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1 Introduction

In [5], Abilov et al. proved two useful estimates for the Fourier transform in the space of square
integrable functions on certain classes of functions characterized by the generalized continuity
modulus, using a translation operator.

In this paper, we consider a first-order singular differential-difference operator A on R which
generalizes the Dunkl operator A,, we prove two useful estimates in certain classes of functions
characterized by a generalized continuity modulus and connected with the generalized Fourier-
Dunkl transform associated to A in L2, analogs of the statements proved in [5]. For this
purpose, we use a generalized translation operator.

In section 2, we give some definitions and preliminaries concerning the generalized Fourier-

Dunkl transform. Two useful estimates are proved in section 3.

2 Preliminaries

In this section, we develop some results from harmonic analysis related to the differential-
difference operator A. Further details can be found in [1] and [6]. In all what follows assume
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where a > —1/2 and n a non-negative integer.
Consider the first-order singular differential-difference operator on R defined by

;) f@) = f(=o) _, f=2)

2 x x

Af(z) = fl(z)+ (a +
For n = 0, we regain the differential-difference operator

Mof(@) = @)+ (a5 ) TEZIE,

T

which is referred to as the Dunkl operator of index o+ 1/2 associated with the reflection group
Zs on R. Such operators have been introduced by Dunkl (see [3], [4]) in connection with a
generalization of the classical theory of spherical harmonics.

Let M be the map defined by

Mf(z) =2*"f(z), n=0,1,..

Let IP? . 1 < p < 0o, be the class of measurable functions f on R for which

1llp.an = 1M fllpas2n < 00,

1/p
1l = ( / |f(93)|”|fv|2“+1da:) |

If p = 2, then we have L7, , = L*(R, |z[***).
The one-dimensional Dunkl kernel is defined by

o,n?

where

eal2) = jaliz) + ﬁjamz),z ec, (1)

where
[0 1 b 2
Jalz) =Tl + mzzo 'Pm+a+1)zec 2)

is the normalized spherical Bessel function of index a. It is well-known that the functions
ea(A.), A € C, are solutions of the differential-difference equation

Ayu = du, u(0) = 1.

In the terms of j,(z), we have (see [2])

1- ja(l’) = (1)7 (3)
1 —jo(x) = 0(x2) 0+ <z<l. (4)
VhxJ,(hz) = O(1),hz >0, (5)
where J, () is Bessel function of the first kind, which is related to j,(x) by the formula
2T 1
jale) = ZHOFD 5 ), 2 € R, (6)

l.a
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For A € C, and z € R, put
oa(r) = $2n6a+2n(i)‘$)>
where e,42, is the Dunkl kernel of index a + 2n given by (1).

Proposition 2.1
(i) wx satisfies the differential equation

AQO)\ = 'i)\QD)\.

(i) For all A\ € C, and x € R
[pa(@)] < |a[?eltmAlel

The generalized Fourier-Dunkl transform we call the integral transform
Faf ) = [ fahoos@laP*idn A €R £ € L,
R

Let f € L}, such that Fo(f) € L,,, = L'(R,|z[***"""dz). Then the inverse generalized

an

Fourier-Dunkl transform is given by the formula

f(x) = / Faf N () dttasan(N),

where
1

o 2a+4n+1 —
dptatan(A) = datan| W0 = (e 1)

Proposition 2.2
(1) For every f € L?

a,ny

FANL)N) = iAFA(f)(N).

(ii) For every f € Ly, N L2, we have the Plancherel formula
[ 1@ PaPetds = [ 1Faf 0P ditasan),
R R

(#i1) The generalized Fourier-Dunkl transform Fa extends uniquely to an isometric isomorphism
from L% . onto L*(R, faton).

an

The generalized translation operators 7*, x € R, tied to A are defined by

. ()™ [P+ y? = 2ayt) z—y
T = 2 /_1 (22 +y* — 2ayt)" <1 - V24 y? — 2:cyt> Alt)de

(zy)™ 1 f(=/2? +y? — 2xyt) Ty
Pl ([ ) aca

(% + y? — 2zyt)"  al g 2ayt
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where
~ TDla+2n+1)
~ VAl(a+2n +1/2)

Proposition 2.3 Let t € R and f € L2 ,,. Then 7" f € L7, and

A(t) (141)(1 — t2)a+n=1/2,

17 fll2.0n < 22| f]12,0,n-

Furthermore,

FA(T"F)A) = 2™ earan(iAz) Fa(f)(N). (7)

The generalized modulus of continuity of function f € L2, is defined as

w(f,0)2.am = sup ||[7"f(x) + 77" f(2) = 21" f(2) 2.0, 8 > 0.
0<h<é

Let W3 4(A), r = 0,1, ..., denote the class of functions f € Lfm that have generalized derivatives
satisfying the estimate

WA f,0)2.0n = O(4(6)), 0—0,

where ¢(z) is any nonnegative function given on [0,00), and A’f = f, A"f = A(A""1f),
r=1,2,..
ie.,

Wi s(A) ={f € L ., A'f € L} yand - w(A"f,8)2.0 = O(6(3)),d — O}

a,n’

3 Main Results

The goal of this work is to prove two useful estimates for the integral
BD = [ VSO s (),
[A[>N

in certain classes of functions in L2 .
Lemma 3.1 For f € W3 4(A), we have,
IT"A"f (@) + 77" AT f(z) = 202" AT f(2)][3 0
=4 [ N2 (W) = 1P P Pt
where r =0,1,2, ...

Proof From formula (7) of proposition 2.2, we obtain

Fa(NF)A) = GA)" Faf(A)ir =0, 1, ... (8)
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By using the formulas (1), (2) and (7), we conclude that
FA(T"f + 771 = 207" f)(A) = 207" (Jas2n(AR) = 1) Faf(N). (9)

Now by formulas (8), (9) and Plancherel equality, we have the result. O

Theorem 3.2 Given r and f € W3 (A). Then there exist a constant ¢ > 0 such that, for
all N >0,

In(f) = O(NT2"¢(c/N)).
Proof
Firstly, we have

B(f) < / il + / 11— jld, (10)
AN AN

with j = j,(Ah) , p = a+ 2n and du = |Faof(N)[Pdparan(N). The parameter h > 0 will be
chosen in an instant.
In view of formulas (5) and (6), there exist a constant ¢; > 0 such that

] < ca(|AJh) P73,

Then
/ ldi < er(N) P33 (F).
A|I>N

L
Choose a constant ¢y such that the number ¢3 =1 — 0102p % is positif.
Setting h = ¢3/N in the inequality (10), we have

3T (f) < /W>N|1—j|du. (11)

By Hélder inequality the second term in (11) satisfies

|on=dde = [ = lde
A>N [A>N

1/2 1/2
< (/ |1—j|2du) (/ du)
[A>N [A>N

1/2
< ( A1 - deu) In(f)
A|>N

1/2
< ( 1= PN dR) ()
IA>N
From Lemma 3.1, we conclude that

/| R S R ) 47 A ) = 2N )
A>N
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Therefore
/ 11— jldp < N7T"h7| 7" AT f () + 77N f() — 207" A f(2) |20 N (f)-
[A>N

For f € Wy ,(A) there exist a constant c¢; > 0 such that

I7"A" f(x) + 77"AT () = 20*" A7 f(@)|| < cag(R).
For h = ¢y /N, we obtain

3y (f) < &*"N*"Tcag(e2/N)In(f).
Consequently
"3 n(f) < caNT"F2p(ca/N).
for all N > 0. The theorem is proved with ¢ = cs. O
Theorem 3.3 Let ¢(t) = t¥, then
In(f) = O(NT"H") & f € Wy 4(A),
where, r =0,1,..;0 <v < 2.
Proof We prove sufficiency by using Theorem 3.2 let f € Wy ,(A) then
In(f) = O(N7T77m).

To prove necessity let
In(f) = O(NT="2)

1.e.

| PO dtasan(3) = OV
[AI=N
It is easy to show, that there exists a function f € L?, such that A"f € L2, and
N f@) =1 [ XS Ner(e)diinsan(N). (12)
R

From formula (12) and Plancherel equality, we have
I7"A" f(x) + 77" f () = 202" AT f(2) 13 0o
=4 [ N s W) = 115 FO) Pt an(),
R

This integral is divided into two

Lo e
R Iy JpeN
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where N = [h™!], We estimate them separately.
From (3), we have the estimate

L < e / NI Fr f O Pt n (V)
IAI>N

- ay [ A SO Pdpasan (V)

=0/ NHSINSN++1

o0
< ¢ Z ar(u; — ug41),
1=0

with ¢; = (N + 1+ 1)* and u; = / | FafN)|Pdptason(N).
[N >N+I
For all integers m > 1, the Abel transformation shows

m m
Z ai(wi — uiy1) = aguo + Z(az — Q1)U — AUt
=0 =1

n
< agup + Z (@ — aj—1) uy,
=1

because a,, U, 1 > 0. Moreover by the finite increments theorem, we have
a— -y < 2r(N +1+1)>"
Furthermore by the hypothesis of f there exists cg > 0 such that, for all N > 0
TR (f) < cN72r2tn,

For N > 1, we have

m 1 2r m 1 2 —1
Z (ar —ai—1)w < cs (1 + —) N=2H 4 9pcg Z (1 + —) (N 4 )12 tdn
N — N +1

=1

< 22T‘CGN—2V+4TL + 27’2%_106 Z(N + l)—1—2u+4n‘
=1

Finally, by the integral comparison test we have

(o)

Z(N + l)—1—2u+4n < / $—1—2u+4nd$ _

—2v+4n
2u —4n ’
=1 N

Letting m — oo we see that, for » > 0 and v > 0, there exists a constant ¢; such that, for all
N > 1 and for h > 0,
12 S C7N_2V+4n.
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Now, we estimate ;. From formula (4), we have

L < el /m«v N Fy £ Pt son (V)

N-1

= ah'> / A Fa V) Pdptasan (M)
I<IN|<I+1

=0
N-1

< eght Y (1) (v — vip),

with v; = / | Faf V)P dptason (V).
A=l

Using an Abel transformation and proceeding as with I, we obtain

N-1
Il S C8h4 <'U(] ‘l’ Z((l ‘l’ 1)27“-1—4 _ l27‘+4)vl>

=1

IN

N-1
Cgh4 <’U(] —I— 27’ —|—4 CG Z l—l— 1 2T+3l 2r- 2y+4n> s
=1

since v; < cgl2" =2+ by hypothesis. From the inequality [ + 1 < 2] we conclude

N-1
L < Cgh4 <’Uo + ¢ Z l3_2V+4n> .

=1

As a consequence of a series comparison for g > 1 and 1 < 1 we have the inequality,
,uZl“_l < Nt for >0 and N >2.

If u=4—-2v+4n >0 for v < 2 then we obtain
11 < sl (v + croN 2717 < ot (v + croh™ 240 |
since N < 1/h. If h is sufficiently small then vy < ¢1oh™472*74". Then we have
I, < ey h2 i
Combining the estimates for I, and Iy gives
IT"A" f () + 77"AT f(x) — 20°" A" f (@) [l2,0,0 = O(R"),

The necessity is proved.
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