_1 c_2^{-p-\frac{1}{2}}$ is positif. Setting $h = c_2/N$ in the inequality (10), we have

$$C_3 J_N^2(f) \le \int_{|\lambda| \ge N} |1 - j| d\mu.$$

$$\tag{11}$$

By Hölder inequality the second term in (11) satisfies

$$\begin{split} \int_{|\lambda| \ge N} |1 - j| d\mu &= \int_{|\lambda| \ge N} |1 - j| \cdot 1 \cdot d\mu \\ &\leq \left(\int_{|\lambda| \ge N} |1 - j|^2 d\mu \right)^{1/2} \left(\int_{|\lambda| \ge N} d\mu \right)^{1/2} \\ &\leq \left(\int_{|\lambda| \ge N} \lambda^{-2r} |1 - j|^2 \lambda^{2r} d\mu \right)^{1/2} J_N(f) \\ &\leq N^{-r} \left(\int_{|\lambda| \ge N} |1 - j|^2 \lambda^{2r} d\mu \right)^{1/2} J_N(f) \cdot \end{split}$$

From Lemma 3.1, we conclude that

$$\int_{|\lambda| \ge N} |1 - j|^2 \lambda^{2r} d\mu \le h^{-4n} \| \tau^h \Lambda^r f(x) + \tau^{-h} \Lambda^r f(x) - 2h^{2n} \Lambda^r f(x) \|_{2,\alpha,n}^2.$$

Therefore

$$\int_{|\lambda| \ge N} |1 - j| d\mu \le N^{-r} h^{-2n} \| \tau^h \Lambda^r f(x) + \tau^{-h} \Lambda^r f(x) - 2h^{2n} \Lambda^r f(x) \|_{2,\alpha,n} J_N(f).$$

For $f \in W^r_{2,\phi}(\Lambda)$ there exist a constant $c_4 > 0$ such that

$$\|\tau^h \Lambda^r f(x) + \tau^{-h} \Lambda^r f(x) - 2h^{2n} \Lambda^r f(x)\| \le c_4 \phi(h).$$

For $h = c_2/N$, we obtain

$$c_3 J_N^2(f) \le c_2^{-2n} N^{2n-r} c_4 \phi(c_2/N) J_N(f).$$

Consequently

$$c_2^{2n}c_3J_N(f) \le c_4N^{-r+2n}\phi(c_2/N).$$

for all N > 0. The theorem is proved with $c = c_2$.

Theorem 3.3 Let $\phi(t) = t^{\nu}$, then

$$J_N(f) = O(N^{-r-\nu+2n}) \Leftrightarrow f \in W^r_{2,\phi}(\Lambda),$$

where, $r = 0, 1, ...; 0 < \nu < 2$.

Proof We prove sufficiency by using Theorem 3.2 let $f \in W^r_{2,\phi}(\Lambda)$ then

$$J_N(f) = O(N^{-r-\nu+2n}).$$

To prove necessity let

$$J_N(f) = O(N^{-r-\nu+2n})$$

i.e.

$$\int_{|\lambda| \ge N} |\mathcal{F}_{\Lambda} f(\lambda)|^2 d\mu_{\alpha+2n}(\lambda) = O(N^{-2r-2\nu+4n})$$

It is easy to show, that there exists a function $f \in L^2_{\alpha,n}$ such that $\Lambda^r f \in L^2_{\alpha,n}$ and

$$\Lambda^{r} f(x) = i^{r} \int_{\mathbb{R}} \lambda^{r} \mathcal{F}_{\Lambda} f(\lambda) \varphi_{\lambda}(x) d\mu_{\alpha+2n}(\lambda).$$
(12)

From formula (12) and Plancherel equality, we have

$$\begin{aligned} \|\tau^h \Lambda^r f(x) + \tau^{-h} \Lambda^r f(x) - 2h^{2n} \Lambda^r f(x)\|_{2,\alpha,n}^2 \\ &= 4h^{4n} \int_{\mathbb{R}} \lambda^{2r} |j_{\alpha+2n}(\lambda h) - 1|^2 |\mathcal{F}_{\Lambda} f(\lambda)|^2 d\mu_{\alpha+2n}(\lambda). \end{aligned}$$

This integral is divided into two

$$\int_{\mathbb{R}} = \int_{|\lambda| \le N} + \int_{|\lambda| \ge N} = I_1 + I_2,$$

where $N = [h^{-1}]$, We estimate them separately. From (3), we have the estimate

$$I_{2} \leq c_{5} \int_{|\lambda| \geq N} \lambda^{2r} |\mathcal{F}_{\Lambda} f(\lambda)|^{2} d\mu_{\alpha+2n}(\lambda)$$

$$= c_{5} \sum_{l=0}^{\infty} \int_{N+l \leq |\lambda| \leq N+l+1} \lambda^{2r} |\mathcal{F}_{\Lambda} f(\lambda)|^{2} d\mu_{\alpha+2n}(\lambda)$$

$$\leq c_{5} \sum_{l=0}^{\infty} a_{l}(u_{l} - u_{l+1}),$$

with $a_l = (N + l + 1)^{2r}$ and $u_l = \int_{|\lambda| \ge N+l} |\mathcal{F}_{\Lambda} f(\lambda)|^2 d\mu_{\alpha+2n}(\lambda)$. For all integers $m \ge 1$, the Abel transformation shows

$$\sum_{l=0}^{m} a_l(u_l - u_{l+1}) = a_0 u_0 + \sum_{l=1}^{m} (a_l - a_{l-1}) u_l - a_m u_{m+1}$$
$$\leq a_0 u_0 + \sum_{l=1}^{n} (a_l - a_{l-1}) u_l,$$

because $a_m u_{m+1} \ge 0$. Moreover by the finite increments theorem, we have

$$a_l - a_{l-1} \le 2r(N+l+1)^{2r-1}$$

Furthermore by the hypothesis of f there exists $c_6 > 0$ such that, for all N > 0

$$J_N^2(f) \le c_6 N^{-2r - 2\nu + 4n},$$

For $N\geq 1$, we have

$$\sum_{l=1}^{m} (a_l - a_{l-1}) u_l \le c_6 \left(1 + \frac{1}{N} \right)^{2r} N^{-2\nu+4n} + 2rc_6 \sum_{l=1}^{m} \left(1 + \frac{1}{N+l} \right)^{2r-1} (N+l)^{-1-2\nu+4n} \le 2^{2r}c_6 N^{-2\nu+4n} + 2r2^{2r-1}c_6 \sum_{l=1}^{m} (N+l)^{-1-2\nu+4n}.$$

Finally, by the integral comparison test we have

$$\sum_{l=1}^{m} (N+l)^{-1-2\nu+4n} \le \int_{N}^{\infty} x^{-1-2\nu+4n} dx = \frac{1}{2\nu-4n} N^{-2\nu+4n}.$$

Letting $m \to \infty$ we see that, for $r \ge 0$ and $\nu > 0$, there exists a constant c_7 such that, for all $N \ge 1$ and for h > 0,

$$I_2 \le c_7 N^{-2\nu+4n}$$

Now, we estimate I_1 . From formula (4), we have

$$I_{1} \leq c_{8}h^{4} \int_{|\lambda| \leq N} \lambda^{2r+4} |\mathcal{F}_{\Lambda}f(\lambda)|^{2} d\mu_{\alpha+2n}(\lambda)$$

$$= c_{8}h^{4} \sum_{l=0}^{N-1} \int_{l \leq |\lambda| \leq l+1} \lambda^{2r+4} |\mathcal{F}_{\Lambda}f(\lambda)|^{2} d\mu_{\alpha+2n}(\lambda)$$

$$\leq c_{8}h^{4} \sum_{l=0}^{N-1} (l+1)^{2r+4} (v_{l} - v_{l+1}),$$

with $v_l = \int_{|\lambda| \ge l} |\mathcal{F}_{\Lambda} f(\lambda)|^2 d\mu_{\alpha+2n}(\lambda)$. Using an Abel transformation and proceeding as with I_2 we obtain

$$I_{1} \leq c_{8}h^{4}\left(v_{0} + \sum_{l=1}^{N-1}((l+1)^{2r+4} - l^{2r+4})v_{l}\right)$$

$$\leq c_{8}h^{4}\left(v_{0} + (2r+4)c_{6}\sum_{l=1}^{N-1}(l+1)^{2r+3}l^{-2r-2\nu+4n}\right),$$

since $v_l \leq c_6 l^{-2r-2\nu+4n}$ by hypothesis. From the inequality $l+1 \leq 2l$ we conclude

$$I_1 \le c_8 h^4 \left(v_0 + c_9 \sum_{l=1}^{N-1} l^{3-2\nu+4n} \right).$$

As a consequence of a series comparison for $\mu \ge 1$ and $\mu < 1$ we have the inequality,

$$\mu \sum_{l=1}^{N-1} l^{\mu-1} < N^{\mu}$$
, for $\mu > 0$ and $N \ge 2$.

If $\mu = 4 - 2\nu + 4n > 0$ for $\nu < 2$ then we obtain

$$I_1 \le c_8 h^4 \left(v_0 + c_{10} N^{4-2\nu+4n} \right) \le c_8 h^4 \left(v_0 + c_{10} h^{-4+2\nu-4n} \right),$$

since $N \leq 1/h$. If h is sufficiently small then $v_0 \leq c_{10}h^{-4+2\nu-4n}$. Then we have

$$I_1 \le c_{11} h^{2\nu - 4n}$$

Combining the estimates for I_1 and I_2 gives

$$\|\tau^{h}\Lambda^{r}f(x) + \tau^{-h}\Lambda^{r}f(x) - 2h^{2n}\Lambda^{r}f(x)\|_{2,\alpha,n} = O(h^{\nu}),$$

The necessity is proved.

Acknowledgemnt

The authors would like to thank the referee for his valuable comments and suggestions.

References

- Al Sadhan, S. A., Al Subaie, R. F. and M. A. Mourou, Harmonic analysis associated with a first-order singular Differential-Difference operator on the real line. *Current Advances in Mathematics Research*. 2014. 1: 23–34.
- [2] Abilov, V. A. and Abilova, F. V. Approximation of functions by Fourier-Bessel sums. Izv. Vyssh. Uchebn. Zaved. Mat. 2001. 8: 39.
- [3] Dunkl, C. F. Differential-difference operators associated to reflection groups. *Transactions* of the American Mathematical Society. 1989. 311: 167–183.
- [4] Dunkl, C. F. Hankel transforms associated to finite reflection groups. Contemporary Mathematics. 1992. 138: 128–138.
- [5] Abilov, V. A., Abilova, F. V. and Kerimov, M. K. Some remarks concerning the Fourier transform in the space L₂(ℝ). Zh. Vychisl. Mat. Mat. Fiz. 2008. 48, 939–945 [Comput. Math. Math. Phys. 48. 885–891].
- [6] Al Subaie. R. F. and Mourou, M. A. Inversion of two Dunkl type intertwining operators on \mathbb{R} using generalized wavelets. *Far East Journal of Applied Mathematics*. 2014. 88: 91–120.