On Estimates for the Generalized Fourier-Dunkl Transform in the Space $L_{\alpha, n}^{2}$

${ }^{1}$ Radouan Daher*, ${ }^{2}$ Salah El Ouadih and ${ }^{3}$ Hamad Sidi Lafdal
${ }^{1,2}$ Department of Mathematics, Faculty of Sciences Aïn Chock, University Hassan II, Casablanca, Morocco
${ }^{3}$ CRMEF Laayoune
*Corresponding author: rjdaher024@gmail.com

Article history
Received: 8 August 2015
Received in revised form: 31 December 2017
Accepted: 31 December 2017
Published on line: 1 June 2018

Abstract

Two useful estimates are proved for the generalized Fourier-Dunkl transform in the space $L_{\alpha, n}^{2}$ on certain classes of functions characterized by the generalized continuity modulus.

Keywords Differential-difference operator; Generalized Fourier-Dunkl transform; Generalized translation operator.

Mathematics Subject Classification 42B37, 42B10.

1 Introduction

In [5], Abilov et al. proved two useful estimates for the Fourier transform in the space of square integrable functions on certain classes of functions characterized by the generalized continuity modulus, using a translation operator.

In this paper, we consider a first-order singular differential-difference operator Λ on \mathbb{R} which generalizes the Dunkl operator Λ_{α}, we prove two useful estimates in certain classes of functions characterized by a generalized continuity modulus and connected with the generalized FourierDunkl transform associated to Λ in $L_{\alpha, n}^{2}$ analogs of the statements proved in [5]. For this purpose, we use a generalized translation operator.
In section 2, we give some definitions and preliminaries concerning the generalized FourierDunkl transform. Two useful estimates are proved in section 3 .

2 Preliminaries

In this section, we develop some results from harmonic analysis related to the differentialdifference operator Λ. Further details can be found in [1] and [6]. In all what follows assume
where $\alpha>-1 / 2$ and n a non-negative integer.
Consider the first-order singular differential-difference operator on \mathbb{R} defined by

$$
\Lambda f(x)=f^{\prime}(x)+\left(\alpha+\frac{1}{2}\right) \frac{f(x)-f(-x)}{x}-2 n \frac{f(-x)}{x} .
$$

For $n=0$, we regain the differential-difference operator

$$
\Lambda_{\alpha} f(x)=f^{\prime}(x)+\left(\alpha+\frac{1}{2}\right) \frac{f(x)-f(-x)}{x}
$$

which is referred to as the Dunkl operator of index $\alpha+1 / 2$ associated with the reflection group \mathbb{Z}_{2} on \mathbb{R}. Such operators have been introduced by Dunkl (see [3], [4]) in connection with a generalization of the classical theory of spherical harmonics.
Let M be the map defined by

$$
M f(x)=x^{2 n} f(x), \quad n=0,1, . .
$$

Let $L_{\alpha, n}^{p}, 1 \leq p<\infty$, be the class of measurable functions f on \mathbb{R} for which

$$
\|f\|_{p, \alpha, n}=\left\|M^{-1} f\right\|_{p, \alpha+2 n}<\infty
$$

where

$$
\|f\|_{p, \alpha}=\left(\int_{\mathbb{R}}|f(x)|^{p}|x|^{2 \alpha+1} d x\right)^{1 / p}
$$

If $p=2$, then we have $L_{\alpha, n}^{2}=L^{2}\left(\mathbb{R},|x|^{2 \alpha+1}\right)$.
The one-dimensional Dunkl kernel is defined by

$$
\begin{equation*}
e_{\alpha}(z)=j_{\alpha}(i z)+\frac{z}{2(\alpha+1)} j_{\alpha+1}(i z), z \in \mathbb{C}, \tag{1}
\end{equation*}
$$

where

$$
\begin{equation*}
j_{\alpha}(z)=\Gamma(\alpha+1) \sum_{m=0}^{\infty} \frac{(-1)^{m}(z / 2)^{2 m}}{m!\Gamma(m+\alpha+1)}, z \in \mathbb{C} \tag{2}
\end{equation*}
$$

is the normalized spherical Bessel function of index α. It is well-known that the functions $e_{\alpha}(\lambda),. \lambda \in \mathbb{C}$, are solutions of the differential-difference equation

$$
\Lambda_{\alpha} u=\lambda u, u(0)=1
$$

In the terms of $j_{\alpha}(x)$, we have (see [2])

$$
\begin{align*}
1-j_{\alpha}(x) & =O(1), x \geq 1 \tag{3}\\
1-j_{\alpha}(x) & =O\left(x^{2}\right), 0 \leq x \leq 1 \tag{4}\\
\sqrt{h x} J_{\alpha}(h x) & =O(1), h x \geq 0 \tag{5}
\end{align*}
$$

where $J_{\alpha}(x)$ is Bessel function of the first kind, which is related to $j_{\alpha}(x)$ by the formula

$$
\begin{equation*}
j_{\alpha}(x)=\frac{2^{\alpha} \Gamma(\alpha+1)}{x^{\alpha}} J_{\alpha}(x), x \in \mathbb{R}^{+} \tag{6}
\end{equation*}
$$

For $\lambda \in \mathbb{C}$, and $x \in \mathbb{R}$, put

$$
\varphi_{\lambda}(x)=x^{2 n} e_{\alpha+2 n}(i \lambda x),
$$

where $e_{\alpha+2 n}$ is the Dunkl kernel of index $\alpha+2 n$ given by (1).

Proposition 2.1

(i) φ_{λ} satisfies the differential equation

$$
\Lambda \varphi_{\lambda}=i \lambda \varphi_{\lambda}
$$

(ii) For all $\lambda \in \mathbb{C}$, and $x \in \mathbb{R}$

$$
\left|\varphi_{\lambda}(x)\right| \leq|x|^{2 n} e^{|I m \lambda \lambda||x|}
$$

The generalized Fourier-Dunkl transform we call the integral transform

$$
\mathcal{F}_{\Lambda} f(\lambda)=\int_{\mathbb{R}} f(x) \varphi_{-\lambda}(x)|x|^{2 \alpha+1} d x, \lambda \in \mathbb{R}, f \in L_{\alpha, n}^{1}
$$

Let $f \in L_{\alpha, n}^{1}$ such that $\mathcal{F}_{\Lambda}(f) \in L_{\alpha+2 n}^{1}=L^{1}\left(\mathbb{R},|x|^{2 \alpha+4 n+1} d x\right)$. Then the inverse generalized Fourier-Dunkl transform is given by the formula

$$
f(x)=\int_{\mathbb{R}} \mathcal{F}_{\Lambda} f(\lambda) \varphi_{\lambda}(x) d \mu_{\alpha+2 n}(\lambda),
$$

where

$$
d \mu_{\alpha+2 n}(\lambda)=a_{\alpha+2 n}|\lambda|^{2 \alpha+4 n+1} d \lambda, \quad a_{\alpha}=\frac{1}{2^{2 \alpha+2}(\Gamma(\alpha+1))^{2}} .
$$

Proposition 2.2

(i) For every $f \in L_{\alpha, n}^{2}$,

$$
\mathcal{F}_{\Lambda}(\Lambda f)(\lambda)=i \lambda \mathcal{F}_{\Lambda}(f)(\lambda)
$$

(ii) For every $f \in L_{\alpha, n}^{1} \cap L_{\alpha, n}^{2}$ we have the Plancherel formula

$$
\int_{\mathbb{R}}|f(x)|^{2}|x|^{2 \alpha+1} d x=\int_{\mathbb{R}}\left|\mathcal{F}_{\Lambda} f(\lambda)\right|^{2} d \mu_{\alpha+2 n}(\lambda)
$$

(iii) The generalized Fourier-Dunkl transform \mathcal{F}_{Λ} extends uniquely to an isometric isomorphism from $L_{\alpha, n}^{2}$ onto $L^{2}\left(\mathbb{R}, \mu_{\alpha+2 n}\right)$.

The generalized translation operators $\tau^{x}, x \in \mathbb{R}$, tied to Λ are defined by

$$
\begin{aligned}
\tau^{x} f(y) & =\frac{(x y)^{2 n}}{2} \int_{-1}^{1} \frac{f\left(\sqrt{x^{2}+y^{2}-2 x y t}\right)}{\left(x^{2}+y^{2}-2 x y t\right)^{n}}\left(1+\frac{x-y}{\sqrt{x^{2}+y^{2}-2 x y t}}\right) A(t) d t \\
& +\frac{(x y)^{2 n}}{2} \int_{-1}^{1} \frac{f\left(-\sqrt{x^{2}+y^{2}-2 x y t}\right)}{\left(x^{2}+y^{2}-2 x y t\right)^{n}}\left(1-\frac{x-y}{\sqrt{x^{2}+y^{2}-2 x y t}}\right) A(t) d t
\end{aligned}
$$

where

$$
A(t)=\frac{\Gamma(\alpha+2 n+1)}{\sqrt{\pi} \Gamma(\alpha+2 n+1 / 2)}(1+t)\left(1-t^{2}\right)^{\alpha+2 n-1 / 2} .
$$

Proposition 2.3 Let $x \in \mathbb{R}$ and $f \in L_{\alpha, n}^{2}$. Then $\tau^{x} f \in L_{\alpha, n}^{2}$ and

$$
\left\|\tau^{x} f\right\|_{2, \alpha, n} \leq 2 x^{2 n}\|f\|_{2, \alpha, n}
$$

Furthermore,

$$
\begin{equation*}
\mathcal{F}_{\Lambda}\left(\tau^{x} f\right)(\lambda)=x^{2 n} e_{\alpha+2 n}(i \lambda x) \mathcal{F}_{\Lambda}(f)(\lambda) \tag{7}
\end{equation*}
$$

The generalized modulus of continuity of function $f \in L_{\alpha, n}^{2}$ is defined as

$$
w(f, \delta)_{2, \alpha, n}=\sup _{0<h \leq \delta}\left\|\tau^{h} f(x)+\tau^{-h} f(x)-2 h^{2 n} f(x)\right\|_{2, \alpha, n}, \delta>0
$$

Let $W_{2, \phi}^{r}(\Lambda), r=0,1, \ldots$, denote the class of functions $f \in L_{\alpha, n}^{2}$ that have generalized derivatives satisfying the estimate

$$
\omega\left(\Lambda^{r} f, \delta\right)_{2, \alpha, n}=O(\phi(\delta)), \quad \delta \rightarrow 0
$$

where $\phi(x)$ is any nonnegative function given on $[0, \infty)$, and $\Lambda^{0} f=f, \Lambda^{r} f=\Lambda\left(\Lambda^{r-1} f\right)$, $r=1,2, \ldots$
i.e.,

$$
W_{2, \phi}^{r}(\Lambda)=\left\{f \in L_{\alpha, n}^{2}, \Lambda^{r} f \in L_{\alpha, n}^{2} \text { and } \quad \omega\left(\Lambda^{r} f, \delta\right)_{2, \alpha, n}=O(\phi(\delta)), \delta \rightarrow 0\right\}
$$

3 Main Results

The goal of this work is to prove two useful estimates for the integral

$$
J_{N}^{2}(f)=\int_{|\lambda| \geq N}\left|\mathcal{F}_{\Lambda} f(\lambda)\right|^{2} d \mu_{\alpha+2 n}(\lambda),
$$

in certain classes of functions in $L_{\alpha, n}^{2}$.
Lemma 3.1 For $f \in W_{2, \phi}^{r}(\Lambda)$, we have,

$$
\begin{aligned}
\| \tau^{h} \Lambda^{r} f(x) & +\tau^{-h} \Lambda^{r} f(x)-2 h^{2 n} \Lambda^{r} f(x) \|_{2, \alpha, n}^{2} \\
& =4 h^{4 n} \int_{\mathbb{R}} \lambda^{2 r}\left|j_{\alpha+2 n}(\lambda h)-1\right|^{2}\left|\mathcal{F}_{\Lambda} f(\lambda)\right|^{2} d \mu_{\alpha+2 n}(\lambda)
\end{aligned}
$$

where $r=0,1,2, \ldots$
Proof From formula (i) of proposition 2.2, we obtain

$$
\begin{equation*}
\mathcal{F}_{\Lambda}\left(\Lambda^{r} f\right)(\lambda)=(i \lambda)^{r} \mathcal{F}_{\Lambda} f(\lambda) ; r=0,1, \ldots \tag{8}
\end{equation*}
$$

By using the formulas (1), (2) and (7), we conclude that

$$
\begin{equation*}
\mathcal{F}_{\Lambda}\left(\tau^{h} f+\tau^{-h} f-2 h^{2 n} f\right)(\lambda)=2 h^{2 n}\left(j_{\alpha+2 n}(\lambda h)-1\right) \mathcal{F}_{\Lambda} f(\lambda) \tag{9}
\end{equation*}
$$

Now by formulas (8), (9) and Plancherel equality, we have the result.
Theorem 3.2 Given r and $f \in W_{2, \phi}^{r}(\Lambda)$. Then there exist a constant $c>0$ such that, for all $N>0$,

$$
J_{N}(f)=O\left(N^{-r+2 n} \phi(c / N)\right)
$$

Proof

Firstly, we have

$$
\begin{equation*}
J_{N}^{2}(f) \leq \int_{|\lambda| \geq N}|j| d \mu+\int_{|\lambda| \geq N}|1-j| d \mu \tag{10}
\end{equation*}
$$

with $j=j_{p}(\lambda h), p=\alpha+2 n$ and $d \mu=\left|\mathcal{F}_{\Lambda} f(\lambda)\right|^{2} d \mu_{\alpha+2 n}(\lambda)$. The parameter $h>0$ will be chosen in an instant.
In view of formulas (5) and (6), there exist a constant $c_{1}>0$ such that

$$
|j| \leq c_{1}(|\lambda| h)^{-p-\frac{1}{2}}
$$

Then

$$
\int_{|\lambda| \geq N}|j| d \mu \leq c_{1}(h N)^{-p-\frac{1}{2}} J_{N}^{2}(f)
$$

Choose a constant c_{2} such that the number $c_{3}=1-c_{1} c_{2}^{-p-\frac{1}{2}}$ is positif.
Setting $h=c_{2} / N$ in the inequality (10), we have

$$
\begin{equation*}
C_{3} J_{N}^{2}(f) \leq \int_{|\lambda| \geq N}|1-j| d \mu \tag{11}
\end{equation*}
$$

By Hölder inequality the second term in (11) satisfies

$$
\begin{aligned}
\int_{|\lambda| \geq N}|1-j| d \mu & =\int_{|\lambda| \geq N}|1-j| \cdot 1 \cdot d \mu \\
& \leq\left(\int_{|\lambda| \geq N}|1-j|^{2} d \mu\right)^{1 / 2}\left(\int_{|\lambda| \geq N} d \mu\right)^{1 / 2} \\
& \leq\left(\int_{|\lambda| \geq N} \lambda^{-2 r}|1-j|^{2} \lambda^{2 r} d \mu\right)^{1 / 2} J_{N}(f) \\
& \leq N^{-r}\left(\int_{|\lambda| \geq N}|1-j|^{2} \lambda^{2 r} d \mu\right)^{1 / 2} J_{N}(f)
\end{aligned}
$$

From Lemma 3.1, we conclude that

$$
\int_{|\lambda| \geq N}|1-j|^{2} \lambda^{2 r} d \mu \leq h^{-4 n}\left\|\tau^{h} \Lambda^{r} f(x)+\tau^{-h} \Lambda^{r} f(x)-2 h^{2 n} \Lambda^{r} f(x)\right\|_{2, \alpha, n}^{2}
$$

Therefore

$$
\int_{|\lambda| \geq N}|1-j| d \mu \leq N^{-r} h^{-2 n}\left\|\tau^{h} \Lambda^{r} f(x)+\tau^{-h} \Lambda^{r} f(x)-2 h^{2 n} \Lambda^{r} f(x)\right\|_{2, \alpha, n} J_{N}(f)
$$

For $f \in W_{2, \phi}^{r}(\Lambda)$ there exist a constant $c_{4}>0$ such that

$$
\left\|\tau^{h} \Lambda^{r} f(x)+\tau^{-h} \Lambda^{r} f(x)-2 h^{2 n} \Lambda^{r} f(x)\right\| \leq c_{4} \phi(h)
$$

For $h=c_{2} / N$, we obtain

$$
c_{3} J_{N}^{2}(f) \leq c_{2}^{-2 n} N^{2 n-r} c_{4} \phi\left(c_{2} / N\right) J_{N}(f)
$$

Consequently

$$
c_{2}^{2 n} c_{3} J_{N}(f) \leq c_{4} N^{-r+2 n} \phi\left(c_{2} / N\right)
$$

for all $N>0$. The theorem is proved with $c=c_{2}$.
Theorem 3.3 Let $\phi(t)=t^{\nu}$, then

$$
J_{N}(f)=O\left(N^{-r-\nu+2 n}\right) \Leftrightarrow f \in W_{2, \phi}^{r}(\Lambda)
$$

where, $r=0,1, \ldots ; 0<\nu<2$.
Proof We prove sufficiency by using Theorem 3.2 let $f \in W_{2, \phi}^{r}(\Lambda)$ then

$$
J_{N}(f)=O\left(N^{-r-\nu+2 n}\right)
$$

To prove necessity let

$$
J_{N}(f)=O\left(N^{-r-\nu+2 n}\right)
$$

i.e.

$$
\int_{|\lambda| \geq N}\left|\mathcal{F}_{\Lambda} f(\lambda)\right|^{2} d \mu_{\alpha+2 n}(\lambda)=O\left(N^{-2 r-2 \nu+4 n}\right)
$$

It is easy to show, that there exists a function $f \in L_{\alpha, n}^{2}$ such that $\Lambda^{r} f \in L_{\alpha, n}^{2}$ and

$$
\begin{equation*}
\Lambda^{r} f(x)=i^{r} \int_{\mathbb{R}} \lambda^{r} \mathcal{F}_{\Lambda} f(\lambda) \varphi_{\lambda}(x) d \mu_{\alpha+2 n}(\lambda) \tag{12}
\end{equation*}
$$

From formula (12) and Plancherel equality, we have

$$
\begin{aligned}
\| \tau^{h} \Lambda^{r} f(x) & +\tau^{-h} \Lambda^{r} f(x)-2 h^{2 n} \Lambda^{r} f(x) \|_{2, \alpha, n}^{2} \\
& =4 h^{4 n} \int_{\mathbb{R}} \lambda^{2 r}\left|j_{\alpha+2 n}(\lambda h)-1\right|^{2}\left|\mathcal{F}_{\Lambda} f(\lambda)\right|^{2} d \mu_{\alpha+2 n}(\lambda)
\end{aligned}
$$

This integral is divided into two

$$
\int_{\mathbb{R}}=\int_{|\lambda| \leq N}+\int_{|\lambda| \geq N}=I_{1}+I_{2}
$$

where $N=\left[h^{-1}\right]$, We estimate them separately.
From (3), we have the estimate

$$
\begin{aligned}
I_{2} & \leq c_{5} \int_{|\lambda| \geq N} \lambda^{2 r}\left|\mathcal{F}_{\Lambda} f(\lambda)\right|^{2} d \mu_{\alpha+2 n}(\lambda) \\
& =c_{5} \sum_{l=0}^{\infty} \int_{N+l \leq|\lambda| \leq N+l+1} \lambda^{2 r}\left|\mathcal{F}_{\Lambda} f(\lambda)\right|^{2} d \mu_{\alpha+2 n}(\lambda) \\
& \leq c_{5} \sum_{l=0}^{\infty} a_{l}\left(u_{l}-u_{l+1}\right),
\end{aligned}
$$

with $a_{l}=(N+l+1)^{2 r}$ and $u_{l}=\int_{|\lambda| \geq N+l}\left|\mathcal{F}_{\Lambda} f(\lambda)\right|^{2} d \mu_{\alpha+2 n}(\lambda)$.
For all integers $m \geq 1$, the Abel transformation shows

$$
\begin{aligned}
\sum_{l=0}^{m} a_{l}\left(u_{l}-u_{l+1}\right) & =a_{0} u_{0}+\sum_{l=1}^{m}\left(a_{l}-a_{l-1}\right) u_{l}-a_{m} u_{m+1} \\
& \leq a_{0} u_{0}+\sum_{l=1}^{n}\left(a_{l}-a_{l-1}\right) u_{l}
\end{aligned}
$$

because $a_{m} u_{m+1} \geq 0$. Moreover by the finite increments theorem, we have

$$
a_{l}-a_{l-1} \leq 2 r(N+l+1)^{2 r-1}
$$

Furthermore by the hypothesis of f there exists $c_{6}>0$ such that, for all $N>0$

$$
J_{N}^{2}(f) \leq c_{6} N^{-2 r-2 \nu+4 n}
$$

For $N \geq 1$, we have

$$
\begin{aligned}
\sum_{l=1}^{m}\left(a_{l}-a_{l-1}\right) u_{l} & \leq c_{6}\left(1+\frac{1}{N}\right)^{2 r} N^{-2 \nu+4 n}+2 r c_{6} \sum_{l=1}^{m}\left(1+\frac{1}{N+l}\right)^{2 r-1}(N+l)^{-1-2 \nu+4 n} \\
& \leq 2^{2 r} c_{6} N^{-2 \nu+4 n}+2 r 2^{2 r-1} c_{6} \sum_{l=1}^{m}(N+l)^{-1-2 \nu+4 n}
\end{aligned}
$$

Finally, by the integral comparison test we have

$$
\sum_{l=1}^{m}(N+l)^{-1-2 \nu+4 n} \leq \int_{N}^{\infty} x^{-1-2 \nu+4 n} d x=\frac{1}{2 \nu-4 n} N^{-2 \nu+4 n}
$$

Letting $m \rightarrow \infty$ we see that, for $r \geq 0$ and $\nu>0$, there exists a constant c_{7} such that, for all $N \geq 1$ and for $h>0$,

$$
I_{2} \leq c_{7} N^{-2 \nu+4 n}
$$

Now, we estimate I_{1}. From formula (4), we have

$$
\begin{aligned}
I_{1} & \leq c_{8} h^{4} \int_{|\lambda| \leq N} \lambda^{2 r+4}\left|\mathcal{F}_{\Lambda} f(\lambda)\right|^{2} d \mu_{\alpha+2 n}(\lambda) \\
& =c_{8} h^{4} \sum_{l=0}^{N-1} \int_{l \leq|\lambda| \leq l+1} \lambda^{2 r+4}\left|\mathcal{F}_{\Lambda} f(\lambda)\right|^{2} d \mu_{\alpha+2 n}(\lambda) \\
& \leq c_{8} h^{4} \sum_{l=0}^{N-1}(l+1)^{2 r+4}\left(v_{l}-v_{l+1}\right),
\end{aligned}
$$

with $v_{l}=\int_{|\lambda| \geq l}\left|\mathcal{F}_{\Lambda} f(\lambda)\right|^{2} d \mu_{\alpha+2 n}(\lambda)$.
Using an Abel transformation and proceeding as with I_{2} we obtain

$$
\begin{aligned}
I_{1} & \leq c_{8} h^{4}\left(v_{0}+\sum_{l=1}^{N-1}\left((l+1)^{2 r+4}-l^{2 r+4}\right) v_{l}\right) \\
& \leq c_{8} h^{4}\left(v_{0}+(2 r+4) c_{6} \sum_{l=1}^{N-1}(l+1)^{2 r+3} l^{-2 r-2 \nu+4 n}\right)
\end{aligned}
$$

since $v_{l} \leq c_{6} l^{-2 r-2 \nu+4 n}$ by hypothesis. From the inequality $l+1 \leq 2 l$ we conclude

$$
I_{1} \leq c_{8} h^{4}\left(v_{0}+c_{9} \sum_{l=1}^{N-1} l^{3-2 \nu+4 n}\right) .
$$

As a consequence of a series comparison for $\mu \geq 1$ and $\mu<1$ we have the inequality,

$$
\mu \sum_{l=1}^{N-1} l^{\mu-1}<N^{\mu}, \text { for } \quad \mu>0 \quad \text { and } \quad N \geq 2
$$

If $\mu=4-2 \nu+4 n>0$ for $\nu<2$ then we obtain

$$
I_{1} \leq c_{8} h^{4}\left(v_{0}+c_{10} N^{4-2 \nu+4 n}\right) \leq c_{8} h^{4}\left(v_{0}+c_{10} h^{-4+2 \nu-4 n}\right),
$$

since $N \leq 1 / h$. If h is sufficiently small then $v_{0} \leq c_{10} h^{-4+2 \nu-4 n}$. Then we have

$$
I_{1} \leq c_{11} h^{2 \nu-4 n}
$$

Combining the estimates for I_{1} and I_{2} gives

$$
\left\|\tau^{h} \Lambda^{r} f(x)+\tau^{-h} \Lambda^{r} f(x)-2 h^{2 n} \Lambda^{r} f(x)\right\|_{2, \alpha, n}=O\left(h^{\nu}\right)
$$

The necessity is proved.

Acknowledgemnt

The authors would like to thank the referee for his valuable comments and suggestions.

References

[1] Al Sadhan, S. A., Al Subaie, R. F. and M. A. Mourou, Harmonic analysis associated with a first-order singular Differential-Difference operator on the real line. Current Advances in Mathematics Research. 2014. 1: 23-34.
[2] Abilov, V. A. and Abilova, F. V. Approximation of functions by Fourier-Bessel sums. Izv. Vyssh. Uchebn. Zaved. Mat. 2001. 8: 39 .
[3] Dunkl, C. F. Differential-difference operators associated to reflection groups. Transactions of the American Mathematical Society. 1989. 311: 167-183.
[4] Dunkl, C. F. Hankel transforms associated to finite reflection groups. Contemporary Mathematics. 1992. 138: 128-138.
[5] Abilov, V. A., Abilova, F. V. and Kerimov, M. K. Some remarks concerning the Fourier transform in the space $L_{2}(\mathbb{R})$. Zh. Vychisl. Mat. Mat. Fiz. 2008. 48, 939-945 [Comput. Math. Math. Phys. 48. 885-891].
[6] Al Subaie. R. F. and Mourou, M. A. Inversion of two Dunkl type intertwining operators on \mathbb{R} using generalized wavelets. Far East Journal of Applied Mathematics. 2014. 88: 91-120.

