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1 Introduction

In [5], Abilov et al. proved two useful estimates for the Fourier transform in the space of square
integrable functions on certain classes of functions characterized by the generalized continuity
modulus, using a translation operator.

In this paper, we consider a first-order singular differential-difference operator Λ on R which
generalizes the Dunkl operator Λα, we prove two useful estimates in certain classes of functions
characterized by a generalized continuity modulus and connected with the generalized Fourier-
Dunkl transform associated to Λ in L2

α,n analogs of the statements proved in [5]. For this
purpose, we use a generalized translation operator.
In section 2, we give some definitions and preliminaries concerning the generalized Fourier-
Dunkl transform. Two useful estimates are proved in section 3.

2 Preliminaries

In this section, we develop some results from harmonic analysis related to the differential-
difference operator Λ. Further details can be found in [1] and [6]. In all what follows assume
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where α > −1/2 and n a non-negative integer.
Consider the first-order singular differential-difference operator on R defined by

Λf(x) = f ′(x) +

(

α +
1

2

)

f(x) − f(−x)

x
− 2n

f(−x)

x
.

For n = 0, we regain the differential-difference operator

Λαf(x) = f ′(x) +

(

α +
1

2

)

f(x) − f(−x)

x
,

which is referred to as the Dunkl operator of index α+1/2 associated with the reflection group
Z2 on R. Such operators have been introduced by Dunkl (see [3], [4]) in connection with a
generalization of the classical theory of spherical harmonics.
Let M be the map defined by

Mf(x) = x2nf(x), n = 0, 1, ..

Let Lp
α,n, 1 ≤ p < ∞, be the class of measurable functions f on R for which

‖f‖p,α,n = ‖M−1f‖p,α+2n < ∞,

where

‖f‖p,α =

(
∫

R

|f(x)|p|x|2α+1dx

)1/p

.

If p = 2, then we have L2
α,n = L2(R, |x|2α+1).

The one-dimensional Dunkl kernel is defined by

eα(z) = jα(iz) +
z

2(α + 1)
jα+1(iz), z ∈ C, (1)

where

jα(z) = Γ(α + 1)

∞
∑

m=0

(−1)m(z/2)2m

m!Γ(m + α + 1)
, z ∈ C, (2)

is the normalized spherical Bessel function of index α. It is well-known that the functions
eα(λ.), λ ∈ C, are solutions of the differential-difference equation

Λαu = λu, u(0) = 1.

In the terms of jα(x), we have (see [2])

1 − jα(x) = O(1), x ≥ 1. (3)

1 − jα(x) = O(x2), 0 ≤ x ≤ 1. (4)√
hxJα(hx) = O(1), hx ≥ 0, (5)

where Jα(x) is Bessel function of the first kind, which is related to jα(x) by the formula

jα(x) =
2αΓ(α + 1)

xα
Jα(x), x ∈ R

+. (6)
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For λ ∈ C, and x ∈ R, put

ϕλ(x) = x2neα+2n(iλx),

where eα+2n is the Dunkl kernel of index α + 2n given by (1).

Proposition 2.1

(i) ϕλ satisfies the differential equation

Λϕλ = iλϕλ.

(ii) For all λ ∈ C, and x ∈ R

|ϕλ(x)| ≤ |x|2ne|Imλ||x|.

The generalized Fourier-Dunkl transform we call the integral transform

FΛf(λ) =

∫

R

f(x)ϕ−λ(x)|x|2α+1dx, λ ∈ R, f ∈ L1
α,n.

Let f ∈ L1
α,n such that FΛ(f) ∈ L1

α+2n = L1(R, |x|2α+4n+1dx). Then the inverse generalized
Fourier-Dunkl transform is given by the formula

f(x) =

∫

R

FΛf(λ)ϕλ(x)dµα+2n(λ),

where

dµα+2n(λ) = aα+2n|λ|2α+4n+1dλ, aα =
1

22α+2(Γ(α + 1))2
.

Proposition 2.2

(i) For every f ∈ L2
α,n,

FΛ(Λf)(λ) = iλFΛ(f)(λ).

(ii) For every f ∈ L1
α,n ∩ L2

α,n we have the Plancherel formula
∫

R

|f(x)|2|x|2α+1dx =

∫

R

|FΛf(λ)|2dµα+2n(λ).

(iii) The generalized Fourier-Dunkl transform FΛ extends uniquely to an isometric isomorphism

from L2
α,n onto L2(R, µα+2n).

The generalized translation operators τx, x ∈ R, tied to Λ are defined by

τxf(y) =
(xy)2n

2

∫ 1

−1

f(
√

x2 + y2 − 2xyt)

(x2 + y2 − 2xyt)n

(

1 +
x − y

√

x2 + y2 − 2xyt

)

A(t)dt

+
(xy)2n

2

∫ 1

−1

f(−
√

x2 + y2 − 2xyt)

(x2 + y2 − 2xyt)n

(

1 − x− y
√

x2 + y2 − 2xyt

)

A(t)dt,
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where

A(t) =
Γ(α + 2n + 1)√

πΓ(α + 2n + 1/2)
(1 + t)(1 − t2)α+2n−1/2.

Proposition 2.3 Let x ∈ R and f ∈ L2
α,n. Then τxf ∈ L2

α,n and

‖τxf‖2,α,n ≤ 2x2n‖f‖2,α,n.

Furthermore,

FΛ(τxf)(λ) = x2neα+2n(iλx)FΛ(f)(λ). (7)

The generalized modulus of continuity of function f ∈ L2
α,n is defined as

w(f, δ)2,α,n = sup
0<h≤δ

‖τhf(x) + τ−hf(x) − 2h2nf(x)‖2,α,n, δ > 0.

Let W r
2,φ(Λ), r = 0, 1, ..., denote the class of functions f ∈ L2

α,n that have generalized derivatives
satisfying the estimate

ω(Λrf, δ)2,α,n = O(φ(δ)), δ → 0,

where φ(x) is any nonnegative function given on [0,∞), and Λ0f = f , Λrf = Λ(Λr−1f),
r = 1, 2, ...
i.e.,

W r
2,φ(Λ) = {f ∈ L2

α,n, Λ
rf ∈ L2

α,nand ω(Λrf, δ)2,α,n = O(φ(δ)), δ → 0}.

3 Main Results

The goal of this work is to prove two useful estimates for the integral

J2
N(f) =

∫

|λ|≥N

|FΛf(λ)|2dµα+2n(λ),

in certain classes of functions in L2
α,n.

Lemma 3.1 For f ∈ W r
2,φ(Λ), we have,

‖τhΛrf(x) + τ−hΛrf(x) − 2h2nΛrf(x)‖2
2,α,n

= 4h4n

∫

R

λ2r|jα+2n(λh) − 1|2|FΛf(λ)|2dµα+2n(λ),

where r = 0, 1, 2, ...

Proof From formula (i) of proposition 2.2, we obtain

FΛ(Λrf)(λ) = (iλ)rFΛf(λ); r = 0, 1, ... (8)
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By using the formulas (1), (2) and (7), we conclude that

FΛ(τhf + τ−hf − 2h2nf)(λ) = 2h2n(jα+2n(λh) − 1)FΛf(λ). (9)

Now by formulas (8), (9) and Plancherel equality, we have the result. 2

Theorem 3.2 Given r and f ∈ W r
2,φ(Λ). Then there exist a constant c > 0 such that, for

all N > 0,
JN(f) = O(N−r+2nφ(c/N)).

Proof

Firstly, we have

J2
N (f) ≤

∫

|λ|≥N

|j|dµ +

∫

|λ|≥N

|1 − j|dµ, (10)

with j = jp(λh) , p = α + 2n and dµ = |FΛf(λ)|2dµα+2n(λ). The parameter h > 0 will be
chosen in an instant.
In view of formulas (5) and (6), there exist a constant c1 > 0 such that

|j| ≤ c1(|λ|h)−p− 1

2 .

Then
∫

|λ|≥N

|j|dµ ≤ c1(hN)−p− 1

2 J2
N (f).

Choose a constant c2 such that the number c3 = 1 − c1c
−p− 1

2

2 is positif.
Setting h = c2/N in the inequality (10), we have

C3J
2
N(f) ≤

∫

|λ|≥N

|1 − j|dµ. (11)

By Hölder inequality the second term in (11) satisfies

∫

|λ|≥N

|1 − j|dµ =

∫

|λ|≥N

|1 − j|.1.dµ

≤
(
∫

|λ|≥N

|1 − j|2dµ

)1/2(∫

|λ|≥N

dµ

)1/2

≤
(
∫

|λ|≥N

λ−2r|1 − j|2λ2rdµ

)1/2

JN (f)

≤ N−r

(
∫

|λ|≥N

|1 − j|2λ2rdµ

)1/2

JN(f).

From Lemma 3.1, we conclude that
∫

|λ|≥N

|1 − j|2λ2rdµ ≤ h−4n‖τhΛrf(x) + τ−hΛrf(x) − 2h2nΛrf(x)‖2
2,α,n.
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Therefore
∫

|λ|≥N

|1 − j|dµ ≤ N−rh−2n‖τhΛrf(x) + τ−hΛrf(x) − 2h2nΛrf(x)‖2,α,nJN(f).

For f ∈ W r
2,φ(Λ) there exist a constant c4 > 0 such that

‖τhΛrf(x) + τ−hΛrf(x) − 2h2nΛrf(x)‖ ≤ c4φ(h).

For h = c2/N , we obtain

c3J
2
N (f) ≤ c−2n

2 N2n−rc4φ(c2/N)JN (f).

Consequently

c2n
2 c3JN (f) ≤ c4N

−r+2nφ(c2/N).

for all N > 0. The theorem is proved with c = c2. 2

Theorem 3.3 Let φ(t) = tν, then

JN (f) = O(N−r−ν+2n) ⇔ f ∈ W r
2,φ(Λ),

where, r = 0, 1, ...; 0 < ν < 2.

Proof We prove sufficiency by using Theorem 3.2 let f ∈ W r
2,φ(Λ) then

JN (f) = O(N−r−ν+2n).

To prove necessity let
JN(f) = O(N−r−ν+2n)

i.e.
∫

|λ|≥N

|FΛf(λ)|2dµα+2n(λ) = O(N−2r−2ν+4n)

It is easy to show, that there exists a function f ∈ L2
α,n such that Λrf ∈ L2

α,n and

Λrf(x) = ir
∫

R

λrFΛf(λ)ϕλ(x)dµα+2n(λ). (12)

From formula (12) and Plancherel equality, we have

‖τhΛrf(x) + τ−hΛrf(x) − 2h2nΛrf(x)‖2
2,α,n

= 4h4n

∫

R

λ2r|jα+2n(λh) − 1|2|FΛf(λ)|2dµα+2n(λ).

This integral is divided into two
∫

R

=

∫

|λ|≤N

+

∫

|λ|≥N

= I1 + I2,



Radouan Daher et al. / MATEMATIKA 34:1 (2018) 153–161 159

where N = [h−1], We estimate them separately.
From (3), we have the estimate

I2 ≤ c5

∫

|λ|≥N

λ2r|FΛf(λ)|2dµα+2n(λ)

= c5

∞
∑

l=0

∫

N+l≤|λ|≤N+l+1

λ2r|FΛf(λ)|2dµα+2n(λ)

≤ c5

∞
∑

l=0

al(ul − ul+1),

with al = (N + l + 1)2r and ul =

∫

|λ|≥N+l

|FΛf(λ)|2dµα+2n(λ).

For all integers m ≥ 1, the Abel transformation shows

m
∑

l=0

al(ul − ul+1) = a0u0 +

m
∑

l=1

(al − al−1)ul − amum+1

≤ a0u0 +

n
∑

l=1

(al − al−1)ul,

because amum+1 ≥ 0. Moreover by the finite increments theorem, we have

al − al−1 ≤ 2r(N + l + 1)2r−1

Furthermore by the hypothesis of f there exists c6 > 0 such that, for all N > 0

J2
N (f) ≤ c6N

−2r−2ν+4n,

For N ≥ 1 , we have

m
∑

l=1

(al − al−1)ul ≤ c6

(

1 +
1

N

)2r

N−2ν+4n + 2rc6

m
∑

l=1

(

1 +
1

N + l

)2r−1

(N + l)−1−2ν+4n

≤ 22rc6N
−2ν+4n + 2r22r−1c6

m
∑

l=1

(N + l)−1−2ν+4n.

Finally, by the integral comparison test we have

m
∑

l=1

(N + l)−1−2ν+4n ≤
∫ ∞

N

x−1−2ν+4ndx =
1

2ν − 4n
N−2ν+4n.

Letting m → ∞ we see that, for r ≥ 0 and ν > 0, there exists a constant c7 such that, for all
N ≥ 1 and for h > 0,

I2 ≤ c7N
−2ν+4n.
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Now, we estimate I1. From formula (4), we have

I1 ≤ c8h
4

∫

|λ|≤N

λ2r+4|FΛf(λ)|2dµα+2n(λ)

= c8h
4

N−1
∑

l=0

∫

l≤|λ|≤l+1

λ2r+4|FΛf(λ)|2dµα+2n(λ)

≤ c8h
4

N−1
∑

l=0

(l + 1)2r+4(vl − vl+1),

with vl =

∫

|λ|≥l

|FΛf(λ)|2dµα+2n(λ).

Using an Abel transformation and proceeding as with I2 we obtain

I1 ≤ c8h
4

(

v0 +
N−1
∑

l=1

((l + 1)2r+4 − l2r+4)vl

)

≤ c8h
4

(

v0 + (2r + 4)c6

N−1
∑

l=1

(l + 1)2r+3l−2r−2ν+4n

)

,

since vl ≤ c6l
−2r−2ν+4n by hypothesis. From the inequality l + 1 ≤ 2l we conclude

I1 ≤ c8h
4

(

v0 + c9

N−1
∑

l=1

l3−2ν+4n

)

.

As a consequence of a series comparison for µ ≥ 1 and µ < 1 we have the inequality,

µ
N−1
∑

l=1

lµ−1 < Nµ, for µ > 0 and N ≥ 2.

If µ = 4 − 2ν + 4n > 0 for ν < 2 then we obtain

I1 ≤ c8h
4
(

v0 + c10N
4−2ν+4n

)

≤ c8h
4
(

v0 + c10h
−4+2ν−4n

)

,

since N ≤ 1/h. If h is sufficiently small then v0 ≤ c10h
−4+2ν−4n. Then we have

I1 ≤ c11h
2ν−4n

Combining the estimates for I1 and I2 gives

‖τhΛrf(x) + τ−hΛrf(x) − 2h2nΛrf(x)‖2,α,n = O(hν),

The necessity is proved. 2
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